Электронные кинетические свойства высокотемпературной фазы интеркалатного соединения Ag_xTiSe₂

© Л.С. Красавин, М.В. Спицин, А.Н. Титов

Уральский государственный университет, 620083 Екатеринбург, Россия

(Поступила в Редакцию 23 июля 1996 г.)

Традиционный подход к интерпретации концентрационных зависимостей свойств интеркалатных соединений основан на предположении, что внедренные атомы одинаково связаны с решеткой-матрицей. Степень ионизации атомов интеркалянта не зависит от их содержания в образце. При исследовании фазовой диаграммы соединения $Ag_{x}TiSe_{2}$ возникли серьезные сомнения в справедливости такого подхода в данном случае, поскольку концентрационные зависимости термодинамических функций системы атомов серебра (таких как энтропия S и свободная энергия Гиббса G) для различных фаз данного соединения существенно отличались [1]. Последовательные минимум и резкий максимум на зависимости S(x) в фазе $Ag_{1/4}TiSe_2$ не позволяют связать энтропию атомов серебра только с конфигурационным вкладом ионов серебра и требуют учета электронного вклада. Указанный вклад может быть заметным только при большой плотности электронных состояний на уровне Ферми. С этим хорошо согласуются результаты [2], где было показано, что электронные носители в фазе $Ag_{1/4}TiSe_2$ локализованы. Приведенные факты позволяют предположить, что в рассматриваемой фазе образуются ковалентные центры с участием внедренного серебра. Присутствие таких центров позволило бы объяснить и то, почему увеличение параметра решетки со составляет всего 0.18 Å при переходе от TiSe₂ к Ag_{1/4}TiSe₂ [1], тогда как интеркалация диселенида титана даже литием приводит к значительно большему увеличению c_0 [3]. В то же время зависимости S(x) в двух других фазах Ag_xTiSe₂ монотонны [1], и авторы предположили (анализируя соотношение содержания серебра, необходимо для образования фаз), что фазы II и I являются соответственно стадиями II и I интеркалации на базе соединения $Ag_{1/4}TiSe_2$. На примере Ag_xTiS_2 [4], структурного аналога Ag_xTiSe₂, была показана справедливость модели [5], связывающей образование стадий интеркалации с упругими искажениями решетки, возникающими при увеличении расстояния между слоями при введении атомов интеркалата. Следовательно, образование стадий возможно только при полной ионизации внедряемых атомов, образующих стадию. Таким образом, в фазах II и I не должно наблюдаться образования новых ковалентных связей, а следовательно, и эффектов локализации носителей.

В настоящей работе исследовались электронные свойства богатых серебром фаз системы Ag_xTiSe₂ с целью уточнения характера химической связи внедренных атомов с решеткой-матрицей.

Главная трудность в исследованиях фаз II и I заключается в том, что эти фазы при охлаждении распадаются с выделением металлического серебра [1]. Попытки закалить их успеха не имели, и процесс экстракции серебра оказался необратимым. Поэтому в настоящей работе был применен метод, позволяющий приготовлять образец нужного состава непосредственно в измерительной ячейке. Суть метода заключается в объединении электрохимической и измерительной ячеек. Исходный поликристаллический образец состава Ag0.26 TiSe2 был приготовлен методом ампульного синтеза и аттестован рентгенографически (ДРОН-3, СиК_в-излучение, графитовый монохроматор). Содержание серебра в образце задавалось и контролировалось электрохимически с использованием полученных ранее [1] градуировочных кривых. Методики измерений электропроводности σ ,

Рис. 1. Температурная зависимость электропроводности σ фазы II Ag_xTiSe₂ для различных значений x. x: 1 - 0.375, 2 - 0.385, 3 - 0.389, 4 - 0.392, 5 - 0.394, 6 - 0.395. На вставке — концентрационная зависимость σ для температур T (°C): 1 - 140, 2 - 300. Характер зависимости при переходе в фазу II не меняется, смена угла наклона линий связана, по-видимому, с исчезновением дырок в фазе II.

Рис. 2. Температурная зависимость коэффициента Зеебека α фазы II Ag_xTiSe₂ для значений x, равных 0.375 (1) и 0.395 (6). На вставке — схема измерительной ячейки, позволяющей проводить измерения σ , α и $R_{\rm H}$ высокотемпературных фаз. Изменение x в Ag_xTiSe₂ осуществляется пропусканием импульса тока соответствующей полярности через контакты 1-2 (AgI — твердый электролит с проводимостью только по ионам серебра). Контакты 7, 3, 4, 2 служат для измерения σ четырехзондовым методом, контакты 7, 5, 6, 2 — для измерения $R_{\rm H}$. Контроль температуры образца осуществляется термопарами 3 - 3' и 4 - 4', одноименные ветви которых используются для измерения α .

коэффициента Зеебека α и коэффициента Холла $R_{\rm H}$ описаны ранее [2].

Результаты измерений σ , α и $R_{\rm H}$ на исходном образце совпадают с результатами [2]. Зависимости $\sigma(T)$, $\alpha(T)$ для фазы II приведены на рис. 1, 2. Провести аналогичные измерения для фазы I не удалось по причине нарушения токовых контактов из-за заметных изменений геометрических размеров образца, не удивительных при столь значительном изменении состава (25 mol.%). Вид зависимостей $\sigma(T)$ и $\alpha(T)$ резко отличается от аналогичных зависимостей для фазы Ag_{1/4}TiSe₂: проводимость имеет металлический характер без аномалий, коэффициент Зеебека отрицателен (*n*-типа проводимости) и удовлетворяет общей теории электронных металлов [6]. В пределах области гомогенности фазы II не удалось обнаружить концентрационной зависимости коэффициента Холла $R_{\rm H}$ (общая ошибка 60% связана главным образом с малостью ЭДС Холла из-за сравнительно большой толщины образца, необходимой для эффективного применения метода кулонометрического титрования). $R_{\rm H}$, как и α , показывает отсутствие дырочных носителей: $R_{\rm H} \simeq {
m const}(T) \simeq -2.4 \cdot 10^{-6} \, \Omega \cdot {
m cm/T}$, что почти на порядок ниже, чем в фазе Ag_{1/4}TiSe₂ для самого "богатого" серебром состава при этих температурах. Концентрация электронов проводимости, вычисленная из этого значения, составляет $n_e \simeq 2.6 \cdot 10^{20} \, \mathrm{cm}^{-3}$. Столь низкое для металлов значение n_e позволяет объяснить большой модуль α за счет значительного вклада фононного увлечения [6].

Приведенные экспериментальные данные демонстрируют отсутствие эффектов, связанных с локализацией носителей заряда в фазе II. При этом концентрация серебра, добавляемого к $Ag_{1/4}TiSe_2$ для получения фазы II (изменение состава от x = 0.282 до 0.375), равна $1.2 \cdot 10^{21} \text{ cm}^{-3}$, тогда как концентрация, получения из $R_{\rm H}$, составляет $(2.6 \pm 1.5) \cdot 10^{20} \text{ cm}^{-3}$. Предположение о стадийной природе фазы II требует совпадения этих величин. Представляется, что причиной расхождения может быть как занижение величины n_e за счет использвания поликристаллического образца, так и донасыщение ковалентных связей, созданных атомами серебра в фазе $Ag_{1/4}TiSe_2$ частью электронов от атомов серебра, образующих стадию.

Список литературы

- [1] А.Н. Титов, С.Г. Титова. ФТТ 37, 2, 567 (1995).
- [2] В.М. Антропов, А.Н. Титов, Л.С. Красавин. ФТТ 38, 4, 1288 (1996).
- [3] M.S. Whittingham. Progr. Sol. Stat. Chem. 12, 41 (1978).
- [4] А.Н. Титов, Х.М. Биккин. ФТТ **33**, 6, 1876 (1991).
- [5] J.R. Dahn, D.C. Kahn, R.R. Haering. Solid State Commun. 42, 3, 179 (1982).
- [6] Ф. Блатт. Физика электронной проводимости в твердых телах. Мир, М. (1971). 470 с.