Поляризационное подавление брэгговских рефлексов при отражении света от фотонных кристаллов

© А.Г. Баженова, А.В. Селькин, А.Ю. Меньшикова*, Н.Н. Шевченко*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Институт высокомолекулярных соединений Российской академии наук, 199004 Санкт-Петербург, Россия

E-mail: Alexander.Selkin@mail.ioffe.ru

(Поступила в Редакцию 9 апреля 2007 г.)

Экспериментально и теоретически изучены спектры брэгговского отражения света от опалоподобных фотонных кристаллов вблизи критического угла падения θ_c , при котором исчезает брэгговский рефлекс в *p*-поляризации отраженного света. Объекты исследования представляли собой полимерные фотонно-кристаллические структуры, состоящие из частиц полистирола. Показано, что полное подавление брэгговского рефлекса для электромагнитной ТМ-моды происходит при угле падения θ_c , зависящем от геометрических параметров и диэлектрических констант пространственно-периодической структуры.

Работа выполнена при финансовой поддержке Научной программы Президиума РАН "Органические и гибридные наноструктурированные материалы для фотоники" и Российского фонда фундаментальных исследований (проект № 05-02-1777б).

PACS: 42.70.Qs, 42.25.Fx, 42.25.Ja

1. Введение

Взаимодействие электромагнитного поля с пространственно-периодическими твердотельными структурами, период которых сопоставим с длиной волны света, сопровождается рядом ярких дифракционных оптических явлений, которые могут быть сопоставлены с сильной модификацией энергетического спектра фотонов внутри структуры [1-3]. Такого рода структуры, называемые фотонными кристаллами (ФК), являются объектами повышенного практического интереса [4,5], что связано с возможностью эффективного управления распространением света внутри ФК-структур и с новыми перспективными приложениями в лазерной технике и оптоэлектронике. С другой стороны, такие структуры представляют собой новые нетривиальные объекты, позволяющие проводить интересные с научной точки зрения исследования, касающиеся фундаментальных аспектов взаимодействия света с конденсированной средой [6,7].

Характерной особенностью энергетического спектра собственных состояний электромагнитного поля в ФК является существование полос частот, в пределах которых распространение света невозможно для некоторых (стоп-зоны) или даже для всех (фотонные запрещенные зоны) направлений. При этом в силу векторной природы электромагнитного поля следует ожидать определенных эффектов, обусловленных поляризацией света [6,8,9]. В частности, в тех случаях, когда собственные состояния электромагнитного поля представляют собой ТЕ- и ТМ-моды, возможны эффекты подавления резонансной брэгговской дифракции света в ТМ-поляризации (определяемой обычным образом по отношению к какойнибудь кристаллической плоскости ФК) [8,10,11]. В таких случаях можно говорить об исчезновении (схлопывании) ТМ-стоп-зоны для некоторых направлений распространения света.

В настоящей работе представлены результаты экспериментальных и теоретических исследований механизмов формирования спектров брэгговского отражения света от трехмерных ФК со структурой кристаллической решетки опала. Основное внимание уделено изучению резонансных (в области стоп-зоны) спектров брэгговского отражения света от поверхности роста (111) с учетом эффектов поляризации света. В качестве модельных экспериментальных объектов исследования использованы пленки опалоподобных ФК, сформированные из монодисперсных частиц полистирола. Измерения спектров проводились при разных углах падения света как для s-, так и для p-состояний поляризации внешнего света. Данные измерений сопоставлены с теоретическими расчетами, выполненными в приближении планарной слоисто-периодической среды, учитывающем периодичность структуры в направлении [111].

2. Эксперимент

Исследованные нами опалоподобные ФК предсталяли собой пленки (толщиной порядка 5μ m), сформированные из монодисперсных частиц полистирола (диаметром около 300 nm) путем седиментации на стеклянных подложках. Частицы полистирола синтезировали путем безэмульгаторной сополимеризации стирола с метакриловой кислотой под действием персульфата калия [12–14]. Такой способ синтеза позволяет вводить в поверхностный слой частиц карбоксильные группы, что дает возможность оптимизировать условия формирования полимерных ФК, варьируя степень ионизации этих групп и, следовательно, поверхностный заряд частиц [12].

Рис. 1. Геометрия брэгговского отражения света от опалоподобного фотонного кристалла. Азимутальный угол φ плоскости падения, содержащей ось Z (направление [111]), отсчитывается от плоскости XZ системы координат. Ось X перпендикулярна стороне правильного треугольника, образованного центрами взаимопроникающих сфероидальных частиц, лежащих на латеральной (отражающей) поверхности XY.

Спектры брэгговского отражения света изучались на оптической установке, собранной на базе спектрометра МДР-23 с рабочим спектральным диапазоном 400-850 nm и обратной линейной дисперсией 13 Å/mm. Источником белого света служила лампа накаливания, луч от которой коллимировался с помощью диафрагмы и линзы так, что угол расходимости пучка не превышал 3°. Световой пучок направлялся на образец, закрепленный на гониометре от эллипсометра ЛЭФ-3М. Установка обеспечивала точное позиционирование кристалла: выбор нужного угла падения светового потока и азимутальную ориентацию образца (относительно вращения в латеральной плоскости). Отраженный от поверхности образца свет через систему линз направлялся на входную щель спектрометра, ширина которой варьировалась в пределах 100-200 µm. Световой поток на выходе спектрометра регистрировался с помощью фотоэлектронного умножителя ФЭУ-79 в режиме счета фотонов, электрический сигнал после прохождения через предусилитель и блок сопряжения обрабатывался персональным компьютером, а записанный спектр в цифровом виде сохранялся в файле.

Измерения спектров проводились на образцах, находившихся в воздухе и в этиловом спирте. Для того чтобы спирт в достаточной степени заполнял межчастичное пространство ФК, а пленки сохраняли свою структуру и адгезию к подложке, седиментацию частиц осуществляли на гидрофильную стеклянную подложку, а сами частицы синтезировали в присутствии тиогликолевой кислоты [13,14].

Спектры отражения регистрировались нами в s-, и р-поляризациях внешнего света (в дальнейшем для краткости s- и p-спектры соответственно). При этом азимутальная ориентация ϕ образца выбиралась таким образом (рис. 1), чтобы плоскость падения света XZ была перпендикулярна стороне правильного треугольника, образованного центрами контактирующих частиц, лежащих на латеральной (отражающей) поверхности ХҮ. Такая ориентация на рис. 1 соответствует азимуту $\phi = 0$. Взаимное расположение полимерных частиц в наружном слое ФК контролировалось с помощью сканирующего электронного микроскопа и по спектрам многоволновой брэгговской дифракции света (см. далее). В случае образца, свободного от спирта, s- и p-спектры демонстрируют (по аналогии с экспериментальными данными, полученными в работе [15] для синтетических опалов на основе a-SiO₂) заметные качественные различия в характере своего изменения по мере увеличения угла падения *θ*. Брэгговские полосы отражения в *s*-компоненте поляризации становятся более широкими и интенсивными, в то время как в р-поляризации сужаются и становятся менее интенсивными.

Типичные *s*-спектры брэгговского отражения света для одного и того же образца, находящегося в воздухе и

Рис. 2. Спектры брэгговского отражения для *s*-поляризованного света, полученные от одного и того же фотоннокристаллического образца при разных углах падения θ (азимут плоскости падения $\varphi = 0$). *a* — образец свободен от спирта и находится в воздухе, *b* — образец погружен в спирт.

погруженного в спирт, изображены на рис. 2, *а* и *b* соответственно. При каждом угле падения пиковые значения коэффициентов отражения нормировались на единицу. Последнее связано с тем, что определение абсолютного значения коэффициента отражения сопряжено, как правило, с большой погрешностью измерений (около 20%) из-за недостаточного совершенства сформированных ФК и, как следствие, из-за нежелательной сильной диффузной компоненты рассеянного света.

Наряду с интерференционной (типа Фабри-Перо) структурой, сопровождающей брэгговские пики отражения в пределах всей исследованной спектральной области, обращает на себя внимание наличие в окрестности некоторых углов падения ($\theta \approx 54^\circ$ и $\theta \approx 40^\circ$ для незаполненного и заполненного спиртом образца соответственно) дублетной структуры брэгговских пиков в *s*-поляризации света. Как отмечалось ранее [16–21], такая дублетная структура может проявляться в результате многоволнового [22] характера брэгговской дифракции, когда брэгговские [23] условия отражения выполняются на одной и той же длине волны сразу для нескольких (по крайней мере двух) взаимно непараллельных кристаллических плоскостей.

Спектры зеркального отражения в р-поляризации света ведут себя совершенно по-разному с увеличением угла падения θ в зависимости от того, заполнен образец спиртом или нет. Для свободного от спирта образца р-полоса отражения регистрируется во всем доступном для надежных измерений интервале углов падения $0 < \theta < 70^\circ$, при этом с увеличением θ происходит монотонное уменьшение пиковой интенсивности и сужение полосы. Однако в случае образца, погруженного в колбу со спиртом (см. также [24]), существует некоторый критический угол падения $\theta = \theta_c \approx 50^\circ$, при котором брэгговский рефлекс в р-поляризации полностью исчезает, т.е. с увеличением в интервале $0 < \theta < \theta_c$ интенсивность и ширина *p*-полосы монотонно уменьшаются, а в интервале $\theta_c < \theta < 70^\circ$ монотонно увеличиваются. Такое поведение брэгговской полосы отражения в р-поляризации качественно коррелирует с характером изменения коэффициента отражения света от обычной (пространственно однородной в макроскопическом смысле) прозрачной диэлектрической среды, когда возможно наблюдение классического эффекта Брюстера [25].

На рис. З представлены измеренные в относительных единицах *p*-спектры брэгговского отражения света от исследуемого образца, погруженного в спирт. Спектры приведены для углов падения $\theta = 12$, 26, 35, 41, 50, 56 и 64°. Для того чтобы исключить большую ошибку абсолютных измерений коэффициента отражения, каждый контур отражения $R_p(\lambda)$ в *p*-компоненте поляризации делился на максимальное значение $R_{s,max}$ интенсивности соответствующей *s*-полосы отражения. При этом изменение состояния поляризации внешнего падающего (отраженного) света осуществлялось простым поворотом плоскости поляризации поляризатора (анализатора). Как

Рис. 3. Спектры брэгговского отражения $R_p(\lambda)$ для *p*-поляризованного света, нормированные при каждом угле падения θ на максимальное значение $R_{s,max}$ интенсивности соответствующей *s*-полосы отражения. Азимут плоскости падения $\varphi = 0$.

Рис. 4. Спектральные положения особенностей брэгговских рефлексов в зависимости от угла падения света. Точки — эксперимент, сплошные кривые — результаты теоретической подгонки. 1 — положения максимумов p-полос отражения для образца, не заполненного спиртом, 2 — положения провалов в дублетных s-полосах отражения того же свободного от спирта образца, 3 — положения максимумов s-полос для образца, погруженного в спирт. Азимут плоскости падения $\varphi = 0$.

видно из рисунка, действительно, в угловой (от угла падения θ) зависимости пикового значения отношения $R_p(\lambda)/R_{s,\max}$ ярко проявляется эффект, имеющий общие черты с эффектом Брюстера.

Зависимости спектрального положения особенностей брэгговских рефлексов от угла падения изображены на рис. 4. Экспериментальные точки 1 определяют измеренные положения максимумов *p*-полос отражения для образца, не заполненного спиртом. Точки 2 дают

3. Теория

При теоретическом описании представленных выше контуров отражения мы воспользовались основными идеями работы [19], касающимися подходов к анализу спектров брэгговского отражения света от опалоподобных ФК, подтвержденными рядом экспериментов [20,21,26,27]. Согласно [19], кристаллическая решетка ФК рассматривается как пространственно-периодическая структура, в узлах которой находятся взаимно перекрывающиеся (спекшиеся) сфероиды из диэлектрического материала. Такая структура (рис. 1) может быть получена из гранецентрированной кубической (ГЦК) решетки идеального опала, состоящего из касающихся в точках шаров-,,атомов" путем деформирования решетки вдоль диагонали куба (направления [111]). При этом шары превращаются в перекрывающиеся (спекшиеся) сфероиды с осью вращения, направленной вдоль [111] (в дальнейшем ось Z декартовой системы координат, совпадающая с направлением внутренней нормали к поверхности ФК). Рассматриваемая модель учитывает важное свойство анизотропии ФК, определяемое обычной технологией приготовления образцов в процессе седиментации частиц на подложку, которая задает выделенное направление Z в пространстве.

В нижней части рис. 1 изображен фрагмент модельной структуры опалоподобного ФК, сформированного из спекшихся сфероидов. Размеры сфероидов задаются удвоенными полуосями (диаметрами) D_{\parallel} и D_{\perp} (измеряемыми в направлениях вдоль оси Z и перпендикулярно ей соответственно). Если соседние сфероиды касаются только в точках (спекание отсутствует), то межплоскостное расстояние L вдоль оси Z равно $\sqrt{2/3}D_{\parallel}$, а ближайшее расстояние a_{00} между центрами сфероидов в плоскости (111) совпадает с диаметром D_{\perp} . В результате спекания, моделируемого как взаимопроникновение сфероидов, расстояния L и a_{00} становятся равными $L = (1 - \chi_{\parallel})\sqrt{2/3}D_{\parallel}$ и $a_{00} = (1 - \chi_{\perp})D_{\perp}$, где χ_{\parallel} и χ_{\perp} — введенные нами по определению коэффициенты спекания.

Анизотропия спекания и/или сфероидальность структурных элементов решетки приводят к понижению кубической симметрии O_h структуры до ромбоэдрической D_{3d} . Количественно такую деформацию (рис. 1) будем описывать коэффициентом одноосного сжатия $\eta \equiv \sqrt{3/2}L/a_{00}$, который может быть выражен через коэффициенты спекания и эллиптичность $\eta_{\rm ell} \equiv D_{\parallel}/D_{\perp}$ сфероидов: $\eta = \eta_{\rm ell}(1-\chi_{\parallel})/(1-\chi_{\perp})$. В случае ГЦК-решетки ($L = a_{00}\sqrt{2/3}$) коэффициент сжатия принимает значение $\eta = 1$, для одноосно сжатой и растянутой решеток имеем соответственно $\eta < 1$ и $\eta > 1$. Таким образом, в рамках рассматриваемой

модели одноосная деформация исходной ГЦК-решетки возникает как из-за эллиптичности частиц-,,атомов", так и из-за анизотропного характера спекания.

Фактор заполнения f_0 структуры сфероидами в случае не очень сильного спекания ($\chi_{\parallel}, \chi_{\perp} \leq 1 - \sqrt{3}/2 \approx \approx 0.134$) принимает вид

$$f_0 = f_{00} \, \frac{1 - \frac{3}{2} \Big[\bar{\chi}^2 (3 - \bar{\chi}) + \chi_{\perp}^2 (3 - \chi_{\perp}) \Big]}{(1 - \chi_{\parallel})(1 - \chi_{\perp})^2}, \qquad (1)$$

где

$$ar{\chi} = 1 - \sqrt{rac{2}{3} \, (1-\chi_{\parallel})^2 + rac{1}{3} \, (1-\chi_{\perp})^2},$$

а $f_{00} = \frac{\pi}{3\sqrt{2}} \approx 0.74$ представляет собой коэффициент заполнения ФК сфероидами в отсутствие их взаимного спекания.

Если имеет место изотропный характер спекания, т. е. $\chi_{\parallel} = \chi_{\perp} \equiv \chi$, то одноосная деформация ГЦК-решетки определяется исключительно коэффициентом эллиптичности сфероида $\eta = \eta_{\rm ell}$, а фактор заполнения f_0 структуры материалом сфероидов дается выражением [19]

$$f_0 = f_{00} \, \frac{1 - 3\chi^2 (3 - \chi)}{(1 - \chi)^3}.$$
 (2)

Длина волны $\lambda_{(max)}$, на которой регистрируется максимум низкоэнергетической полосы брэгговского отражения света от опалоподобного ФК, заметно зависит от угла падения θ . Такая зависимость (кривые *1*, *3* на рис. 4) обычно хорошо аппроксимируется формулой Брэгга, которую применительно к рассматриваемой нами ситуации удобно записать в виде

$$A_{(\max)} = 2L\sqrt{\varepsilon_0 - \varepsilon_v \sin^2 \theta},$$
(3)

где

$$L = \sqrt{2/3} a_{00} \eta, \qquad (4)$$

 ε_v — диэлектрическая постоянная внешней (по отношению к ФК-образцу) среды, а ε_0 — средняя диэлектрическая проницаемость ФК. Величина ε_0 определяется через фактор заполнения f_0 соотношением

$$\varepsilon_0 = \varepsilon_a f_0 + \varepsilon_b (1 - f_0), \tag{5}$$

где ε_a и ε_b — диэлектрические постоянные полимерных частиц ("атомов") и межчастичного пространства (фона) внутри ФК соответственно.

Другое важное соотношение следует из анализа [19,20] угловой (от угла θ) зависимости спектрального положения $\lambda_{(min)}$ провала в дублетной полосе брэгговского отражения (кривая 2 на рис. 4), который проявляется в условиях многоволновой дифракции. Применительно к рассматриваемой нами ситуации (геометрия отражения соответствует рис. 1, а ε_v может отличаться от единицы) получаем

$$\lambda_{(\min)} = \frac{3L}{1+2\eta^2} \Big(\eta \sqrt{2\varepsilon_v} \sin\theta \cos(\varphi - \pi m/3) + \sqrt{\varepsilon_0 - \varepsilon_v \sin^2\theta} \Big),$$
(6)

где $m = 0, \pm 1, \pm 2, 3$, а азимутальный угол φ берется из интервала $|\varphi - \pi m/3| \le \pi/6$, что учитывает симметрию задачи относительно поворотов ФК в латеральной плоскости на углы, кратные $\pi/3$. В дальнейшем будем полагать m = 0.

Значения функций $\lambda_{(max)}(\theta)$ и $\lambda_{(min)}(\theta)$ могут совпадать ($\lambda_{(max)} = \lambda_{(min)} = \lambda_*$) при некотором угле падения $\theta = \theta_*$, реализуемом для азимута $\varphi = \varphi_*$, что определяет важный структурный инвариант ФК

$$\frac{\lambda_*}{a_{00}} = \frac{4\sqrt{3\varepsilon_v}}{4-\eta^{-2}}\sin\theta_*\cos\varphi_*.$$
(7)

Соотношение (7) при известных (определяемых из эксперимента) углах θ_* , φ_* и длине волны λ_* устанавливает связь между a_{00} (расстоянием между соседними частицами, расположенными в латеральной плоскости (111) образца) и η (коэффициентом одноосного сжатия вдоль направления [111]). Кроме этого, формула (7) указывает на спектроскопический рецепт для идентификации пространственной ориентации образца. Действительно, самому длинноволновому положению провала в спектре брэгговского отражения света соответствует азимутальный угол $\varphi = 0$ (рис. 1). С другой стороны, из (3) и (7) следует еще одно полезное соотношение

$$\varepsilon_0 = \left[1 + \frac{18\eta^2 \cos^2 \varphi_*}{(4\eta^2 - 1)^2}\right] \varepsilon_v \sin^2 \theta_*, \tag{8}$$

показывающее, что существует максимальное значение средней диэлектрической постоянной, ограничивающее возможность наблюдения эффекта многоволновой дифракции в брэгговском отражении света.

Расчеты спектров выполнялись в приближении планарной слоисто-периодической среды методом матрицы переноса. Если речь не идет о специальных условиях, при которых могут проявляться эффекты многоволновой брэгговской дифракции света [16–22], такое приближение дает практически тот же результат, что и теория динамической дифракции [19], учитывающая существенно трехмерный характер ФК. Приближение планарной слоисто-периодической среды подразумевает усреднение диэлектрической проницаемости трехмерной периодической структуры в плоскости слоев (111). В результате такого усреднения получаем эффективную диэлектрическую проницаемость среды

$$\varepsilon_s(z) = \varepsilon_a f_s(z) + \varepsilon_b (1 - f_s(z)), \tag{9}$$

которая зависит только от одной координаты z и выражается через эффективную функцию заполнения $f_s(z)$ [19,21,27] с периодом L, определяемым соотношением (4),

 $f_{s}(z) = u(z) + u(z - L),$

(10)

где

и

$$\begin{split} u(z) &= \frac{\alpha_0^2}{\sqrt{3}(1-\chi_{\perp})^2} \\ &\times \Big[2\pi + 6 \big(\sin(2\beta_0) - 2\beta_0 \big) + 3 \big(\sin(2\beta_1) - 2\beta_1 \big) \Big], \\ &\alpha_0 = \operatorname{Re} \sqrt{1/4 - (z/D_{\parallel})^2}, \\ &\sin\beta_i = \operatorname{Re} \sqrt{1 - (\rho_i/\alpha_0)^2}, \quad (i = 0, 1), \\ &\rho_0 = \frac{1}{2} (1-\chi_{\perp}), \\ &\rho_1 = \frac{1-\chi_{\parallel}}{1-\chi_{\perp}} \bigg\{ \frac{1-\chi_{\parallel}}{\sqrt{3}} \Big[1 + \frac{1}{2} \Big(\frac{1-\chi_{\perp}}{1-\chi_{\parallel}} \Big)^2 \Big] - \frac{|z|\sqrt{2}}{D_{\parallel}} \bigg\}. \end{split}$$
(11)

В теоретической модели учитывалась возможность частичного усечения наружных сфероидов плоскостями "передней" v и "задней" и поверхностей фотоннокристаллической пластины, что в расчетах соответствовало смещению граничных плоскостей на расстояния Δl_v и Δl_{μ} в направлениях в глубь ФК. При $\Delta l_{\nu}, \Delta l_{\mu} = 0$ граничные плоскости являются касательными по отношению к неусеченным наружным сфероидам. Количественно эффекты усечения описывались путем введения коэффициентов отсечки $\xi_v = 2\Delta l_v/D_{\parallel}$ и $\xi_u = 2\Delta l_u/D_{\parallel}$ для передней и задней поверхностей кристалла соответственно. Варьируя значения этих коэффициентов от 0 до 1, можно менять симметрию контуров отражения от "дисперсионной", когда спектральное положение абсолютного минимума полосы отражения находится с коротковолновой стороны по отношению к положению ее максимума, до "антидисперсионной", когда реализуется противоположная ситуация.

4. Обсуждение результатов

Для расчета спектров отражения в рамках модели планарной слоисто-периодической среды необходимо знать значения параметров ε_a , ε_b , L и χ_{\parallel} , χ_{\perp} , входящих в формулы (9)–(11). При анализе экспериментальных данных мы не учитывали анизотропию спекания, полагая $\chi_{\parallel} = \chi_{\perp} \equiv \chi$. Диэлектрическая постоянная материала сфероидов считалась равной $\varepsilon_a = 2.522$, что соответствует справочным данным по полистиролу [28] для видимой области оптического спектра. Значение постоянной ε_b определяется тем материалом, которым заполнены межчастичные пустоты образца, и степенью заполнения пустот таким материалом. Если пустоты полностью заполнены веществом внешней среды, то $\varepsilon_b = \varepsilon_v$ ($\varepsilon_v = \varepsilon_v^{air} = 1$ для воздуха и $\varepsilon_v = \varepsilon_v^{alc} = 1.856$ для этилового спирта [28]). В принципе, значения ε_b , *L* и χ могут быть получены путем непосредственной подгонки теоретических спектров к экспериментально измеренным. Однако с учетом представленных на рис. 4 экспериментальных данных мы можем извлечь существенную дополнительную информацию об этих параметрах, используя соотношения (2)–(7).

Действительно, аппроксимируя экспериментальные зависимости спектральных положений пиков брэгговских рефлексов от углов падения света теоретическими кривыми 1 и 3 (сплошные линии на рис. 4) с помощью закона Брэгга в форме (3), мы получили значения ε_0 и L для свободного от спирта образца, находящегося в воздухе ($\varepsilon_0 = \varepsilon_0^{air} \approx 2.30$ и $L = L^{air} \approx 230.9$ nm при $\varepsilon_v = \varepsilon_v^{\rm air}$), и для образца, погруженного в колбу с этиловым спиртом ($\varepsilon_0 = \varepsilon_0^{\rm alc} \approx 2.38$ и $L = L^{\rm alc} \approx 247.9$ nm при $\varepsilon_v = \varepsilon_v^{\rm alc}$). Далее с помощью формулы (5) был определен фактор заполнения $f_0 = 0.853$ структуры полистиролом для свободного от спирта образца ($\varepsilon_b = \varepsilon_b^{air} = \varepsilon_v^{air}$), что в соответствии с выражением (2) позволяет установить значение коэффициента спекания $\chi = 0.055$. Считая, что при заполнении образца спиртом параметр f_0 не меняется (то же относится и к коэффициенту χ), мы нашли по формуле (5) значение $\varepsilon_b = \varepsilon_b^{\rm alc} \approx 1.57$ для образца, погруженного в спирт. Как видим, $\varepsilon_h^{\rm alc} < \varepsilon_v^{\rm alc}$, что указывает на неполное заполнение спиртом межчастичного пространства. С учетом приведенных выше цифр можно сделать вывод о том, что объемная доля спирта в пустотах составляет около 67%, а 33% объема пустот приходится на воздух. Неполное вытеснение воздуха из межчастичного пространства ФК может быть обусловлено блокированием воздушных пузырьков в порах ФК при инфильтрации спирта.

Анализ спектрального положения провалов в дублетных s-полосах брэгговского отражения (сплошная кривая 2 на рис. 4) проводился с использованием соотношения (6). При этом в качестве подгоночного параметра использовался коэффициент η одноосного сжатия. Точка пересечения ($\lambda_* = \lambda_*^{air} = 592.3 \text{ nm}$, $\theta_* = \theta_*^{\rm air} = 53.9^\circ)$ кривых 1 и 3 на рис. 4 определяется структурным инвариантом (7) при $\varepsilon_v = \varepsilon_v^{air}$ и дает для коэффициента сжатия свободного от спирта образца значение $\eta = \eta^{air} = 0.935$. Что касается того же образца, погруженного в колбу со спиртом, то в s-спектре брэгговского отражения (рис. 2, b) удается наблюдать наиболее выраженный, хотя и слабый, провал на длине волны $\lambda \approx 627.35\,\mathrm{nm}$ в очень узком интервале углов падения вблизи $\theta \approx 40^\circ$. Полагая приведенные значения λ и θ равными соответственно $\lambda_* = \lambda_*^{alc}$ и $\theta_* = \theta_*^{alc}$, из формулы (7) структурного инварианта при $\varepsilon_v = \varepsilon_v^{\text{alc}}$ получаем $\eta = \eta^{\rm alc} = 0.987.$

Теперь на основании соотношения (4) (при уже известных значениях $L^{\rm air}$, $\eta^{\rm air}$ и $L^{\rm alc}$, $\eta^{\rm alc}$) находим минимальные латеральные (в плоскости (111)) расстоя-

Рис. 5. Профили эффективной диэлектрической проницаемости ε_s (полученные путем усреднения по координатам в плоскости *XY*) вдоль относительной координаты z/L. L — минимальное межплоскостное расстояние вдоль направления [111]. Заполнение образца спиртом (верхняя кривая) приводит к уменьшению амплитуды периодической модуляции функции $\varepsilon_s(z)$.

ния a_{00} между частицами полистирола для образца, свободного от спирта, $a_{00} = a_{00}^{\text{air}} = 302.3$ nm, и для образца, погруженного в спирт, $a_{00} = a_{00}^{\text{alc}} = 307.5$ nm. Таким образом, выполненный количественный анализ угловых зависимостей спектральных положений особенностей брэгговских контуров отражения света позволяет заключить, что при погружении в спирт опалоподобного ФК, сформированного из полистирола, происходит уменьшение степени одноосной деформации образца и некоторое разбухание частиц полистирола.

На рис. 5 изображены фрагменты зависимостей эффективной диэлектрической проницаемости ε_s (см. соотношения (8)–(10)) от относительной координаты z/Lвдоль направления [111], перпендикулярного отражающей поверхности ФК. Эти зависимости (профили ε_s) построены при значениях параметров ε_a , ε_b^{air} , ε_b^{alc} , L^{air} , L^{alc} и χ , приведенных выше, и показывают, что при заполнении образца спиртом (верхняя кривая) амплитуда пространственной модуляции эффективной диэлектрической проницаемости заметно уменьшается по сравнению со случаем, когда образец не содержит спирта (нижняя кривая). Такое уменьшение амплитуды модуляции ε_s означает, что образцу, находящемуся в спирте, соответствует меньшая ширина фотонной стоп-зоны в направлении [111].

В качестве примера на рис. 6 представлены результаты теоретического расчета спектров отражения (сплошные кривые), которые сопоставляются с экспериментальными данными (точки), полученными в *s*- и *p*-компонентах поляризации света для свободного от спирта образца (рис. 6, *a*, угол падения $\theta = 41^{\circ}$) и для образца, погруженного в спирт (рис. 6, *b*, угол падения

Рис. 6. Спектры брэгтовского отражения света (в *s*- и *p*-поляризации) от образца со свободными порами (*a*) и от образца, погруженного в спирт (*b*) (значения углов падения θ указаны на рисунке). Теоретические (сплошные) кривые со-поставляются с измеренными спектрами (экспериментальные точки).

 $\theta = 35^{\circ}$). Теоретические спектры рассчитывались при значениях диэлектрических и структурных параметров, полученных из анализа данных рис. 4. В качестве варьируемых параметров использовались введенные выше коэффициенты отсечки ξ_v и ξ_u передней и задней поверхностей ФК, количество N_{ml} монослоев, определяющих толщину фотонно-кристаллической пластины, а также мнимая добавка $i\varepsilon_0''$ к эффективной диэлектрической проницаемости $\varepsilon_s(z)$.

В результате аппроксимакции экспериментальных спектров теоретическими контурами были получены значения $\xi_v = 0.55$, $\xi_u = 0.50$, $N_{ml} = 18$, которые относятся как к образцу в воздухе, так и к образцу в спирте. Значения ε_0'' для двух условий эксперимента различаются незначительно: $\varepsilon_0'' = 0.050$ в воздухе и $\varepsilon_0'' = 0.055$ в спирте. Если коэффициенты ξ_v и ξ_u позволяют регулировать соотношение фоновых (с длинноволновой и коротковолновой сторон от брэгговского рефлекса) коэффициентов отражения, то величина N_{ml} определяет интерференционную (типа Фабри–Перо) структуру и ее период в нерезонансной части спектра. Введенная в

расчете мнимая часть $i\varepsilon_0''$ диэлектрической проницаемости $\varepsilon_s(z)$ эффективно учитывала процессы поглощения и рассеяния света в реальной кристаллической структуре ФК. Подбор этого параметра позволил достигнуть лучшего соответствия формы контуров теоретических и экспериментальных спектров.

При сопоставлении экспериментальных и теоретических спектров значение $R_{s,max}$ коэффициента отражения в максимуме измеренного брэгговского рефлекса для *s*-поляризации света нормировалось на соответствующее теоретические значение после того, как достигалось (в основном за счет варьирования ε_0'') лучшее совпадение контуров отражения по спектральной форме. При этом аналогичный коэффициент отражения $R_{p,max}$ в *p*-компоненте поляризации определялся по измеренному с хорошей точностью отношению интенсивностей $R_{p,max}/R_{s,max}$. Такая процедура нахождения значений коэффициентов отражения более предпочтительна по сравнению с прямыми абсолютными измерениями, сопровождающимися в случае реальных ФК относительно большой погрешностью (~ 15–20%).

Как видно из рис. 6, расчетные зависимости хорошо описывают экспериментальные кривые, измеренные как в s-, так и в p-поляризациях света. При этом особо следует подчеркнуть, что расчетные р-спектры отражения получены при тех же значениях параметров, что и s-спектры, без какой-либо дополнительной нормировки экспериментальных р-спектров на теоретические значения. Следует также отметить, что теоретические спектры брэгговского отражения были построены в рамках модели планарной слоисто-периодичесвкой среды на основании значений параметров, полученных из анализа кривых (рис. 4) по формулам (3) и (6). Некоторое различие в форме контуров отражения для экспериментальных и расчетных кривых на рис. 6, по-видимому, обусловлено более тонкими, не учитываемыми в теории эффектами неоднородного уширения контуров, обусловленными структурным несовершенством образцов и дифракционными потерями за счет рассеяния света на других по отношению к (111) кристаллических плоскостях.

Вернемся к экспериментальным данным рис. 3, где продемонстрирован эффект подавления брэгтовского пика отражения в *p*-поляризации света. Учитывая хорошее согласие между экспериментальными и теоретическими спектрами рис. 6, мы провели в рамках модели планарной слоисто-периодической среды расчеты угловой (от угла падения θ) зависимости отношения $R_p(\lambda_{(max)})/R_s(\lambda_{(max)}) \approx R_{p,max}/R_{s,max}$ коэффициентов отражения на длинах волн $\lambda_{(max)}$, удовлетворяющих условию Брэгга (3). Такая зависимость представлена в виде сплошной кривой на рис. 7 для случая, когда речь идет об образце, погруженном в спирт. Эта зависимость сопоставляется с соответствующими результатами измерений (экспериментальные точки) отношения $R_{p,max}/R_{s,max}$.

Рис. 7. Зависимости от угла падения отношения $R_{p,\max}/R_{s,\max}$ коэффициентов отражения в *p*- и *s*-поляризациях света на длинах волн $\lambda_{(\max)}$, удовлетворяющих условию Брэгга (см. (3)), для образца, погруженного в спирт. Сплошная кривая — расчет, точки — эксперимент.

Из рис. 7 ясно видно, что как в теории, так и в эксперименте проявляется немонотонность угловой зависимости отношения R_p/R_s с характерным минимумом вблизи угла $\theta \approx 50^\circ$, указывающим на эффект подавления брэгговского пика отражения для р-поляризованного света. В целом, достигается хорошее согласие между результатами расчета и эксперимента. Только в области довольно больших значений угла падения θ экспериментально измеренное отношение $R_{p,\max}/R_{s,\max}$ оказывается несколько выше расчетного $R_p(\lambda_{(\max)})/R_s(\lambda_{(\max)})$. При этом угол θ_c , определяющий положение минимума на угловой зависимости R_p/R_s , в эксперименте принимает значение $\theta_c^{\exp} \approx 50^\circ$, а в расчете — $\theta_c^{\text{theor}} \approx 53^\circ$. Причиной небольших количественных различий между результатами эксперимента и теории в области $\theta > 50^{\circ}$ может быть приближенный характер учета в теории потерь на поглощение и рассеяние света путем введения феноменологического параметра ε_0'' , который считался постоянной (не зависящей от частоты света) скалярной величиной.

В случае когда рассматриваемая стоп-зона ΦK достаточно изолирована от других стоп-зон, она формируется в результате рассеяния света на определенной системе кристаллических плоскостей, характеризуемых, скажем, вектором **G** обратной решетки. В таком случае задачу о брэгговском отражении света можно существенно упростить, используя приближение двухзонного смешивания [19,29,30], в котором собственная электромагнитная мода с блоховским волновым вектором **K** представляется в виде суперпозиции только двух плоских волн с волновыми векторами **K** и **K** – **G**. Не останавливаясь на деталях вывода формул, в настоящей работе мы приводим лишь необходимые для дальнейшего обсуждения дисперсионные уравнения (следующие из стандартного решения задачи на собственные значения), которые устанавливают связь между частотой ω собственной моды и ее волновым вектором **К**.

В случае ТЕ-мод (вектор напряженности электрического поля **E** удовлетворяет условию $\mathbf{E} \cdot [\mathbf{K} \cdot \mathbf{G}] = 0$) дисперсионное уравнение можно представить в виде

$$\left(\mathbf{K}^{2}/k_{0}^{2}-\varepsilon_{0}\right)\left(\left(\mathbf{K}-\mathbf{G}\right)^{2}/k_{0}^{2}-\varepsilon_{0}\right)=\left|\varepsilon_{\mathbf{G}}\right|^{2}.$$
 (12)

Для ТМ-мод ($\mathbf{E} \cdot [\mathbf{K} \cdot \mathbf{G}]$) = 0) получаем (ср. с [2])

$$\begin{pmatrix} \mathbf{K}^2 \\ \overline{k_0^2} - \varepsilon_0 + \frac{\left|\varepsilon_{\mathbf{G}}\right|^2}{\varepsilon_0} \end{pmatrix} \left(\frac{(\mathbf{K} - \mathbf{G})^2}{k_0^2} - \varepsilon_0 + \frac{\left|\varepsilon_{\mathbf{G}}\right|^2}{\varepsilon_0} \right) = \\ = \left|\varepsilon_{\mathbf{G}}\right|^2 \frac{\left(\mathbf{K} \cdot (\mathbf{K} - \mathbf{G})\right)^2}{k_0^4 \varepsilon_0^2},$$
(13)

где $k_0 \equiv \omega/c = 2\pi/\lambda$ — длина волнового вектора света в вакууме, а $\varepsilon_{\mathbf{G}}$ является амплитудой Фурье, соответствующей определенному вектору **G**, в разложении пространственно-периодической диэлектрической функции $\varepsilon(\mathbf{r})$ фотонного кристалла в ряд Фурье по векторам обратной вешетки:

$$\varepsilon(\mathbf{r}) = \varepsilon_0 + \sum_{\mathbf{G} \neq 0} \varepsilon_{\mathbf{G}} \exp(i\mathbf{G}\mathbf{r}).$$
(14)

Уравнения (12), (13) показывают, что в отсутствие пространственно-периодической модуляции ($\varepsilon_{\mathbf{G}} = 0$) волны **K** и **K** – **G** не связаны между собой. Поэтому при $\varepsilon_{\mathbf{G}} = 0$ не происходит рассеяния света с переходом из состояния **K** в состояние **K** – **G**, т.е. дифракция на системе кристаллических плоскостей, характеризуемых вектором **G** обратной решетки, как и следует ожидать, отсутствует (и для TE-, и для TM-мод). С другой стороны, из дисперсионного уравнения (13) для TM-мод видно, что дифракция света на рассматриваемой системе плоскостей должна подавляться также в том случае, когда (**K** · (**K** – **G**)) = 0, т.е. когда векторы **K** и **K** – **G** взаимно ортогональны.

Получая из уравнений (12), (13) в явном виде функциональные зависимости длины волны λ от волнового вектора **K**, находим области длин волн $\Delta\lambda_{\text{TE}}$ и $\Delta\lambda_{\text{TM}}$, отвечающие фотонным стоп-зонам для TE-, и TM-мод соответственно. В пределах этих зон при заданном внешнем угле θ падения света внутри Φ K не могут возбуждаться распространяющиеся электромагнитные моды. В приближении $|\varepsilon_{\mathbf{G}}|^2 \ll \varepsilon_0^2$, которое, как правило, с хорошей точностью выполняется для нижайшей по энергии фотонной стоп-зоны опалоподобного Φ K, имеем

$$\Delta\lambda_{\rm TE} = \lambda_{\rm (max)} |\varepsilon_{\rm G}| / (\varepsilon_0 - \varepsilon_v \sin^2 \theta), \qquad (15)$$

$$\Delta \lambda_{\rm TM} = \Delta \lambda_{\rm TE} \left| 1 - 2(\varepsilon_v / \varepsilon_0) \sin^2 \theta \right|. \tag{16}$$

Из соотношения (16) следует, что при угле падения внешнего света $\theta = \theta_c$, удовлетворяющем условию

$$\sin\theta_c = \sqrt{\varepsilon_0/(2\varepsilon_v)},\tag{17}$$

фотонная стоп-зона для ТМ-моды исчезает ($\Delta \lambda_{\rm TM} = 0$), что приводит к полному подавлению брэгговского ре-

Рис. 8. Геометрия рассеяния-преломления света в случае поляризационного подавления брэгтовского рефлекса (отражение *p*-поляризованного света от фотонного кристалла) (*a*) и геометрия в случае эффекта Брюстера (отражение *p*-поляризованного света от пространственно однородной диэлектрической среды) (*b*).

флекса в *р*-поляризации света (рис. 3 и 7). Соответствующая условию (16) длина волны λ_c брэгговского резонанса дается формулой

$$\lambda_c = L \sqrt{2\varepsilon_0}.$$
 (18)

На этой длине волны при $\theta = \theta_c$ брэгговский пик отражения проявляется только в *s*-поляризации света.

Используя численные значения параметров ε_0 и ε_v , полученные нами выше для образца в спирте ($\varepsilon_0^{\rm alc}$, $\varepsilon_v^{\rm alc}$) и того же образца в воздухе ($\varepsilon_0^{\rm air}$, $\varepsilon_v^{\rm air}$), можем по формуле (17) найти соответствующие значения критических углов падения $\theta_c^{\rm alc}$ и $\theta_c^{\rm air}$, при которых должно происходить поляризационное подавление брэгговских пиков отражения. Оказывается, что для образца, свободного от спирта, эффект поляризационного подавления наблюдаться не может, поскольку $\varepsilon_0^{\rm air} > 2\varepsilon_v^{\rm air}$. Действительно, в соответствующем эксперименте по мере увеличения угла падения света наблюдалось лишь монотонное уменьшение интенсивности брэгговского рефлекса в *p*-компоненте поляризации. Эффект немонотонного поведения типа рис. 3 не проявлялся ни при каких доступных измерению углах падения.

Вместе с тем в случае с образцом в спирте получаем $\theta_c^{\rm alc} = 53^\circ$, что близко к экспериментальному значению (рис. 3 и 7) и полностью согласуется с теоретическим расчетом, выполненным в рамках модели планарной слоисто-периодической среды (рис. 7, сплошная кривая). Расчетное значение $\lambda_c = 541$ nm также попадает в спектральную область (рис. 3), где брэгговский пик отражения в *p*-поляризации практически не проявляется. Таким образом, можно утверждать, что наблюдаемый экспериментально эффект подавления брэгговского рефлекса в *p*-поляризации света при угле падения вблизи 50° обусловлен схлопыванием фотонной стоп-зоны для ТМ-моды ФК.

На рис. 8, а приводится графическая интерпретация наблюдаемого эффекта поляризационного подавления

брэгговского отражения света, которая сравнивается с соответствующей интерпретацией (рис. 8, b) классического эффекта Брюстера. Рис. 8, а показывает, что брэгговское отражение р-поляризованного света отсутствует, когда угол между волновыми векторами К преломленной и **К** – **G** рассеянной волн составляет 90°. При этом свет входит в ФК под углом 45° к нормали. Поскольку при $(\mathbf{K} \cdot (\mathbf{K} - \mathbf{G})) \approx 0$ преломленная волна является практически поперечной, она возбуждает дипольную поляризацию Р в ФК в направлении К – G. Но диполь не излучает электромагнитное поле в направлении своей оси, поэтому волна, рассеянная вдоль направления K - G, не возбуждается в геометрии опыта рис. 8, *a*. Анализируя геометрию преломления волн на рис. 8, а и применяя классические формулы Снеллиуса, получаем соотношение (17) для критического угла падения θ_c .

Если сравнивать наблюдаемый нами эффект подавления брэгговского отражения с хорошо известным эффектом Брюстера, то можно говорить о некотором формальном сходстве этих явлений. И в том и в другом случае имеет место специфическая угловая зависимость коэффициента отражения для *p*-поляризованного света. Однако качественная интерпретация эффекта Брюстера

Рис. 9. Спектры брэгговского отражения света от полубесконечной фотонно-кристаллической среды (*p*-поляризация, $\varepsilon_0'' \ll \varepsilon_0$), рассчитанные в приближении двухзонного смешивания для ТМ-мод. Использованы значения параметров фотонного кристалла, полученные из анализа экспериментальных спектров в рамках модели планарной слоисто-периодической среды.

Рис. 10. Спектры брэгговского отражения света от полубесконечного опалоподобного фотонного кристалла ($\varphi = 0$, см. рис. 1), рассчитанные в приближении трехзонного смешивания (с учетом вкладов в дифракцию одновременно на двух системах кристаллических плоскостей (111) и ($\overline{1}$ 11)). *а, b — р*-поляризация, *с, d — s*-поляризация, *а, с —* кристалл в воздухе, *b, d —* кристалл в спирте. Использованы значения параметров фотонного кристалла, полученные из анализа экспериментальных данных (рис. 2–5) в рамках модели планарной слоисто-периодической среды.

основывается на геометрии хода лучей, представленной на рис. 8, b. Из этой геометрии следует, что подавление *p*-поляризованной отраженной волны возникает, когда угол между направлениями отражения и преломления света составляет 90°С (диполь **P**, возбуждаемый преломленной волной, не излучает свет за пределы отражающей среды, поскольку **P** колеблется вдоль направления зеркального отражения [31]). Угол падения $\theta_{\rm BR}$, при котором коэффициент отражения для *p*-поляризации света обращается в нуль, удовлетворяет соотношению

$$\sin \theta_{\rm BR} = \sqrt{\varepsilon_0 / (\varepsilon_0 + \varepsilon_v)}.$$
 (19)

Из сопоставления формул (17) и (19) видно, что в общем случае угол падения θ_c отличается от $\theta_{\rm BR}$, за исключением тривиальной ситуации отсутствия оптической границы раздела, когда $\varepsilon_0 = \varepsilon_v$. Другое существенное различие между обсуждаемыми явлениями состоит в том, что (в отличие от эффекта Брюстера) исчезновение брэгговского рефлекса, вообще говоря, не означает обращения в нуль коэффициента отражения $R_p(\lambda_c)$ света даже при вещественных значениях оптических констант.

е вклад ($\mathbf{E}_R \neq 0$) в отражение *p*-поляризованного света. Поэтому и фаза коэффициента отражения на этой длине волны в отличие от случая эффекта Брюстера ($\mathbf{E}_R = 0$) не испытывает резкого скачка $\pm \pi$ при изменении угла падения вблизи значения θ_c . На рис. 9, *a*, *b* представлены контуры брэгтовского отражения света для *p*-поляризации, рассчитанные в

На длине волны λ_c остается фоновый (нерезонансный)

отражения света для *p*-поляризации, рассчитанные в рамках развитого в работе [19] приближения двухзонного смешивания с использованием дисперсионного уравнения (13) для ТМ-мод. С целью более наглядной демонстрации эффекта поляризационного подавления брэгговского рефлекса (схлопывания стоп-зоны) мы рассмотрели дифракцию света от полубесконечной ($N_{ml} = \infty$) фотонно-кристаллической среды (чтобы убрать интерференционную структуру Фабри–Перо) и фактически пренебрегли мнимой частью средней диэлектрической проницаемости ($\varepsilon_0'' = 10^{-4}$). В таком случае в пределах спектральной ширины стоп-зоны коэффициент отражения достигает практически 100%, что позволяет визуально идентифицировать спектральные положение и ширину стоп-зоны для разных углов падения света. Значения остальных параметров ФК были взяты такими же, как и полученные выше в рамках модели планарной слоисто-периодической среды.

Как видно из расчета, в случае ФК со спиртом (рис. 9, *a*) действительно происходит немонотонное изменение ширины стоп-зоны с ростом угла падения θ (сначала уменьшение, затем снова увеличение). Вблизи значения $\theta = 53^{\circ}$ стоп-зона для ТМ-моды исчезает (подавляется брэгговский пик отражения). В то же время ФК, свободный от спирта (рис. 9, *b*), демонстрирует монотонное уменьшение ширины стоп-зоны с увеличением θ : брэгговский рефлекс не исчезает ни при каких значениях углов падения.

Следует отметить, что при увеличении параметра ε_0'' (при включении процессов диффузного рассеяния света и диссипативных потерь) происходит не только уменьшение пикового значения коэффициента отражения и уширение полосы брэгговского отражения, но и существенно меняется форма контура отражения. Особенно сильные изменения спектров с ростом ε_0'' проявляются при углах падения вблизи фонового угла Брюстера (19) и выше. При этом возможны ситуации, когда вместо пиков отражения в спектрах возникают заметные провалы. Анализ формы контуров брэгговского отражения открывает новые возможности для более детального изучения механизмов рассеяния света в ФК с учетом их реального структурного разупорядочения.

Рассчитанные спектры брэгговского отражения света с учетом эффектов многоволновой дифракции света (одновременно на двух системах кристаллических плоскостей (111) и (111) изображены на рис. 10. Расчеты выполнялись для полубесконечного ФК в рамках предложенного в работе [19] подхода с использованием значений структурных и оптических параметров, приводившихся выше для исследованного нами образца. Спектры на рис. 10, а и с соответствуют ФК, находящемуся в воздухе (*a* — *p*-спектры, *b* — *s*-спектры). Для ФК в спирте соответствующие спектры (p и s) изображены на рис. 10, b и d. Представленные на рис. 10 теоретические расчеты хорошо воспроизводят наблюдающиеся в эксперименте принципиальные особенности, связанные с проявлением эффектов поляризационного подавления брэгговских рефлексов (рис. 10, b) и многоволновой дифракции света (рис. 10, *с* и *d*).

5. Заключение

Выполненные в настоящей работе исследования спектров брэгговского отражения света от опалоподобных фотонных кристаллов указывают на важную роль эффектов, связанных с поляризацией собственных мод электромагнитного поля в трехмерном фотонном кристалле. Впервые экспериментально показано, что в определенных условиях можно наблюдать полное поляризационное подавление брэгговских рефлексов в спектрах зеркального отражения света таких кристаллов. Необходимые условия реализуются в *p*-поляризации света, если средняя диэлектрическая проницаемость фотонного кристалла не превышает удвоенное значение диэлектрической проницаемости окружающей среды. Для исследованных в работе полимерных ФК на основе полистирола такие условия были достигнуты путем инфильтрации в кристалл этилового спирта.

Теоретическая обработка экспериментальных спектров проведена в рамках модели планарной слоистопериодической среды с учетом реальных эффектов спекания частиц полистирола и одноосной деформации фотонно-кристаллической структуры. Дополнительные данные о структурных и диэлектрических параметрах исследованных образцов получены в результате измерений угловых (от угла падения) зависимостей положений спектральных особенностей контуров отражения. При этом анализировались особенности, обусловленные многоволновой брэгговской дифракцией света (фотоннокристаллические структурные инварианты). Достигнутое в работе хорошее количественное согласие между результатами эксперимента и теории подтверждает обоснованность и практическую значимость использованных в анализе моделей и подходов.

Принципиально важный вывод следует из детального рассмотрения условий, при которых возникает поляризационное подавление брэгговского рефлекса. В приближении двухзонного смешивания рассмотрены дисперсионные уравнения как для ТЕ-, так и для ТМ-мод фотонного кристалла и рассчитаны спектры отражения света. Решения дисперсионных уравнений дают простые аналитические выражения, связывающие ширину стопзоны и угол падения света для случая, когда отражающая поверхность ФК параллельна системе кристаллических плоскостей (111). В результате найдено условие, при котором на частоте брэгговского резонанса в р-поляризации света стоп-зона схлопывается, а брэгговский рефлекс исчезает. Это условие показывает, что обсуждаемый нами эффект поляризационного подавления брэгговского рефлекса обусловлен спецификой рассеяния света на системе кристаллических плоскостей ФК и не может интерпретироваться в рамках классического эффекта Брюстера.

Список литературы

- В.П. Быков. ЖЭТФ 35, 269 (1972); Е. Yablonovitch. Phys. Rev. Lett. 58, 2059 (1987); S. John. Phys. Rev. Lett. 58, 2486 (1987).
- [2] S. John. In: NATO ASI Series. Confined electrons and photons. Series B. Physics. V. 340 / Eds E. Burstein, C. Weisbuch. Plenum Press, N.Y. (1995). P. 536.
- [3] J.D. Joannopoulos, R.D. Mead, J.D. Winn. Photonic crystals. Molding of flow of light. Princeton University Press (1995).
- [4] V. Mizeikis, S. Juodkazis, A. Marcinkevičius, S. Matsuo, H. Misawa, J. Photochem. Photobiology C: Photochem. Rev. 2, 35 (2001).
- [5] C. López. Adv. Matter 15, 1679 (2003).
- [6] K. Sakoda. Optical properties of photonic crystals. Springer series in optical sciences. V. 80. Springer Verlag, Berlin-Heidelberg-N.Y. (2001).

- [7] V.N. Astratov, V.N. Bogomolov, A.A. Kaplyanskii, A.V. Prokofiev, L.A. Samoilovich, S.M. Samoilovich, Yu.A. Vlasov. Nuovo Cimento D 17, 1349 (1995).
- [8] A.V. Baryshev, A.B. Khanikaev, H. Ushida, M. Inoue, M.F. Limonov. Phys. Rev. B 73, 033 103 (2006).
- [9] С.Г. Романов. ФТТ 49, 512 (2007).
- [10] A.A. Dukin, N.A. Feoktistov, A.V. Medvedev, A.B. Pevtsov, V.G. Golubev, A.V. Sel'kin. J. Opt. A: Pure Appl. Opt. 8, 625 (2006).
- [11] M.V. Rybin, A.V. Baryshev, M. Inoue, A.A. Kaplyanskii, V.A. Kosobukin, M.F. Limonov, A.K. Samusev, A.V. Sel'kin. Photonics and Nanostructures 4, 146 (2006).
- [12] А.Ю. Менышикова, Б.М. Шабсельс, Т.Г. Евсеева, Н.Н. Шевченко, А.Ю. Билибин. ЖПХ 78, 161 (2004).
- [13] А.Ю. Меньшикова, А.Ю. Билибин, Н.Н. Шевченко, Б.М. Шабсельс, Т.Г. Евсеева, А.Г. Баженова, А.В. Селькин. Высокомолекуляр. соединения А 48, 1579 (2006).
- [14] A.Yu. Menshikova, B.M. Shabsels, N.N. Shevchenko, A.G. Bazhenova, A.B. Pevtsov, A.V. Sel'kin, A.Yu. Bilibin. Colloids and Surfaces A 298, 27 (2007).
- [15] J.F. Galisteo-Lopez, F. López-Tejeira, S. Rubio, C. López, J, Sánchez-Dehesa. Appl. Phys. Lett. 82, 4068 (2003).
- [16] H.M. van Driel, W.L. Vos. Phys. Rev. B 62, 9872 (2000).
- [17] S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, C. Jouanin. Phys. Rev. E 63, 056 603 (2001).
- [18] G. Gajiev, V.G. Golubev, D.A. Kurdyukov, A.B. Pevtsov, A.V. Sel'kin, V.V. Travnikov. Phys. Stat. Sol. (b) 231, R7 (2002).
- [19] A.V. Sel'kin. In: Proc. 12th Int. Symp. "Nanostructures: physics and technolohy". St. Petersburg (2004). P. 111.
- [20] А.В. Селькин, А.Ю. Билибин, А.Ю. Меньшикова, Ю.А. Пашков, Н.Н. Шевченко, А.Г. Баженова. Изв. РАН. Сер. физ. 69, 1111 (2005).
- [21] G.M. Gajiev, V.G. Golubev, D.A. Kurdyukov, A.V. Medvedev, A.B. Pevtsov, A.V. Sel'kin, V.V. Travnikov. Phys. Rev. B 72, 205 115 (2005).
- [22] Shin-Lin Chang. Multiple diffraction of X-rays in crystals. Springer series in solid-state sciences. V. 50. / Eds M. Cardona, P. Fulde, H.-J. Queisser. Springer Verlag, Berlin–Heidelberg (1984).
- [23] C. Kittel. Introduction to solid state physics. John Wiley & Sons, Inc. (1986).
- [24] А.В. Селькин, А.Г. Баженова, А.Ю. Билибин, А.Ю. Меньшикова, Н.Н. Шевченко. В сб.: Тр. конф. "Фундаментальные проблемы оптики-2006". СПб (2006) С. 73.
- [25] R.M. Azzam, N.M. Bashara. Ellipsometry and polarized ligth. North-Holland, Amsterdam–N.Y.–Oxford (1977).
- [26] G.M. Gajiev, D.A. Kurdyukov, V.V. Travnikov. Nanotechnology 17, 5349 (2006).
- [27] О.А. Кавтрева, А.В. Анкудинов, А.Г. Баженова, Ю.А. Кумзеров, М.Ф. Лимонов, К.Б. Самусев, А.В. Селькин. ФТТ 49, 674 (2007).
- [28] А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др. Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991). 1232 с.
- [29] K.W.K. Shung, Y.C. Tsai. Phys. Rev. B 48, 11 265 (1993).
- [30] D.A. Mazurenko, R. Kerst, J.I. Dijkhuis, A.V. Akimov, V.G. Golubev, D.A. Kurdyukov, A.B. Pevtsov, A.V. Sel'kin. Phys. Rev. Lett. 91, 213 903 (2003).
- [31] М. Борн, Э. Вольф. Основы оптики. Наука, М. (1970). 856 с.