Магнетронное осаждение тонких пленок Cu(200) на подложки Ni(200)/SiO₂/Si

© А.С. Джумалиев, Ю.В. Никулин, Ю.А. Филимонов

Саратовский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, 410019 Саратов, Россия e-mail: yvnikulin@gmail.com

(Поступило в Редакцию 19 декабря 2013 г.)

06

Экспериментально показана возможность ориентированного роста тонких пленок меди с текстурой (200) на подложке SiO₂/Si методом магнетронного распыления в условиях среднего вакуума, когда в качестве ориентирующего подслоя выступает предварительно осажденная пленка никеля с текстурой (200).

Методы получения пленок меди (Cu) с кристаллографической текстурой (100) представляют интерес в связи с перспективами использования пленок Cu(100) в устройствах микро- и наноэлектроники. Действительно, многослойные структуры на основе пленок меди и ферромагнитных металлов, в частности структуры Cu(001)/Ni(001), могут обладать существенной перпендикулярной магнитной анизотропией [1-4], что открывает перспективы построения на их основе устройств с перпендикулярной магнитной памятью. Было также показано, что в пленках графена, полученных CVDметодом на медных подложках, подвижность и работа выхода электронов существенно определяются кристаллографической ориентацией пленки меди [5]. Кроме того, текстурированные пленки Cu(100) обладают высокой стойкостью к тепловой миграции внутренних упругих напряжений, что может обеспечить их использование в качестве токоведущих соединений в электронных интегральных устройствах [6,7].

Отметим, что с помощью технологий молекулярнолучевой эпитаксии [8,9], магнетронного [10,11], электронного [12], ионного [13] или термического [14] распылений, а также лазерной абляцией [15] могут быть получены эпитаксиальные пленки Cu(100) толщиной $t \approx 1-200$ nm. При этом для эпитаксии может быть использован целый набор ориентирующих подложек: NaCl(100) [12], Ni(100) [8,1–3], MgO(100) [100], Si(100) [9,11,13,14] а также SrTiO₃(100) и LaAlO₃(100) [15].

Получение пленок меди с кристаллографической текстурой (100) на аморфных подложках представляет определенную проблему, связанную с тем, что минимальной поверхностной энергией γ обладают пленки с текстурой (111) ($\gamma_{[111]}^{Cu} < \gamma_{[100]}^{Cu} < \gamma_{[110]}^{Cu}$) [16]. По этой причине в пленках Cu, полученных, например, магнетронным распылением на подложках SiO₂/Si(100) [6,17] или пленках полиимида [18,19], формируется текстура (111) вплоть до толщин пленок $t \approx 300-500$ nm. Получить пленки Cu с текстурой (100) удается при увеличении размеров зерна пленки [20], что позволяет компенсировать разницу в величинах $\gamma_{[111]}^{Cu}$ и $\gamma_{[100]}^{Cu}$ за счет меньшей энергии упругих деформаций пленок Cu

в направлении [100] по сравнению с направлением [111]. Такой механизм формирования пленок Cu(100) может реализовываться с ростом толщины пленки до нескольких микрометров [18–20] либо за счет отжига при $T \ge 700$ К пленок Cu(111) толщиной $t \ge 300$ nm [6,7,20]. Однако возможность получения тонких (t < 300 nm) пленок Cu(100) на аморфных подложках до сих пор, повидимому, не обсуждалась. Следует отметить, что ранее изучалось осаждение пленок Cu на аморфные подложки с подслоем из различных (Ta, TaN, Ti, TiN, W) металлов, но о получении тонких пленок Cu(100) не сообщалось.

Среди магнитных металлов, пленки Ni выглядят наиболее оптимальным вариантом для их использования в качестве ориентирующего подслоя для пленок Си. Действительно, различие постоянных решетки Cu и Ni составляет $\approx 2.5\%$, поверхностная энергия пленок Cu(100) ($\gamma^{Cu}_{[100]} \approx 1382 \cdot 10^{-7} \text{ erg/cm}^2$) меньше, чем у пленок Ni(100) $(\gamma_{[100]}^{\text{Ni}} \approx 1943 \cdot 10^{-7} \text{ erg/cm}^2)$ [16], что должно обеспечить пленкам Cu(100) рост близкий к эпитаксиальному. Ранее было показано, что пленки Ni(100) можно получать магнетронным распылением при комнатной температуре на подложках SiO₂/Si за счет осаждения при низких давлениях рабочего газа $P_{\rm Ar} \approx 0.13 - 0.09$ Ра [21]. В настоящей работе показана возможность ориентированного роста тонких пленок, Си с текстурой (200) на подложке SiO₂/Si методом магнетронного распыления, когда в качестве ориентирующего подслоя выступает предварительно осажденная пленка никеля с текстурой (200).

Магнетронное осаждение пленок Си и Ni проводилось в вакуумной установке ВУП-5 с базовым давлением 0.2 mPa. Использовались мишени Си (99.95%, Williams) и Ni(99.95%, Williams) толщиной 1 mm, а в качестве рабочего газа — аргон марки ОЧ (99.998%). Подложка располагалась симметрично относительно центра мишеней Си и Ni на расстоянии $L \approx 75$ mm. Кристаллическая структура пленок изучалась методом рентгеновской дифракции с помощью дифрактометра ДРОН-4 с фокусировкой по плоскому образцу Брэггу–Брентано (схема Θ –2 Θ), Си- K_{α} излучение с длиной волны $\lambda \approx 0.15418$ nm. Величина межплоскостного расстояния $d_{[200]}$ в направлении нормали [100] определялась

Рис. 1. a — дифрактограммы пленок Ni толщиной $d \approx 25$, 50, 100 и 360 nm, выращенных при давлении рабочего газа $P \approx 0.09$ Pa. Сплошными вертикальными линиями показаны положения дифракционных линий Ni(111) и Ni(200) из базы данных Международного центра по дифракционным данным (JCPDS). Слева от дифракционного максимума I(200) указаны значения параметра Δa ; b — CЭМ-изображение поперечного сечения пленки Ni(200) толщиной $d \approx 400$ nm. Стрелками обозначены значения толщины пленки $d_1 \approx 180$ nm и $d_2 \approx 360$ nm, при которых производилось напыление пленки меди; c — CTM-изображение поверхности, типичное для пленок никеля с текстурой (200) толщиной $d \approx 100-400$ nm, выращенных при давлении аргона $P \approx 0.09$ Pa. Величина среднеквадратичной шероховатости поверхности пленок в этом диапазоне толщин составляет $\sigma \approx 0.6-0.9$ nm.

по формуле Брэгга–Вульфа $2d_{[200]} \sin \Theta = \lambda$, где Θ — угол падения излучения, отсчитываемый от атомной плоскости. Морфология поверхности пленок Ni и Cu исследовалась методами атомно-силовой (ACM) и сканирующей туннельной микроскопии (CTM), при этом среднеквадратичная шероховатость поверхности σ пленок определялась с помощью программного обеспечения ImageAnalysis 2.0 (Solver P-47, NT-MDT). Микроструктура пленок изучалась методом сканирующей электронной микроскопии (CЭM) (Auriga, Carl Zeiss). Толщина пленок определялась методом профилометрии (Dectak 150, Veeco) с точностью 5%.

Пленки Ni осаждались при давлении рабочего газа $P_{\rm Ar} \approx 0.09$ Pa на подложки кремния Si(100) с термически окисленным слоем SiO₂ толщиной 300 nm со среднеквадратичной шероховатостью поверхности $\sigma^{\rm SiO_2} \approx 0.2$ nm аналогично технологии, описанной в работах [21,22]. Перед напылением подложки очищались в ультразвуковой ванне с ацетоном и подвергались отжигу в вакууме при температуре 620–670 K в течение 30 min. Напыление проводилось на подложку при комнатной температуре. Скорость роста составляла $V^{\rm Ni} \approx 17$ nm/min при мощности разряда 57 W и напряжении на мишени $U \approx -480$ V.

На рис. 1, а приведены дифрактограммы пленок Ni толщиной $h \approx 25$, 50, 100 и 360 nm. Видно, что пленки являются поликристаллическими с текстурой (200), о чем говорит превышение интенсивности дифракционной линии (200) (L_{200}) над интенсивностью дифракционной линии (111) (I_{111}). Увеличение отношения $I_{(200)}/I_{(111)}$ с ≈ 1.5 до ≈ 11.5 с ростом толщины пленки с $h \approx 25$ до ≈ 360 nm указывает на увеличение текстурированности пленки Ni. Из рис. 1, а видно, что в пленках с $h \approx 25$ пm межплоскостное расстоение $d_{[200]}$ характеризуется небольшим

растяжением $\Delta d_{[200]} = [(d_{[200]} - d_{[200]}^0)/d_{[200]}^0] \cdot 100\%$ (где $d_{[200]}^0 \approx 0.1762$ nm — величина межплоскостного расстояния эталонного образца), о чем говорит сдвиг влево экспериментальных дифракционных линий относительно линий эталонных образцов, обозначенных вертикальными линиями на рис. 1, *а*. В пленках с $h \ge 50$ nm наблюдается сжатие межплоскостного расстояния $d_{[200]}$, о чем говорит сдвиг вправо экспериментальных дифракционных линий относительно линий эталонных образцов, обозначенных вертикальными линиями на рис. 1, *а*. В пленках с $h \ge 50$ nm наблюдается сжатие межплоскостного расстояния $d_{[200]}$, о чем говорит сдвиг вправо экспериментальных дифракционных линий относительно линий эталонных образцов. Значения параметра $\Delta d_{[200]}$ для пленок никеля указаны вблизи соответствующих кривых на рис. 1, *а* и пленок с $h \approx 100$ и ≈ 360 nm значения $\Delta d_{[200]}$ составляют -0.11 и -0.23% соответственно.

На рис. 1, b приведено СЭМ-изображение поперечного сечения пленки Ni(400 nm)/SiO₂/Si. Видно, что осаждаемая при выбранных параметрах роста пленка Ni(200) формируется на начальных этапах с квазиоднородной микроструктурой, которая при достижении пленкой критической толщины $h^* \approx 150 \,\mathrm{nm}$ переходит в столбчатую при толщине $h > h^*$. Формирование такой микроструктуры пленки может быть связано с конкурирующим влиянием локальной нестабильности скорости роста пленки из-за эффекта самозатенения и поверхностной диффузии [23]. Первый из указанных факторов вносит дестабилизирующее влияние на формирование интерфейса пленки, а второй оказывает сглаживающий эффект. В результате, при выбранных ростовых условиях, в пленках толщиной h^{h^*} доминирует сглаживающий эффект поверхностной диффузии. С ростом толщины пленки неоднородность упругих деформаций, вызванная сменой знака и величины $\Delta d_{[200]}$, может создавать энергетические барьеры, препятствующие диффузии. В этом случае при $h > h^*$ доминирующее влияние на формирование интерфейса пленки начинает оказывать эффект самозатенения.

Рис. 2. a — дифрактограммы пленок Cu(20 nm)/Ni(180 nm)/SiO₂/Si (1 — сплошная линия) и Cu(20 nm)/Ni(360 nm)/SiO₂/Si (2 — штриховая линия). Сплошными вертикальными линиями показаны положения дифракционных линий Ni(111), Ni(200), Cu(111) и Cu(200) из базы данных Международного центра по дифракционным данным (JCPDS); b — типичное ACM-изображение поверхности пленки Cu толщиной 20 nm на подложке Ni(200)/SiO₂/Si с толщиной подслоя никеля 180 и 360 nm. Среднеквадратичная шероховатость поверхности $\sigma \approx 2.4$ nm. Размер ACM-изображения $2 \times 2 \mu$ m.

Для получения пленок Cu(200) в качестве ориентирующего подслоя использовались пленки Ni(200) толщиной $h_1 \approx 180$ nm и $h_2 \approx 360$ nm, которые характеризовались значениями шероховатости $\sigma^{\text{Ni}} \approx 0.6-0.9$ nm. Сразу после осаждения пленки Ni на нее напылялась пленка меди толщиной $t \approx 20$ nm при $v^{\text{Cu}} \approx 5$ nm/min, $P_{\text{Ar}} \approx 0.2$ Pa, напряжении на мишени $U \approx -480$ V и токе разряда $I \approx 90$ mA.

На рис. 2 приведены дифрактограммы и АСМ-изображение пленок Си толщиной 20 nm, выращенных на ориентирующих подложках Ni(180 nm)/SiO₂/Si и Ni(360 nm)/SiO₂/Si. Из рис. 2, а видно, что пленка Сu, выращенная на подслое никеля толщиной h_2 , имеет лучшую текстурированность $(I^{\text{Cu}}_{(200)}/I^{\text{Cu}}_{(111)} \approx 8.6)$, чем пленка меди, осажденная на подслой Ni толщиной h_1 , для которой $I_{(200)}^{\text{Cu}}/I_{(111)}^{\text{Cu}} \approx 2.5$. При этом интенсивности дифракционных линий (200) пленок Cu(20 nm) и Ni(180 nm) достаточно близки (кривая 1 на рис. 2, a), тогда как в случае подслоя Ni(360 nm) различаются в разы (кривая 2 на рис. 2, a). Такое поведение дифрактограмм на рис. 2, aобъясняется улучшением текстуры пленки Ni с ростом h (рис. 1, a) и соответственно улучшением ее ориентирующей способности. Действительно, пленка Си формируется на ориентирующей подложке Ni(200), тогда как пленка Ni осаждается на аморфную поверхность SiO₂/Si. Как следствие, текстура в пленках Си формируется на начальной стадии роста, а у пленок Ni текстура проявляется лишь при достаточно большой толщине и заметно усиливается с ростом h (рис. 1, a). По этой причине значения I₍₂₀₀₎ для структуры Cu(20 nm)/Ni(360 nm)/SiO₂/Si оказываются существенно выше, чем в случае структуры Cu(20 nm)/Ni(180 nm)/SiO₂/Si. Кроме того, значительное усиление текстурированности пленки Ni(360 nm) приводит к тому, что из-за существенной разницы толщин интенсивность дифракционных линий $I_{(200)}$ от пленки Ni(360 nm) оказывается заметно больше, чем от пленки меди толщиной $t \approx 20$ nm (кривая 2 на рис. 2, *a*).

Следует отметить, что шероховатость поверхности пленок Cu(200) почти не зависит от толщины подслоя никеля и составляет $\sigma^{Cu} \approx 2.4$ nm (рис. 2, b). Принимая во внимание различие постоянных решетки меди и никеля ($a_{Cu} \approx 0.3615$ nm, $a_{Ni} \approx 0.3523$ nm), следует ожидать наличия деформаций кристаллической структуры пленок Cu в случае роста на подложках Ni. Как следует из рис. 2, a, пленки Cu(200) формируются со сжатием межплоскостного расстояния $d_{[200]}$, причем величина сжатия $\Delta d_{[200]}$ увеличивается с ≈ -0.36 до $\approx -0.47\%$ с ростом толщины подслоя никеля с $h_1 \approx 180$ nm до $h_2 \approx 360$ nm. При этом пленка Cu не оказывает заметного влияния на величину $\Delta d_{[200]}$ пленок Ni(200).

Таким образом, показана возможность получения методом магнетронного распыления при комнатной температуре пленок Cu(200) толщиной $t \approx 20$ nm на подложках SiO₂/Si(100) с ориентирующим подслоем из пленки Ni(200) толщиной h > 100 nm. Установлено, что увеличение толщины подслоя Ni(200) приводит к улучшению текстуры и росту деформаций кристаллической структуры пленок Cu(200). Шероховатость поверхности пленки Cu при этом не зависит от толщины подслоя никеля и составляет $\sigma^{Cu} \approx 2.4$ nm. Данные результаты могут быть использованы при создании многослойных структур на основе текстурированных пленок никеля и меди, получаемых магнетронным распылением на подложках SiO₂/Si.

Работа выполнена при финансовой поддержке РФФИ, гранты № 13-07-01023, 12-07-31155, 13-07-12421 офи_м.

Список литературы

- Corredor E.C., Diez-Ferrer J.L., Coey D. et al. // J. Phys. 2010. Vol. 200. P. 072 019.
- [2] Pan W., Shih Y.-T., Lee K.-L. et al. // J. Appl. Phys. 2012. Vol. 111. P. 07C113.
- [3] O'Brien W.L., Tonner B.P. // J. Appl. Phys. 1996. Vol. 79. P. 5623.
- [4] Johnson M.T., Bloemen P.J., den Broeder F.J.A., de Vries J.J. // Rep. Prog. Phys. 1996. Vol. 59, P. 1409.
- [5] Shin H.-J., Yoon S.-M., Choi W.-M. et al.// Appl. Phys. Lett. 2013. Vol. 102, P. 163 102.
- [6] Koike J., Wada M., Sanada M., Maruyama K. // Appl. Phys. Lett. 2002. Vol. 81. P. 1017.
- [7] Park N.-J., Field D.P., Nowell M.M., Besser P.R. // J. Electron. Mat. 2005. Vol. 34. P. 1500–1507.
- [8] Muller B., Nedelmann L., Fischer B. et al. // Surf. Rev. Lett. 1997. Vol. 4, P. 1161–1165.
- [9] Demczyk B.G., Naik F.L., Auner G., Kota C., Rao U. // J. Appl. Phys. 1994. Vol. 75. P. 1956.
- [10] Purswani J.M., Spila T., Galla D. // Th Sol. Film. 2006. Vol. 515. P. 1166–1170.
- [11] Jiang H., Klemmer T., Barnard J., Payzant E. // J. Vac. Sci. Techn. A. 1998. Vol. 16. P. 3376–3383.
- [12] Zhou G., Yang J.C. // J. Mater. Res. 2005. Vol. 20. P. 1684– 1694.
- [13] Hashim I., Park B., Atwater H.A. // Appl. Phys. Lett. 1993.
 Vol. 63. P. 2833–2835.
- [14] Krastev E.T., Voice L.D., Tobin R.G. // J. Appl. Phys. 1996. Vol. 79. P. 6865–6871.
- [15] Francis A.J., Cao Y., Salvador P.A. // Th. Sol. Film. 2006. Vol. 496. P. 317–325.
- [16] LeeB.-J., Shim J.-H., Baskes M.I. // Phys. Rev. B. 2003. Vol. 68. P. 144 112–11.
- [17] Okolo B., Lamparter P., Welzel U. et al. // Th. Sol. Film. 2005.
 Vol. 474. P. 50–63.
- [18] Sonnweber-Ribic P., Gruber P., Dehm G., Arzt E. // Acta Mater. 2006. Vol. 54. P. 3863–3870.
- [19] Sonnweber-Ribic P. Grain growth and texture evolution in copper thin films // Ph.D. Thesis, Max-Planck-Institut für Metallforschung, Stuttgart, 2010.
- [20] Thompson C.V., Carel R. // J. Mech. Phys. Sol. 1996. Vol. 44. P. 657–673.
- [21] Джумалиев А.С, Никулин Ю.В., Филимонов Ю.А. // РЭ. 2012. Т. 57. С. 1–8.
- [22] Джумалиев А.С., Никулин Ю.В., Филимонов Ю.А. // Письма в ЖТФ. 2013. Т. 39. С. 10–17.
- [23] Karunaisiri R.P.U., Bruinsma R., Rudnick J. // Phys. Rev. Lett. 1989. Vol. 62. P. 788.