Влияние гетеровалентного замещения редкоземельных элементов на магнитные и транспортные свойства YBa₂Cu₃O₇

© М.И. Петров, Д.А. Балаев, Ю.С. Гохфельд, А.А. Дубровский, К.А. Шайхутдинов

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: smp@iph.krasn.ru

(Поступила в Редакцию 20 февраля 2007 г.)

Синтезирована система $Y_{(1-x)}Ce_xBa_2Cu_3O_7$ с низкими концентрациями церия. Предел растворимости церия, определенный методом рентгенофазового анализа, составляет около 2.4 at.%. Выполнены измерения температурных зависимостей намагниченности M(T) на образцах, охлажденных в магнитном поле (fc) и в нулевом поле (zfc). Разница намагниченности $M_{zfc} - M_{fc}$ при 77.4 К, пропорциональная потенциалу пиннинга, имеет максимум при x = 0.0156. Эта концентрация соответствует среднему расстоянным между ионами примеси в плоскости редкоземельных элементов, равному восьми постоянным решетки, что сравнимо с диаметром абрикосовских вихрей в YBa₂Cu₃O₇.

Работа выполнена с рамках Комплексного интеграционного проекта СОРАН № 3.4, программы РАН "Квантовая макрофизика" (проект № 3.4), Лаврентьевского конкурса молодежных проектов СОРАН 2006 г. (проект № 52), а также поддержана Фондом содействия отечественной науке.

PACS: 74.25.Qt, 74.62.Dh, 74.72.Bk

Сверхпроводники на основе редкоземельных элементов со структурой Y-123 (т.е. $RBa_2Cu_3O_7$, где R — редкоземельные элементы) наиболее широко изучены и являются многообещающим материалом для практического применения, поэтому важнейшей задачей является увеличение плотности критического тока. Одним из способов достичь этого является создание центров пиннинга в кристаллитах. Центрами пиннинга могут быть различные несверхпроводящие области в образце, для создания которых используется ряд способов. Наиболее известным методом является допирование кристаллической решетки различными катионами.

Многие авторы исследовали влияние легирования различными редкоземельными элементами в разных сочетаниях на свойства YBa₂Cu₃O₇ (YBCO). Как правило, большинство редкоземельных элеменов, введенных в позиции иттрия, незначительно влияют на критическую температуру и критический ток [1]. Церий неспособен образовывать структуру 123 и при введении выделяется в составе несверхпроводящей фазы [2]. В известных работах исследовалось влияние редкоземельных примесей на свойства УВСО в количествах порядка десятков атомных процентов [3-10], что, по нашему мнению, не позволяет изучить воздействие точечных искажений решетки на сверхпроводящие свойства. Исследование влияния малых концентраций легирующего компонента на магнитные и транспортные свойства позволит более подробно изучить механизм пиннинга в сверхпроводниках на основе ҮВСО, легированного оксидами редкоземельных элементов.

При введении небольшого количества примесей в сверхпроводник они могут либо растворяться в решетке, и тогда в ней образуются точечные дефекты за счет искажения электронной структуры, либо выделяться в составе наноразмерных включений несверхпроводящих фаз [11]. Для идентификации природы центров пиннинга требуется исследовать влияние концентрации примесей на свойства кристаллитов и межкристаллитного пространства.

В настоящей работе представлены экспериментальные результаты исследования магнитных и транспортных характеристик ВТСП иттриевой системы $Y_{(1-x)}Ce_xBa_2Cu_3O_7$, в которой ионы иттрия замещались на ионы церия в различных концентрациях. Мы выбирали величину x, чтобы наиболее вероятное расстояние между атомами церия было кратно постоянной решетки в плоскости, т.е. $x = 1/n^2$, где $n = 2, 3, 4, 5, 6, 7, 8, 9, 10, \infty$. При этом предполгалалось, что атомы церия занимают позиции иттрия и равномерно распределяются в плоскости редкоземельных элементов (рис. 1). Состав образца с $n = \infty$ соответствует классическому YBa₂Cu₃O₇.

Рис. 1. Идеализированная решетка в плоскости редкоземельных элементов в структуре (123) для n = 4, x = 0.0625 (*a*) и n = 3, x = 0.11 (*b*).

1. Эксперимент

Стандартным твердофазным методом были синтезированы десять образцов серии $Y_{(1-x)}Ce_xBa_2Cu_3O_7$ с $x = 0.25, 0.11, 0.0625, 0.04, 0.0278, 0.0204, 0.0156, 0.0123, 0.01, 0, что соответствует <math>n = 2, 3, 4, 5, 6, 7, 8, 9, 10, \infty$. Исходные реактивы — Y_2O_3 , CeO₂, CuO квалификации XЧ и BaCO₃ квалификации ЧДА.

Соответствующие количества реактивов тщательно смешивались в агатовой ступке, спрессовывались в таблетки и отжигались при температуре 930°С. Общая продолжительность синтеза составила 160 h с семью промежуточными помолами и прессованиями. Длительный синтез способствует упорядочению редкоземельных элементов и замещению церия в позиции иттрия. В конце синтеза образцы были отожжены при температуре 300°С в течение 3 h и медленно охлаждены вместе с печью до комнатной температуры для насыщения кислородом.

Измерения электросопротивления образцов были проведены стандартным четырехзондовым методом на образцах прямоугольного сечения $\approx 2 \times 1$ mm, расстояние между потенциальными контактами составляло 2 mm.

Измерения магнитных свойств проводились на вибрационном магнитометре [12]. Образцы выпиливались в форме цилиндров высотой $\approx 5 \, \text{mm}$ и диаметром $\approx 0.5 \, \text{mm}$. Магнитное поле прикладывалось параллельно оси цилиндров.

2. Результаты и обсуждение

Поскольку церий не способен образовывать структуру типа 123 [2], следует ожидать, что его растворимость в решетке YBCO невелика. При малых концентрациях церия (< 5%) в $Y_{(1-x)}Ce_xBa_2Cu_3O_7$ затруднительно определить долю посторонней фазы методом рентгенофазового анализа. Поэтому был поведен рентгенофазовый анализ образцов с содержанием церия 0.25, 0.11, 0.0625. Зависимость интенсивности рефлексов посторонней фазы CeBaO₃ от концентрации церия приведена на рис. 2. Мы экстраполировали данные линейной зависимостью для оценки предела растворимости церия в структуре YBCO. Растворимость церия составляет около 2.4 at.%.

Температурные зависимости удельного электросопротивления $\rho(T)$ измерены для всех образцов $Y_{(1-x)}Ce_xBa_2Cu_3O_7$. На рис. З приведены зависимости $\rho(T)$ для образцов с x = 0.25, 0.11, 0.0156, 0. Выше температуры перехода T_c все зависимости имеют металлический характер. Однако отношение $\rho(300 \text{ K})/\rho(100 \text{ K})$ монотонно уменьшается с ростом концентрации церия (рис. 4, *a*). На рис. 4 данные по концентрации приведены в единицах n ($x = 1/n^2$).

Значение удельного сопротивления практически не изменяется (в пределах точности измерения площади поперечного сечения образцов) для составов с *x* от 0

Рис. 2. Зависимость максимальной относительной интенсивности рефлексов BaCeO₃ от содержания Се в составах $Y_{(1-x)}$ Ce_xBa₂Cu₃O₇.

до 0.0625 и составляет при 300 К около $3.0 \cdot 10^{-3} \Omega \cdot cm$. Для составов с бо́льшим содержанием церия значение удельного сопротивления возрастает и при 300 К составляет около 0.01 и 0.12 $\Omega \cdot cm$ для составов с x = 0.11и 0.25 соответственно.

Резистивный переход исследованных образцов характерен для гранулярных ВТСП [13–15] и характеризуется резким падением сопротивления при Т_с и плавной частью. На вставках к рис. 3 приведены зависимости $\rho(T)$ в области сверхпроводящего перехода. Резкий скачок сопротивления при T_c соответствует переходу ВТСП кристаллитов [13–15]. Величины Т_с совпадают с критическими температурами, определенными из магнитных измерений. Величины Т_с, определенные таким образом, практически не зависят от содержания церия в образцах и варьируются в пределах 91-92 К. Наименьшую величину $T_c = 90.8 \text{ K}$ имеет образец с x = 0.25. Плавная часть $\rho(T)$ соответствует переходу межкристаллитных границ, которые в гранулярных ВТСП являются слабыми связями джозефсоновского типа [13-15]. Эта часть $\rho(T)$ уширяется при увеличении транспортного тока, что наблюдалось нами при измерении образцов данной серии и при приложении внешнего магнитного поля [13,15]. Величина температурного диапазона $\rho(T)$, соответствующего переходу межкристаллитных границ, характеризует "силу" джозефсоновских связей в гранулярном ВТСП. На рис. 4, b приведена величина этого температурного диапазона $\Delta T = T_c - T_c (R = 0)$ в зависимости от $n (x = 1/n^2)$; здесь $T_c(R = 0)$ — температура зануления сопротивления образца. Ширина сверхпроводящего перехода ΔT составляет 2–4° для составов с х от 0 до 0.04. С дальнейшим ростом х наблюдается значительное увеличение ΔT . Для состава с x = 0.25, $T_{c}(R = 0)$ составляет около 78 К. Исходя из проведенного анализа зависимостей $\rho(T)$, можно заключить, что при концентрации церия, большей 0.0625 (n = 4),

Рис. 3. Зависимости удельного электросопротивления $\rho(T)$ образцов $Y_{(1-x)}$ Се_x Ba₂Cu₃O₇. На вставках — $\rho(T)$ в районе резистивного перехода.

Рис. 4. Зависимость отношения $\rho(300 \text{ K})/\rho(100 \text{ K})$ (*a*) и ширины сверхпроводящего перехода (*b*) от содержания церия в соединении $Y_{(1-x)}$ Ce_xBa₂Cu₃O₇.

джозефсоновские связи значительно ослабляются. Это согласуется с данными рентгенофазного анализа этих образцов (рис. 2), которые указывают на появление второй фазы (BaCeO₃). Как известно, введение несверхпроводящей фазы уменьшает "силу" джозефсоновских связей в гранулярных ВТСП, которые в этом случае представляют собой уже двухфазные композиты. Для составов с $x \le 0.0625$ такие параметры как T_c , $\rho(300 \text{ K})$, $\rho(300 \text{ K})/\rho(100 \text{ K})$, ΔT практически идентичны таковым для YBa₂Cu₃O₇.

Рис. 5. Температурная зависимость намагниченности в поле H = 100 Ое. Светлые кружки — $M_{\rm fc}$, темные — $M_{\rm zfc}$.

Рис. 6. Разность магнитных моментов образцов, охлажденных в поле $(M_{\rm fc})$ и нулевом поле $(M_{\rm zfc})$, при T = 77.4 К.

Для установления влияния содержания церия на внутригранульный пиннинг в Y_(1-x)Ce_xBa₂Cu₃O₇ были измерены температурные зависимости намагниченности M(T) полученных образцов. Известно, что разность между намагниченностью образца, охлажденного в магнитном поле $M_{\rm fc}$ и в нулевом поле $M_{\rm zfc}$, пропорциональна силе пиннинга и, следовательно, критическому току [16]. На рис. 5 приведены зависимости намагниченности $M_{\rm fc}$ и $M_{\rm zfc}$ для образцов с x = 0.25, 0.11, 0.0156, 0.На рис. 6 показана зависимость разности намагниченности $\Delta M = M_{\rm fc} - M_{\rm zfc}$ от *n* при 77 К. Эта кривая имеет выраженный максимум при n = 8 (x = 0.0156). В измерениях намагниченности в постоянном поле основной вклад вносят кристаллиты, т.е. диамагнитный отклик определяется внутригранульными токами. Поэтому мы интерпретируем данный результат как повышение внутрикристаллитной плотности критического тока. В образцах с малым содержанием церия примесные атомы Се (валентное состояние > +3) являются точечными дефектами решетки и создают дополнительные центры пиннинга, что способствует увеличению критического тока. Величина наиболее вероятного расстояния между примесными атомами Се, при котором сила пиннинга максимальна, составляет 30 Å, что близко к 1–2 длинам когерентности в YBCO [17,18]. Это можно объяснить тем, что дефекты, расположенные на расстоянии, равном диаметру абрикосовских вихрей, способствуют увеличению силы пиннинга в малых полях.

Таким образом, исследование транспортных и магнитных свойств серии соединений $Y_{(1-x)}Ce_xBa_2Cu_3O_7$ показало, что введение примесных атомов церия в малых количествах до предела растворимости приводит к образованию центров пиннинга и увеличению внутригранульного критического тока в образцах.

Список литературы

- P.H. Hor, R.L. Meng, Y.Q. Wang, L. Gao, Z.J. Huang, J. Bechtold, K. Forster, C.W. Chu. Phys. Rev. Lett. 58, 1891 (1987).
- [2] J. Hauck, K. Bickman, K. Mika. Supercond. Sci. Technol. 11, 63 (1998).
- [3] P.K. Nayak, S. Ravi. Supercond. Sci. Technol. 19, 1209 (2006).
- [4] M.T. Weller, J.R. Grasmeder, P.C. Lanchester, C.E. Meats. J. Phys. F: Met. Phys. 18, L 95 (1988).
- [5] K.M. Pansuria, D.G. Kuberkar, G.J. Baldha, R.G. Kulkarni. Supercond. Sci. Technol. 12, 579 (1999).
- [6] N. Hari Babu, M. Kambara, E.S. Reddy, Y. Shi, D.A. Cardwell. Supercond. Sci. Technol. 18, S 38 (2005).
- [7] T. Harada, K. Yoshida. Physica C 383, 48 (2002).
- [8] L.M. Paulius, C.C. Almasan, M.B. Maple. Phys. Rev. B 47, 11627 (1993).
- [9] S. Nariki, N. Sakai, M. Merakami, I. Hirabayashi. Physica C 426–431, 602 (2005).
- [10] L. Shi, Y. Huang, W. Pang, X. Liu, L. Wang, X.G. Li, G. Zhou, Yuheng Zhang. Physica C 282–287, 1021 (1997).
- [11] L. Shlyk, K. Nenkov, G. Krabbes, G. Fuchs. Physica C 423, 22 (2005).
- [12] А.Д. Балаев, Ю.В. Бояршинов, М.И. Карпенко, Б.П. Хрусталёв. ПТЭ 3, 167 (1985).
- [13] M.A. Dubson, S.T. Herbet, J.J. Calabrese, D.C. Harris, B.R. Patton, J.C. Garland. Phys. Rev. Lett. 60, 1061 (1988).
- [14] C. Gaffney, H. Petersen, R. Bednar. Phys. Rev. B 48, 3388 (1993).
- [15] А.Д. Балаев, С.И. Попков, К.А. Шайхутдинов, М.И. Петров. ФТТ 48, 588 (2006).
- [16] А.П. Малоземофф. В сб.: Физические свойства высокотемпературных сверхпроводников / Под ред. Д.М. Гинзберга. Мир, М. (1990). С. 87.
- [17] Л.П. Горьков, Н.Б. Копнин. УФН 156, 117 (1988).
- [18] D. Larbalestier, A. Gurevich, D.M. Feldmann, A. Polyanskii. Nature 414, 368 (2001).