06

Модель организации эпитропной жидкокристаллической фазы

© Б.А. Алтоиз, В.Н. Бондарев, Е.А. Шатагина, С.В. Кириян

Одесский национальный университет им. И.И. Мечникова, 65082 Одесса, Украина e-mail: altba@mail.ru

(Поступило в Редакцию 21 мая 2013 г. В окончательной редакции 25 октября 2013 г.)

Предложена молекулярно-статистическая модель организации эпитропно-жидкокристаллической фазы, согласно которой для ее образования существенно наличие флуктуационных ассоциатов в объеме жидкости, а на твердой подложке — активных (адсорбционных) центров. С помощью этой модели удается описать экспериментальную температурную зависимость толщины эпитропно-жидкокристаллического слоя нитробензола на кварце. Количественное согласие теории с экспериментом достигается в достаточно близкой окрестности (~10 K) температуры кристаллизации. Из сравнения с экспериментом могут быть скорректированы важные термодинамические параметры модели.

Введение

Эксперименты [1-4] показывают, что в целом изотропная жидкость, состоящая из молекул с заметной анизотропией, например ароматические и предельные углеводороды (замещенные бензола и алканы), вблизи твердой подложки имеет структуру, имитирующую одноосный жидкий кристалл на расстоянии, намного превышающем длину отдельной молекулы. Особенно выраженной структура такой приповерхностной фазы в виде полимолекулярного ориентационно упорядоченного, в дальнейшем — эпитропного жидкокристаллического (ЭЖК) [5] слоя, оказывается при температурах, ненамного (~ 30 К) превышающих температуру плавления соответствующего кристалла. Предпринимались попытки связать существование ЭЖК-слоя с непосредственным действием поверхностных сил (типа дисперсионных [6]), однако быстрое ($\sim r^{-3}$) убывание этих сил с расстоянием от подложки не позволяло объяснить квазимакроскопическую (~0.1-1 µm) толщину слоя. Так, модель Изинга [7,8] ЭЖК описывает образование структурированного слоя молекул, но с толщиной, на порядок меньшей экспериментально наблюдаемой. Не обоснована также в должной степени была и природа действия предполагаемого "эстафетного механизма" [5].

1. Механизм организации ЭЖК-фазы

Этот механизм представляется следующим. В объеме немезогенных органических (обычно мономерных) жидкостей с анизометричными молекулами есть возможность образования (и распада) с различной степенью вероятности ассоциатов [9] — димеров, тримеров и более сложных олигомеров. При контакте этих ассоциатов с лиофильной поверхностью подложки — с ее адсорбционными активными центрами (АЦ), ассоциаты "сцепляются" с ними, и такое состояние приобретает характер равновесного (рис. 1). Таким образом, действующие вблизи у подложки мощные поверхностные силы способны "вытягивать" ассоциаты из объема. Даже при относительно малой концентрации ассоциатов в объеме за счет высокой поверхностной плотности АЦ концентрация связанных с ними ассоциатов в виде слоя на подложке может быть весьма значительной. При их плотной упаковке в слое они могут в отличие от находящихся в объеме быть достаточно устойчивыми к температуре, причем устойчивость приповерхностных ассоциатов в значительной мере обеспечивается их "боковыми" взаимодействиями с ближайшими соседями.

Рис. 1. ЭЖК-слой как "ворс" нитевидных ассоциатов молекул на подложке. W_a , W_{al} , W_k — энергии связи молекул в объеме, в ассоциатах слоя и с подложкой; n_k , n_{kd} — концентрации активных центров и их "дефектов" соответственно.

Благодаря такому взаимодействию и стерическому фактору эти ассоциаты принимают нитевидную форму. Ансамбль — ворс из таких нитей-ассоциатов и является ЭЖК-фазой.

Толщина "ворса" определяется размером (длиной) отдельных молекул и их средним числом в ассоциате. С ростом температуры ассоциаты покидают поверхность подложки как целые, а с периферии, связанной с поверхностью "нити" (т.е. с поверхности "ворса"), могут отрываться отдельные молекулы.

Таким образом, в организации ЭЖК-фазы играют принципиальную роль — образование флуктуационных ассоциатов и поверхностные силы подложки. Заметим, что роль последних проявляется лишь в самой возможности сцепления анизотропных молекул с АЦ на подложке, тогда как "объемные" свойства ЭЖК-слоя будут объясняться коллективными эффектами в ансамбле взаимодействующих молекул. При этом равновесная толщина ЭЖК-слоя будет определяться балансом между энергией сцепления — W_k молекул с подложкой и свободной энергией кристаллической фазы, которая выше температуры плавления T_m , являясь энергетически невыгодной, вблизи границы с подложкой может существовать лишь как метастабильная.

2. Модель ЭЖК-слоя

Для ее построения обозначим через n_k поверхностную плотность числа АЦ, на которых могут адсорбироваться молекулы жидкости, а поверхностную плотность свободных АЦ, не занятых молекулами жидкости — "дефектов" ансамбля АЦ — через n_{kd} ($n_{kd} < n_k$). Тогда вклад в результирующую свободную энергию единицы поверхности ЭЖК-слоя за счет адсорбции молекул (с их энергией "сцепления" $W_k > 0$) можно представить в виде $W_k(n_k - n_{kd})$.

Предполагая статистику этих дефектов больцмановской, воспользуемся известным выражением для их конфигурационной энтропии [10] и формулой Стирлинга:

$$S_{kd} = \ln \frac{n^{n_{kd}}}{n_{kd}!} \rightarrow n_{kd} \ln \frac{\mathbf{e} \cdot n_k}{n_{kd}} = n_{kd} \left(1 - \ln \frac{n^{n_{kd}}}{n_k} \right).$$

Далее свободная энергия, отнесенная к единице поверхности подложки, будет содержать слагаемое, соответствующее метастабильному кристаллу при температуре $T > T_m$. Это слагаемое может быть получено следующим путем. Пусть $f_{\rm cr}$ и $f_{\rm liq}$ — свободные энергии единицы объема твердой фазы и жидкости соответственно. При $T < T_m$ энергетически выгодна твердая фаза, так что $(f_{\rm cr} - f_{\rm liq}) < 0$. Напротив, при $T > T_m$, очевидно, $f_{\rm cr} > f_{\rm liq}$. Если пренебречь тепловым расширением, то с точностью до главных слагаемых можно написать

$$f_{\rm cr}(T) = f_{\rm m} + (\partial f_{\rm cr}/\partial T)_{\rm m}(T - T_{\rm m}),$$

$$f_{\rm lig}(T) = f_{\rm m} + (\partial f_{\rm lig}/\partial T)_{\rm m}(T - T_{\rm m}),$$

где $f_{\rm m}$ — общее значение свободных энергий обеих фаз в точке плавления, а производные $(\partial f_{\rm cr}/\partial T)_{\rm m}$ и $(\partial f_{\rm liq}/\partial T)_{\rm m}$ взяты при температуре плавления. Но, согласно термодинамике, эти производные равны (с отрицательным знаком) энтропиям единицы объема соответственно твердой $(-S_{\rm cr})$ и жидкой $(-S_{\rm liq})$ фаз в точке плавления. Тогда для разности свободных энергий имеем

$$f_{\rm cr}(T) - f_{\rm liq}(T) = (S_{\rm liq} - S_{\rm cr})(T - T_{\rm m}) = \lambda(T - T_{\rm m})/T_{\rm m},$$

где $\lambda > 0$ — скрытая теплота плавления единицы объема кристалла.

Интересующее же нас слагаемое, соответствующее метастабильному кристаллу и определяющее вклад ЭЖК-слоя толщиной L в свободную энергию, приходящуюся на единицу поверхности подложки, будет иметь вид $F_{\sigma(cr-liq)} = \lambda L(T - T_m)/T_m > 0.$

Подчеркнем, что при $T > T_{\rm m}$ этот вклад заведомо оказывается энергетически невыгодным, так что результирующая толщина L как раз и определится его балансом с энергией связи молекул с АЦ подложки.

3. Оценка толщины ЭЖК-слоя

Ее проведем, исходя из следующих соображений. При $T < T_{\rm m}$ такие молекулы длиной l_0 объединяются в бесконечный кристалл, однако и при $T > T_{\rm m}$ в жидкости возможно существование объединения — ассоциатов молекул, прежде всего димеров. Пусть W_a — энергия, необходимая для разрыва связи, образовавшейся между отдельными молекулами. Тогда в рамках простейшей статистики Больцмана для изолированных линейных ассоциатов молекул можно написать $L_{\rm iso} = l_0 \exp(W_a/T)$, так что при $T \to \infty$ переходим к формальному пределу — к жидкости, состоящей из отдельных молекул, а при $T \to 0$ — к кристаллу, $L_{\rm iso} \to \infty$.

Учтем теперь, что при образовании ЭЖК-слоя каждый линейный ассоциат в нем находится в окружении себе подобных соседних. Поэтому энергия разрыва W_{al} между молекулами в ассоциате слоя отличается от ее значения W_a в объеме. Эту энергию разрыва при отсутствии "дефектов" ($n_{kd} = 0$), т.е. при максимально "плотной" упаковке ассоциатов на подложке, обозначим W_{eff} . При $n_{kd} = n_k$ ассоциат "изолирован" и энергия разрыва между молекулами в нем W_{eff} очевидно совпадает с W_a . Потому энергию W_{al} можно представить следующим образом: $W_{al} = (n_{kd}/n_k)W_a + (1 - n_{kd}/n_k)W_{\text{eff}}$. Тогда для средней длины ассоциата, которую мы и будем рассматривать в качестве толщины L ЭЖК-слоя, можно написать

$$L = l_0 \exp\{[xW_a + (1 - x)W_{\text{eff}}]/T\},$$
(1)

где $x = n_{kd}/n_k$ — доля не занятых АЦ от общего их числа, а W_{eff} — эффективная энергия разрыва связи между

элементарными молекулами в ассоциатах при предельно плотном заполнении ими активных центров n_k .¹

В результате свободная энергия сцепленных с подложкой ассоциатов, приходящаяся на единицу поверхности, в безразмерной форме будет иметь вид

$$f = \frac{F_{\sigma}}{n_k W_a} = -[1-x]\omega_k - T_a x (1-\ln x)$$
$$+ \frac{\lambda l_0}{n_k T_m} (1-x) \left(T_a - \frac{T_m}{W_a}\right) \exp\left[\left(\omega_a (1-x) + x\right)/T_a\right],$$
(2)

где для безразмерных энергий ω_k , T_a , ω_a введены обозначения W_k/W_a , T/W_a и W_{eff}/W_a соответственно.

Будем рассматривать относительную плотность поверхностных дефектов x как варьируемую величину. Тогда, используя условие термодинамического равновесия $(\partial f/\partial x)_T = 0$, можно найти зависимость равновесной величины x_{\min} (при которой f(x) минимальна) от температуры $x_{\min}(T)$. После этого равновесная толщина ЭЖК-слоя как функция температуры определится по формуле (1), с заменой $x = x_{\min}(T)$.

4. Применение теории к эксперименту

Температурный ход L(T) может быть определен из экспериментальных исследований ЭЖК (например, ароматических углеводородов — методом измерения дихроизма их интенсивных полос поглощения [1,2,12]). Этим методом (и другими — измерениями теплоемкости и двулучепреломления [6], а также нарушенного полного внутреннего отражения [13]) наиболее детально из ароматиков была изучена ЭЖК-фаза нитробензола на кварце и сапфире.

Сравнение экспериментальных данных [6] с теоретической формулой (1) в принципе позволяет восстановить значения параметров теории. Это касается прежде всего таких параметров, как W_a и W_{eff}, для которых эксперименты типа [1,2,6,12,13] являются по сути единственным источником информации. Для других параметров (λ, l_0, T_m) можно использовать их известные литературные значения (см., например, [14–16]). Что же касается величины W_a , то и современные компьютерные расчеты, основанные на квантово-химических методах, могут дать для нее сравнительно приемлемую оценку. Так, используя программу HyperChem и полагая, что две молекулы нитробензола (в вакууме) связаны по типу "голова-хвост" или "сандвича", находим для энергии связи величину $W_a = 476 \,\mathrm{K}$ и $W_a = 860 \,\mathrm{K}$ соответственно.

Рис. 2. Зависимость толщины L ЭЖК-слоя нитробензола на кварце от ΔT . \circ — эксперимент [6]; 1 ($W_a = 860$ K) и 2 ($W_a = 476$ K) — теория. Параметры модели: $W_k = 3000$ K, $W_{\text{eff}} = 1550$ K, $n_k = 1.7 \cdot 10^{19}$ m⁻².

В качестве примера применим рассмотренную модель к описанию реального ЭЖК-слоя нитробензола, для которого известна экспериментально установленная [6] температурная зависимость его толщины L(T). Нитробензол (C₆H₅NO₂) — немезогенная жидкость (температура плавления кристалла $T_{\rm m} = 278.7 \, {\rm K},$ длина молекулы $l_0 = 8.5 \text{ Å}$), которая на диэлектрической (стекло, кварц, сапфир) лиофилизированной подложке образует при $T \sim 300 \,\mathrm{K}$ ЭЖК-слой толщиной $L \sim 60 \, {\rm nm}$ [2,6,12]. Скрытая теплота плавления нитробензола $\lambda = 7.9 \cdot 10^{30} \, \text{K/m}^3$ [16]. Адсорбция молекул жидкости на поверхности стекла, кварца и сапфира обусловлена образованием водородных связей адсорбата с гидроксильными группами на SiO₂ и Al₂O₃, играющих таким образом роль АЦ [12] для C₆H₅NO₂. Среднее расстояние между гидроксилами составляет 2.5-2.6 Å [17], что соответствует (зависимой от способа лиофилизации подложки) их поверхностной концентрации (1.8-1.5) · 10¹⁹ m⁻². Энергия "сцепления" молекул нитробензола с ними W_k , полученная нами из квантовомеханических расчетов, составляет 3000 К.

Нахождение минимума свободной энергии (2) и расчет толщины ЭЖК-слоя осуществлялись с помощью системы Wolfram Mathematica.

Рассчитанная для нитробензола на поверхности кварца доля поверхностных "дефектов" $x_{\min} = n_{kd}/n_k$, соответствующая таким минимумам при различных температурах, как и следует ожидать, возрастает с повышением $\Delta T = T - T_m$ — увеличивается число "оторвавшихся" от подложки ассоциатов. Искомая теоретическая зависимость толщины $L(\Delta T)$ модельного (с параметрами модели: $W_k = 3000$ K, $W_{\text{eff}} = 1550$ K, $n_k = 1.7 \cdot 10^{19}$ m⁻², при двух значениях W_a : I — 860 K и 2 — 476 K, соответствующих конфигурациям "сандвич" и "голова– хвост" между молекулами) ЭЖК-слоя нитробензола приведена на рис. 2. Здесь же приведен и результат экспериментальных измерений [6] толщины ЭЖК-слоя

¹ Заметим, что ЭЖК-слой мономерной жидкости принципиально отличается (флуктуационной природой ассоциатов, решающей ролью АЦ подложки и др.) от полимерного поверхностного слоя (с гибкими и прочными цепями). Хотя и свойства последнего [11] помимо гибкости цепей определяются энергиями когезии и адсорбции — аналогами W_a и W_k модели.

нитробензола на лиофилизированной [12] поверхности кварца с температурой.

Из рис. 2 видно, что при качественном согласии теории и эксперимента в области невысоких ΔT 5–12 K лучшее количественное приближение модели к эксперименту достигается при значении параметра $W_a = 476$ K. В области же ΔT 15–35 K теория лучше согласуется с экспериментом при $W_a = 860$ K.

Заключение

Разработанная модель качественно описывает реальный ЭЖК-слой вблизи температуры кристаллизации, но может быть усовершенствована. Так, коррекция значений оценочных параметров W_a , W_k , W_{eff} позволит уменьшить некоторое расхождение теории и эксперимента. Кроме того, здесь рассмотрен лишь случай, когда все ассоциаты, сцепленные с подложкой, имеют одну и ту же длину L (притом, что часть активных центров оказывалась вакантной — "поверхностные" дефекты n_{kd}). Однако и периферийные (находящиеся вдали от подложки) части ассоциатов могут в результате термических процессов утрачивать или присоединять одиночные молекулы. Результатом таких процессов будет появление помимо "поверхностных" и "периферийных" дефектов. Учет подобного "периферийного" разупорядочения также должен улучшить модель, поскольку в принципе допускает существование термического разброса длин составляющих слой локализованных ассоциатов.

В дальнейшем развитии модели (уточнении роли жидкости, природы и концентрации АЦ) может быть использовано и экспериментально установленное [6,12,13] влияние на параметры ЭЖК-слоя (ароматических и алифатических жидкостей) модификации поверхности (кварца, стекла, сапфира), например ее фобизации. Известно также, что на стальной подложке толщина ЭЖК-слоев составляет более 1 μ m [3,4,18], т.е. на порядок больше (по-видимому, за счет иной природы АЦ и значительной их концентрации), чем на диэлектрической.

Создание модели ЭЖК-слоя и ее усовершенствование важно в теоретическом и техническом аспектах. Последний заключается, в частности, в том, что в прослойке масла триады трения этот слой определяет [4,18,19] противоизносные характеристики трибосопряжения. Понимание же механизма организации слоя позволяет этими характеристиками управлять.

Работа поддержана грантом Министерства образования и науки РФ № 14.В37.21.0897.

Список литературы

- Derjaguin B.V., Altoiz B.A., Nikitenko I.I. // J. Colloid Interf. Sci. 1991. Vol. 145. N 2. P. 441–446.
- [2] Derjaguin B.V., Altoiz B.A., Popovsky Yu.M. // J. Colloid Interf. Sci. 1992. Vol. 148. N 1. P. 56–62.

- [3] Алтоиз Б.А. Кириян С.В. // ИФЖ. 2010. Т. 83. Вып. 3. С. 608–613.
- [4] Алтоиз Б.А., Кириян С.В., Шатагина Е.А. // ЖТФ. 2010.
 Т. 80. Вып. 10. С. 37–40.
- [5] Дерягин Б.В., Алтоиз Б. А., Поповский Ю.М. // Открытия и изобретения. 1991. Вып. 12. С. 1.
- [6] Алтоиз Б.А., Поповский Ю.М. Физика приповерхностных слоев Одесса: Астропринт, 1995. 153 с.
- [7] Lyakhova E. // J. Mol. Liq. 2001. N 93. P. 203-206.
- [8] Алтоиз Б.А., Народицкая Т.В. // Колл. журн. 2004. Т. 66. Вып. 3. С. 1–6.
- [9] Межиковский С.М., Аринштейн А.Э., Дебердеев Р.Я. Олигомерное состояние вещества. М.: Наука, 2005. 252 с.
- [10] Ландау Л.Д., Лифшиц Е.М. Статистическая физика. М.: Наука, 1964. 568 с.
- [11] Липатов Ю.С. Физико-химические основы наполненных полимеров. М.: Химия, 1991. 261 с.
- [12] Дерягин Б.В., Алтоиз Б.А., Шибаева Е.Ю. // ДАН СССР. 1989. Т. 305. № 6. С. 1392–1395.
- [13] Сайдов Г.В., Амеличев В.А., Поляков Д.И., Юдович М.Е. // ЖФХ. 1986. Т. 60. Вып. 6. С. 1452–1455.
- [14] Меринов Ю.А., Меринова Н.В. // ЖФХ. 1984. Вып. 3. С. 623–625.
- [15] Справочник химика. М.-Л.: Химия, 1966. Т. 1. 1072 с.
- [16] Перельман В.И. Краткий справочник химика. М.: Госхимиздат, 1955. 560 с.
- [17] Киселев В.Ф. Поверхностные явления в полупроводниках и диэлектриках. М.: Наука, 1970. 400 с.
- [18] Алтоиз Б.А., Асланов С.К., Кириян С.В. // ЖТФ. 2011. Т. 81. Вып. 8. С. 42–47.
- [19] Гаркунов Д.Н. Триботехника. М.: МСХА, 2001. 424 с.