Энергетический спектр носителей заряда в сплавах Bi_{1-x}Sb_x

© В.В. Косарев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: vlad.kos@mail.ioffe.ru

(Поступила в Редакцию 6 декабря 2006 г. В окончательной редакции 22 марта 2007 г.)

Исследования квантовых осцилляций магнитосопротивления (эффекта Шубникова-де Гааза) на сплавах $\operatorname{Bi}_{1-x}\operatorname{Sb}_x$ с содержанием сурьмы 0.255 < x < 0.26 обнаружили электронно-топологический переход Лифшица, возможное обяснение которого сводится к наличию в энергетическом спектре этих соединений седловой точки. Такая особенность возникает, если величина прямой щели в точке L в полупроводниковой области этих соединений (x > 0.04) становится отрицательной. Это заставляет существенно пересмотреть все ранее сделанные расчеты на основе прежних значений зонных параметров. Для проверки соответствия новых значений параметров данным о плотности состояний, полученным из измерений термоэдс в классическом пределе сильных магнитных полей, проведены теоретические расчеты концентрации n и плотности состояний на уровне Ферми $\rho(E_F)$ для случая отрицательных значений E_{gL} . Расчеты n и $\rho(E_F)$ показывают, что изменение E_{gL} и соответствующая коррекция зонных параметров обеспечивают хорошее согласие с экспериментельными данными. Согласно этим расчетам, один электронно-топологический переход появляется при $x \sim 0.165$, когда в энергетическом спектре появляется седловая точка. Второй переход связан со слиянием шести эллипсоидов поверхности Ферми в три гантелеобразные фигуры при 0.255 < x < 0.26.

PACS: 71.20.-b, 71.20.Gi

Для материалов со сложной формой зонного спектра, какими являются сплавы $Bi_{1-x}Sb_x$, энергетический спектр электронов и дырок в точке *L* приближенно описывается уравнением Макклюра [1]

$$(E - a_1 k_y^2)(E + E_{gL} + a_2 k_y^2) = Q_{11}^2 k_x^2 + Q_{22}^2 k_y^2 + Q_{33}^2 k_z^2, \quad (1)$$

где $a_1 = \gamma_{c22}/2$, $a_2 = \gamma_{v22}/2$, энергия E отсчитывается от края зоны проводимости, E_{gL} — прямая щель в точке L, индексы v и c соответствуют валентной зоне и зоне проводимости, параметры Q_{ii} характеризуют (kp)-взаимодействие этих зон, а параметры $\gamma_{c,v,ij}$ (обратные поправочные массы) учитывают влияние других, более удаленных зон, расположенных в той же точке L зоны Бриллюэна. Данный закон дисперсии записан в атомной системе единиц, где $e = m_0 = \hbar = 1$, а за единицы длины и энергии приняты боровский радиус (0.529 Å) и хартри (27.2 eV).

Связь между значением термоэдс в классическом пределе сильных магнитных полей $\alpha_{22\infty}$ и плотностью состояний $\rho(E_{\rm F}) = \partial n/\partial E$ на уровне Ферми $E_{\rm F}$ определяется соотношением, имеющим довольно общий характер [2]:

$$\alpha_{22\infty} = \frac{(\pi k_b)^2}{en} T \rho(E_{\rm F}), \qquad (2)$$

где n — концентрация носителей заряда, T — температура, k_b — постоянная Больцмана. Это соотношение остается справедливым и для энергетического спектра (1).

Данные измерений термоэдс в классически сильных магнитных полях уже анализировались ранее [3] на основе расчетов плотности состояний ρ , проведенных

со значениями зонных параметров, полученными в работе [1]. С ростом x результаты расчетов все более заметно отличались от значений ρ , рассчитанных по экспериментальным данным, и для достижения лучшего согласия с экспериментом приходилось довольно существенно корректировать значения некоторых из этих параметров.

Однако проведенные позднее исследования квантовых осцилляций магнитосопротивления (эффекта Шубникова-деГааза) на сплавах Bi_{1-x}Sb_x с большим содержанием сурьмы обнаружили электронно-топологический переход Лифшица в области 0.255 < x < 0.26, возможное объяснение которого сводится к наличию седловой точки в энергетическом спектре этих соединений. Такая особенность возникает в том случае, когда величина прямой щели в точке L в полупроводниковой области соединений (x > 0.04) становится отрицательной [4] и вклад от γ_{v22} начинает превосходить вклад (*kp*)-взаимодействия (рис. 1). Это заставило авторов работы [4] существенно пересмотреть результаты своих предыдущих работ по исследованию зонной структуры сплавов Bi_{1-x}Sb_x и уточнить значения зонных параметров, зависящих от x. Согласно [4],

$$Q_{11} = 0.457 - 0.188x, \quad Q_{22} = 0.03 - 0.04x,$$

 $Q_{33} = 0.344,$ (3)

$$\gamma_{c22} = 0.615 + 0.4x, \quad \gamma_{v22} = 1.1 + 0.7x.$$
 (4)

Для проверки того, насколько эти новые данные согласуются с данными о термоэдс и плотности состояний, в настоящей работе проведены расчеты концентрации $n(E_{\rm F})$ и плотности состояний $\rho(E_{\rm F})$ на уровне Ферми $E_{\rm F}$ для случая отрицательных значений E_{gL}

с параметрами спектра (4). Поскольку в более ранней работе [3] расчеты проводились только для того случая, когда поверхность Ферми близка к эллипсоидальной, в настоящей статье получены более общие выражения, справедливые в том числе и для случая, когда в энергетическом спектре появляется седловая точка и форма поверхности становится гантелеобразной (т.е. существенно отличной от эллипсоидальной). Для вычисления $\rho(E_{\rm F})$ как производной от объема таких фигур требуются уже гораздо более сложные вычисления. С учетом того что цилиндрическая симметрия сохраняется и в этом случае, функции $n(E_{\rm F})$ и $\rho(E_{\rm F})$ вычисляются, так же как и ранее, не численно, а аналитически, но при этом получены ранее [3]:

$$\pi^{2} Q_{11} Q_{33} n = E_{\rm F} (E_{\rm F} + E_{g}) (k_{2} - k_{1}) + a_{1} a_{2} (k_{2}^{5} - k_{1}^{5}) / 5,$$

$$\pi^{2} Q_{11} Q_{33} \rho (E_{\rm F}) = (2E_{\rm F} + E_{g}) (k_{2} - k_{1}) + E_{\rm F} (E_{\rm F} + E_{g}) (\partial k_{2} / \partial E - \partial k_{1} / \partial E) + a_{1} a_{2} (k_{2}^{4} \partial k_{2} / \partial E - k_{1}^{4} \partial k_{1} / \partial E), \quad (5)$$

где значения k_1 , k_2 и их производные определяются следующими выражениями:

$$\begin{aligned} 2a_1a_2k_1^2 &= (a_2 - a_1)E_{\rm F} - a_1E_g - Q_{22}^2 - \Sigma_1, \\ 2a_1a_2k_2^2 &= (a_2 - a_1)E_{\rm F} - a_1E_g - Q_{22}^2 + \Sigma_1, \\ 4a_1a_2k_1\partial k_1/\partial E &= a_2 - a_1 - \Sigma_2/\Sigma_1, \\ 4a_1a_2k_2\partial k_2/\partial E &= a_2 - a_1 + \Sigma_2/\Sigma_1, \\ \Sigma_1 &= \left(\left(a_1(E_{\rm F} + E_g) + a_2E_{\rm F} + Q_{22}^2\right)^2 - 4Q_{22}^2a_2E_{\rm F} \right)^{1/2}, \\ \Sigma_2 &= (a_1 + a_2) \left(a_1(E_{\rm F} + E_g) + a_2E_{\rm F} + Q_{22}^2\right) - 4Q_{22}^2a_2. \end{aligned}$$

Энергетическое E_0 и пространственное k_0 (в импульсном **k**-пространстве) положения экстремумов, расположенных ниже седловой точки, определяются из условий

$$k_1^2 = k_2^2 = \left((a_2 - a_1)E_0 - a_1E_g - Q_{22}^2 \right) / 2a_1a_2 = k_0^2,$$

$$\left(a_1(E_0 + E_g) + a_2E_0 + Q_{22}^2 \right)^2 = 4Q_{22}^2a_2E_0.$$
(6)

Эффективная масса на дне новых экстремумов может быть вычислена также аналитически через вторую производную $\partial^2 E / \partial k^2$. В предельном случае слияния обоих экстремумов имеем $k_0 = 0$ и

$$m_0/m_1(0) = 2Q_{11}^2/|E_{gL}|, \quad m_0/m_3(0) = 2Q_{33}^2/|E_{gL}|,$$

$$m_0/m_2(0) = -\gamma_{\nu 22} - 2Q_{22}^2/|E_{gL}|.$$
(7)

Для случая $E_{gL} < 0$ обратная эффективная масса $m_0/m_2(0)$ может обращаться в нуль и даже менять знак. Это означает, что эллиптическое приближение для этой компоненты полностью неприменимо. Проведенные расчеты $n(E_{\rm F})$ и $\rho(E_{\rm F})$ показкли, что изменение знака для

Рис. 1. Трансформация энергетического спектра носителей заряда в точке L при изменении x согласно [4] (a) и изо-энергетические поверхности в окрестности точки L на уровне Ферми $E_{\rm F}$ в плоскости $k_y k_z$, перпендикулярной бинарной оси $C_2 \parallel k_x$, при наличии седловой точки (b).

Рис. 2. Зависимости отношения площадей максимального и минимального сечений $S_{\text{max}}/S_{\text{min}}$ поверхности Ферми от *x*. Кривые *A* и *B* соответствуют расчетам для $n = 1.7 \cdot 10^{17}$ и $1.4 \cdot 10^{15}$ сm⁻³, экспериментальные данные для образцов с концентрациями от 0.6 до $2.3 \cdot 10^{15}$ см⁻³ взяты из других работ: *C* — данные [6], *D* — [7], *E* — [8]. Точки пересчитаны по данным измерений анизотропии циклотронных масс с помощью соотношения $S_{\text{max}}/S_{\text{min}} = m_{c,\text{max}}/m_{c,\text{min}} \approx m_{c,3}/m_{c,2}$.

величины запрещенной зоны в (1) и связанная с этим коррекция зонных параметров приводят к существенному улучшению согласия расчетных значений плотности состояний с данными, полученными по термоэдс. При этом были использованы более точные, чем в [4], значения для величины E_{gL} . Еще лучшего согласия можно

Номер образца	x	$n,$ $10^{17} \mathrm{cm}^{-3}$	$ ho(E_{\rm F}), \ 10^{31} {\rm erg}^{-1} \cdot {\rm cm}^{-3}$		E_{F} ,	$m_2(F_{\rm E})/m_0$	Smar / Smin
			Эксперимент	Расчет	meV	$m_2(\Sigma_{\Gamma})/m_0$	
1	0.013	2.5	1.63	1.48	28.8	0.57	19.2
2	0.038	1.33	1.33	1.01	24.4	0.58	21.0
3	0.045	1.2	1.07	0.96	22.75	0.6	21.6
4	0.07	3.6	2.19	2.03	29.0	0.96	22.2
5	0.073	1.37	1.18	1.114	19.55	0.84	23.8
6	0.088	1.95	1.61	1.44	20.07	1.03	27.0
7	0.11	1.57	1.46	1.35	15.47	1.7	29.7
8	0.13	1.58	1.52	1.45	13.4	1.58	31.7
9	0.15	1.61	1.61	1.56	11.6	1.96	33.9
10	0.16	1.71	1.76	1.68	10.94	2.2	34.8

Результаты расчетов плотности состояний $\rho(E_{\rm F})$, компоненты эффективной массы $m_2(E_{\rm F})$ на уровне Ферми $E_{\rm F}$, а также отношения площадей максимального и минимального сечений $S_{\rm max}/S_{\rm min}$ поверхности Ферми для образцов, исследовавшихся ранее в [3]

добиться, если учесть связь параметров Q_{11} и Q_{33} :

$$Q_{11}Q_{33} = 0.153 - 0.28x,$$

которая следует из определенной в [5] зависимости легкой циклотронной эффективной массы на дне зоны проводимости от *x* (при *x* > 0.04)

$$m_{c,2}/m_0 = (x - 0.04)0.00325$$

и соотношения

$$m_{c,2}/m_0 = (m_1 m_3)^{1/2}/m_0 = |E_{gL}|/(2Q_{11}Q_{33}).$$

Тогда при $Q_{33} = 0.344$ для Q_{11} имеем

$$Q_{11} = 0.445 - 0.81x$$
.

С учетом этих уточненных данных для величины E_{gL} седловая точка в спектре появляется при x > 0.165. Согласно вычислениям, топологические переходы происходят при x около 0.165 и 0.255. В первом случае седловая точка возникает, когда $m_2(0)/m_0$ становится отрицательной величиной. При этом в окрестности точки $x \approx 0.165$ на зависимости $S_{\text{max}}/S_{\text{min}}(x)$ появляется особенность, обнаруженная в [7,8] (рис. 1, 2).

Второй топологический переход связан с ростом *n* после перехода полупроводник—полуметалл при x > 0.22. В области x > 0.255 шесть эллипсоидов поверхности Ферми сливаются в три гантелеобразные фигуры [4]. Результаты расчетов зависимости $S_{\max}/S_{\min}(x)$ представлены на рис. 2, а плотности состояний — в таблице, где они сравниваются с данными, рассчитанными по величинам термоэдс в классическом пределе сильных магнитных полей для экспериментально исследованных образцов [3].

Автор благодарит Н.А. Редько за стимулирование работы и последующие дискуссии.

Список литературы

- H.Б. Брандт, Р. Герман, Г.И. Голышева, Л.И. Девяткова, Д. Кусник, В. Краак, Я.Г. Пономарев. ЖЭТФ 83, 2152 (1982).
- [2] И.Н. Дубровская, Ю.И. Равич. ФТТ 8, 1455 (1966).
- [3] В.В. Косарев, Н.А. Редько, Н.А. Родионов. ФТТ **25**, 3138 (1983).
- [4] Н.Б. Брандт, Г.И. Голышева, Нгуеэн Минь Тху, М.В. Судакова, К.Н. Каширин, Я.Г. Пономарев. ФТН 13, 1209 (1987).
- [5] G. Oelgart, R. Herrmann. Phys. Stat. Sol. (b) 75, 189 (1976).
- [6] Г.А. Миронова, М.В. Судакова, Я.Г. Пономарев. ФТТ 22, 3628 (1980).
- [7] B. Fellmoth, H. Kruger, R. Rudolf, R. Herrmann. Phys. Stat. Sol. (b) 106, 561 (1981).
- [8] W. Braune, B. Fellmoth, N. Kubicki, R. Herrmann. Phys. Stat. Sol. (b) **110**, 549 (1981).