Влияние химического состояния серебра на люминесцентные свойства пленок системы GeO₂–Eu₂O₃–Ag

© Г.Е. Малашкевич, Г.П. Шевченко*, С.В. Сережкина, П.П. Першукевич, Г.И. Семкова, Г.К. Глушонок*

Институт молекулярной и атомной физики Национальной академии наук Белоруссии, 220072 Минск, Белоруссия

* Научно-исследовательский институт физико-химических проблем Белорусского государственного университета, 220080 Минск, Белоруссия

E-mail: malash@imaph.bas-net.by

(Поступила в Редакцию 22 января 2007 г.)

С использованием золь-гель метода приготовлены пленки системы $GeO_2-Eu_2O_3-Ag$, эффективность люминесценции ионов Eu^{3+} в которых при ультрафиолетовом возбуждении сравнима с одноименной характеристикой пленок, активированных органическими комплексами европия. Проведено их спектрально-люминесцентное, ЭПР- и дифрактометрическое исследование. Установлено, что основной причиной полученного эффекта является образование сложных Eu-Ag-центров с высоким квантовым выходом внутрицентровой передачи возбуждений редкоземельному активатору от ионов серебра и расположенных на поверхности его наночастиц олигомерных кластеров Ag_m^{n+} .

Работа выполнена при финансовой поддержке Международного научно-технологического центра (грант № В-276-2) и Белорусского республиканского фонда фундаментальных исследований (грант Ф05БР-003).

PACS: 78.55.Qr, 78.67.Bf

1. Введение

Оксидные пленки, активированные ионами лантаноидов, характеризуются высокими эксплуатационными параметрами, однако из-за малых ширин и сечений внутриконфигурационных полос поглощения этих активаторов не могут обеспечить высокую интенсивность люминесценции, что существенно ограничивает их применение. Одним из путей преодоления этого недостатка является использование подходящих сенсибилизаторов люминесценции. В этом плане перспективным представляется дополнительное легирование таких пленок серебром, которое может входить в стекловидную матрицу в виде простых и сложных ионов, кластеров и металлических наночастиц. Как известно [1-4], изолированные Ag⁺ парные $(Ag^+)_2$ ионы в оксидных матрицах характеризуются достаточно интенсивным поглощением в ультрафиолетовой (УФ) и люминесценцией в УФ- и видимой областях спектра со средней длительностью затухания от единиц до десятков микросекунд при комнатной температуре. Это позволяет отнести их к числу потенциальных сенсибилизаторов люминесценции ионов лантаноидов. Способны люминесцировать также кластеры Аg_mⁿ⁺ [1,4-6] и наночастицы $(Ag^0)_m$ [6,7]. Однако скорость затухания их люминесценции приблизительно на три [4,5] и шесть [6] порядков соответственно выше, чем ионов серебра, что делает достаточно проблематичной эффективную передачу возбуждений в системе Ag_mⁿ⁺-Ln³⁺ и невозможной в системе $(Ag^0)_m$ -Ln³⁺. Имеются и многочисленные публикаци (см., например, [8-10]), в которых сообщается о значительном увеличении интенсивности люминесценции редкоземельных ионов вблизи серебряных наночастиц в различных средах. При этом в качестве основной причины такого эффекта рассматривается воздействие на ионы Ln³⁺ неоднородного поля, порождаемого колебаниями электронной плазмы в наночастицах $(Ag^0)_m$ и приводящего к увеличению вероятности плазмонного поглощения. Возможность многократного увеличения вероятности оптических переходов активатора вблизи металлической наночастицы в условиях плазменного резонанса подтверждается и расчетами в рамках квантовой и классической электродинамики [11]. При селективном возбуждении этот эффект также может привести к значительному увеличению интенсивности люминесценции Ln³⁺. Однако работы, в которых бы приводились однозначные доказательства реализации указанного эффекта в оксидных матрицах, нам неизвестны. Поэтому целью настоящей работы является анализ причин увеличения интенсивности люминесценции редкоземельного активатора при наличии в матрице серебра на примере пленок системы GeO2-Eu2O3-Ag и оценка перспективы использования последних в качестве световых трансформаторов из УФ-части спектра в видимую.

2. Материалы и методика эксперимента

Для формирования пленок использовали золь GeO₂ (pH = 8.0, концентрация 5 mass.%) и водные растворы AgNO₃ и европий-тартратного комплекса. Золь получали путем переосаждения раективного диоксида германия в водном растворе аммиака, а металлоорганический комплекс — при смешивании реактивного Eu(NO₃)₃ · 6H₂O с водным раствором KNaC₄H₄O₆. При получении композитных золей в золь GeO₂ вначале добавляли необходимое количество раствора европий-тартратного комплекса, а затем раствора AgNO₃ и перемешивали для равно-

мерного распределения компонентов. Полученный золь подвергали ультразвуковой обработке в течение 5 min. Пленки наносили послойно методом центрифугирования на кварцевые (марки КУ-1) подложки с сушкой каждого слоя на воздухе при 150°С в течение 5 min и последовательно отжигали при различных температурах T_{ann} и длительностях t_{ann} . Концентрации Eu₂O₃ и Ag в полученных пленках варьировались в пределах 10–30 и 5–20 mol.% соответственно. Для корректного анализа люминесценции оптических центров серебра по аналогичной методике были приготовлены также пленки системы GeO₂–Lu₂O₃–Ag, которые не имеют акцепторов возбуждений этих центров.

Спектры светоослабления (ССО) измерялись на спектрофотометре Сагу 500. Спектры люминесцении (СЛ) и спектры возбуждения люминесценции (СВЛ) регистрировались на спектрофлуориметре СДЛ-2, исправлялись с учетом спектральной чувствительности системы регистрации и распределения спектральной плотности возбуждающего излучения соответственно и представлялись в виде зависимости числа квантов на единичный интервал длин волн $dN/d\lambda$ от длины волны. Все СЛ и СВЛ записывались при температуре образцов T = 298 К.

Кинетика люминесценции исследовалась с помощью цифрового осциллографа "Tektronix" при возбуждении четвертой ($\lambda = 266$ nm) и пятой ($\lambda = 213$ nm) гармониками излучения моноимпульсного неодимового лазера, а также второй гармоникой излучения перестраиваемого лазера на сапфире с титаном ($\lambda = 395$ nm). Длительность возбуждающего импульса составляла ~ 10 ns. Постоянная цепи регистрации не превышала 0.01 от средней длительности исследуемого процесса. Средняя длительность затухания люминесценции определялась по формуле $\bar{\tau} = I_{\text{max}}^{-1} \int I(t) dt$, где I — интенсивность люминесценции.

Квантовый выход люминесценции η ионов Eu³⁺ определялся сравнительным методом [12]. В качестве эталона использовалось Sn-содержащее стекло, значение η для которого определялось абсолютным методом. Сравниваемые образцы помещались в жестком держателе, обеспечивающем неизменность их расположения по отношению к щели монохроматора, что позволило добиться относительной погрешности измерений ±10%. Показатели преломелния эталона и исследуемой пленки, необходимые для расчета значений η , определялись соответственно с помощью рефрактометра ИРФ-23 и эллипсометра ЛЭФ-3М ($\lambda = 632.8$ nm).

ЭПР-спектры регистрировались на спектрометре ERS-220 при рабочей частоте v = 9.45 GHz и амплитуде высокочастотной (100 kHz) модуляции 0.5 и 5.0 G. Определение *g*-фактора свободных радикалов в образцах проводилось с использованием аттестованного стандарта, содержащего ионы Mn²⁺ в решетке ZnS. Положение резонансных линий определялось по максимумам на второй производной спектра. Образцы готовились в виде многослойных пленок, нанесенных на тонкие $(\sim 0.2\,\text{mm})$ кварцевые подложки, которые затем дробились и помещались в резонатор.

Фазовый анализ проводился на многослойных пленках с помощью рентгеновского дифрактомера ДРОН-2.0 с использованием K_{α} -излучения Си. Толщина пленок контролировалась с помощью эллипсометрического метода.

3. Результаты эксперимента

На рис. 1 изображены ССО трехслойной пленки состава (mol.%) 70GeO₂-20Eu₂O₃-10Ag, отожженной при различных температурах. Как видно, исходная пленка $(T_{\rm ann} = 150^{\circ} {\rm C})$ характеризуется относительно широкой полосой поверхностного плазмонного поглощения в наночастицах серебра с максимумом при $\lambda_{max} \approx 418 \text{ nm}$ (кривая 1). Увеличение T_{ann} до 300°C ведет к значительному повышению интегрального светоослабления пленки и потере очертаний ее плазмонной полосы (кривая 2). При $T_{\rm ann} = 400^{\circ} {\rm C}$ имеет место существенное уменьшение интегральной интенсивности светоослабления при наличии слабовыраженной широкой плазмонной полосы (кривая 3). Повышение T_{ann} до 500°C (кривая 4) и особенно до 600°С (кривая 5) ведет к резкому сужению этой полосы и значительному увеличению ее интенсивности. При дальнейшем увеличении T_{ann} плазмонная полоса исчезает (ср. кривые 6 и 7, полученные для пленок с $T_{ann} = 700$ и 800° С соответственно). Здесь необходимо отметить, что для трехслойной пленки 90GeO₂-10Ag плазмонная полоса примерно в 3 раза

Рис. 1. Спектры светоослабления трехслойной пленки 70GeO₂-20Eu₂O₃-10Ag. $T_{ann} = 150$ (1), 300 (2), 400 (3), 500 (4), 600 (5), 700 (6) и 800°С (7). $t_{ann} = 30$ min.

Рис. 2. Спектры светоослабления восьмислойной пленки 70GeO₂-10Eu₂O₃-20Ag. *T*_{ann} = 300 (*I*), 500 (*2*), 700 (*3*), 800 (*4*) и 900°C (*5*). *t*_{ann} = 30 min.

Рис. 3. Спектры люминесценции (*a*) и ее возбуждения (*b*) восьмислойных пленок 70GeO₂-10Lu₂O₃-20Ag (*I*-3) и 90GeO₂-10Lu₂O₃ (*4*). $\lambda_{\text{exc}} = 240$ (*I*), 280 (*2*, 4) и 340 nm (*3*); $\lambda_{\text{rec}} = 350$ (*I*), 440 (*4*), 460 (*2*) и 630 nm (*3*). $T_{\text{ann}} = 700^{\circ}$ C. $t_{\text{ann}} = 30$ min.

более интенсивна, не "теряется" при $T_{\rm ann} \approx 300-400^{\circ}$ С, а исчезает при $T_{\rm ann} \approx 950^{\circ}$ С.

На рис. 2 изображены ССО восьмислойной пленки 70GeO₂-10Eu₂O₃-20Ag после отжига при различных T_{ann} . Как видно, спектр этой пленки при $T_{ann} = 300^{\circ}$ С характеризуется широкой и интенсивной плазмонной полосой с $\lambda_{max} \approx 455$ nm (кривая *1*). Увеличение T_{ann} до 500°С сопровождается небольшим (~10 nm) коротковолновым смещением ее максимума и заметным (~15%) уменьшением полуширины (кривая 2). При $T_{ann} = 700^{\circ}$ С (кривая 3) максимум этой полосы смещается к $\lambda \approx 435$ nm, а ее полуширина и интенсивность значительно уменьшаются по сравнению с кривой 1. Увеличение T_{ann} до 800°С ведет к дальнейшему значительному понижению интенсивности плазменной полосы (кривая 4) и ее исчезновению при $T_{ann} = 900^{\circ} C$ (кривая 5). Замена Eu на Lu принципиальными изменениями ССО не сопровождается. Обобщая результаты измерений ССО исследованных пленок, отметим, что чем больше концентрация серебра и число слоев пленки при заданной концентрации Еи и идентичных условиях отжига, тем значительнее смещение максимума плазмонной полосы в длинноволновую сторону, больше ее полуширина и значение T_{ann} , при котором она исчезает. При этом ее "низкотемпературное" уширение, характерное для малослойных и слаболегированных серебром пленок, не наблюдается. С увеличением атомарного соотношения Ag/Eu полуширина плазмонной полосы уменьшается, а T_{ann}, при которой она исчезает, возрастает. Увеличение длительности отжига ведет к понижению температуры исчезновения плазмонной полосы.

На рис. З изображены СЛ и СВЛ восьмислойных пленок 70GeO₂-10Lu₂O₃-20Ag и 90GeO₂-10Lu₂O₃ при $T_{ann} = 700^{\circ}$ С, $t_{ann} = 30$ min. Как видно из рис. 3, a, Lu-Ад-содержащая пленка при возбуждении излучением с длиной волны $\lambda_{exc} = 240 \, nm$ характеризуется широкой люминесцентной полосой с $\lambda_{max} \approx 350 \, nm$ и протяженным длинноволновым крылом (кривая 1). Увеличение λ_{exc} до 280 и 340 nm сопровождается заметным изменением формы полосы люминесценции и значительным смещением ее максимума в длинноволновую сторону (кривые 2 и 3 соответственно). СВЛ этих полос, записанные при длине волны регистрации λ_{rec}, соответствующей их максимумам, представлены на рис. 3, b одноименными кривыми. Видно, что при таком варьировании λ_{rec} имеет место существенное изменение положения и формы полосы возбуждения люминесцении, а при $\lambda_{rec} = 630$ nm с ее длинноволновой стороны появляется широкая полоса, простирающаяся до $\lambda \sim 500$ nm. Для пленки без серебра (кривые 4) наблюдается слабоструктурная полоса люминесценции с $\lambda_{\rm max} \approx 440\,{\rm nm}$ и плечом при $\lambda \sim 370\,{\rm nm},\,{\rm CB}$ Л пленки представлен двумя широкими полосами с $\lambda_{\rm max} \sim 270$ и 370 nm.

На рис. 4 изображены СЛ восьмислойных пленок 90GeO₂-10Eu₂O₃ и 70GeO₂-10Eu₂O₃-20Ag при различных $T_{\rm ann}$ и возбуждении излучением с длиной волны $\lambda_{\rm exc} = 280$ nm (полуширины полос возбуждения $\Delta\lambda_{\rm exc}$ и регистрации $\Delta\lambda_{\rm rec}$ соответственно равны 3 и 0.5 nm). На вставках крупным планом изображены СЛ в области полосы ${}^5D_0 \rightarrow {}^7F_0$ ($\lambda_{\rm max} \approx 578$ nm) ионов Eu³⁺ для обеих пленок при $\Delta\lambda_{\rm rec} = 0.1$ nm. Видно, что при $T_{\rm ann} = 300^{\circ}$ С (рис. 4, *a*) спектр Eu-Ag-содержащей пленки (кривая *1*) отличается от спектра Eu-содержащей пленки (кривая *2*) исчезает малой интенсивностью полосы ${}^5D_0 \rightarrow {}^7F_0$ и наложением на полосы Eu³⁺ при $\lambda \leq 700$ nm слабой диффузной полосы. Для пленок с $T_{\rm ann} = 700^{\circ}$ С (рис. 4, *b*) имеет место существенное различие контуров и относительной интенсивности полос

C

Рис. 4. Спектры люминесценции восьмислойных пленок 70GeO₂-10Eu₂O₃-20Ag (*I*) и 90GeO₂-10Eu₂O₃ (*2*). $\lambda_{\text{exc}} = 280$ nm, $\Delta\lambda_{\text{exc}} = 3$ nm, $\Delta\lambda_{\text{rec}} = 0.5$ nm (для обзорных спектров) и 0.1 nm (на вставках). $T_{\text{ann}} = 300$ (*a*), 700 (*b*) и 900°C (*c*). $t_{\text{ann}} = 30$ min.

1.0

0.5

1.0

0.5

0

1.0

0.5

0

1.0

0.5

 $dN/d\lambda$, arb.units

Рис. 5. Спектры возбуждения люминесценции восьмислойных пленок $90\text{GeO}_2 - 10\text{Eu}_2\text{O}_3$ (*a*) и $70\text{GeO}_2 - 10\text{Eu}_2\text{O}_3 - 20\text{Ag}$ (*b*). $\lambda_{\text{rec}} = 613 \text{ nm}, \ \Delta\lambda_{\text{exc}} = 2.5 \text{ nm}, \ \Delta\lambda_{\text{rec}} = 3 \text{ nm}. \ T_{\text{ann}} = 300$ (*1*), 700 (*2*) и 900° C (*3*). $t_{\text{ann}} = 30 \text{ min}.$

 ${}^{5}D_{0} \rightarrow {}^{7}F_{2} (\lambda_{\max} \approx 611 \text{ nm}) \text{ и } {}^{5}D_{0} \rightarrow {}^{7}F_{4} (\lambda_{\max} \approx 703 \text{ nm}),$ а также заметный ($\approx 0.3 \text{ nm}$) длинноволновой сдвиг полосы ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ при введении Ag. При $T_{\text{ann}} = 900^{\circ}\text{C}$ (рис. 4, *c*) спектральные различия между пленками в значительной мере нивелируются. При варьировании концентраций Eu₂O₃ и Ag, а также изменении λ_{exc} с 280 до 395 nm и числа слоев с 3 до 30 характер различий в рассматриваемых спектрах в зависимости от T_{ann} сохраняется.

На рис. 5 изображены СВЛ ионов Eu³⁺ в восьмислойных пленках 90GeO₂-10Eu₂O₃ (a) и 70GeO₂-10Eu₂O₃-20Ag (b) при различных T_{ann}. Интенсивность этих спектров приведена к одинаковой интегральной интенсивности магнитодипольной полосы ${}^7F_0 \rightarrow {}^5D_1 \;\; (\lambda \approx 530 \: {\rm nm}).$ Видно, что при $T_{\rm ann} = 300^\circ {
m C}$ спектра пленки без серебра представлен широкой интенсивной полосой при $\lambda \sim 280 \, {\rm nm}$ и серией узких f - f-полос с ее длинноволновой стороны, причем пиковая интенсивность полосы ${}^7F_0 \rightarrow {}^5L_6 \ (\lambda_{\rm max} \approx 395 \,{\rm nm})$ не уступает интенсивности широкой полосы (кривая 1, а). Увеличение T_{ann} до 700°С ведет к исчезновению отмеченной широкой полосы и появлению интенсивной полосы переноса заряда (ППЗ) $Eu^{3+}(4f^{6}) \leftarrow O^{2-}(2p)$ с $\lambda_{\text{max}} < 250 \,\text{nm}$ (кривая 2, *a*). Одновременно имеет место приблизительно 15-кратное снижение относительной интенсивности полосы ${}^7F_0 \rightarrow {}^5L_6$, многократно ослабляются и более коротковолновые f - f-полосы. При $T_{\rm ann} = 900^{\circ} {\rm C}$ наблюдается увеличение интенсивности ППЗ, а интенсивность и форма f - f-полос при $\lambda \ge 350\,\mathrm{nm}$ практически не изменяются (кривая 3, *a*). Спектр Eu–Ag-содержащей пленки при $T_{ann} = 300^{\circ}$ C характеризуется появлением на фоне *f*-*f*-полос широкой полосы короче 450 nm, интенсивность которой в представленном диапазоне монотонно возрастает с уменьшением λ (кривая *1*, *b*). При $T_{ann} = 700^{\circ}$ С интенсивность возбуждения при $\lambda < 450 \, \mathrm{nm}$ многократно увеличивается, приводя к появлению плеча при $\lambda \sim 350\,\mathrm{nm}$ и исчезновению на его фоне полосы ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ (кривая 2, b). Повышение T_{ann} до 900°С сопровождается резким падением интенсивности этой дополнительной широкой полосы (кривая 3, b) и приближением относительных интенсивностей *f*-*f*-полос к реализуемым для аналогично отожженной пленки без Ад. Подобный характер зависимости СВЛ от T_{ann} для Eu-Ag-содержащей пленки сохраняется и при варьировании концентрации легирующих элементов. Изложенные результаты следует дополнить сообщением, что квантовый выход сенсибилизированной люминесценции пленки 70GeO₂-20Eu₂O₃-10Ag с $T_{ann} = 700^{\circ}$ С при стационарном возбуждении с $\lambda_{\rm exc} = 280$ nm оказался близок к 80%.

На рис. 6 представлена зависимость интегральной интенсивности люминесценции Eu³⁺ I_{lum} ионов $T_{\rm ann}$, приведенная к одинаковой толщине OT восьмислойных пленок 90GeO₂-10Eu₂O₃ (кривая 1) и 70GeO₂-10Eu₂O₃-20Ag (кривая 2), при различных λ_{exc} . Видно, что при $\lambda_{\text{exc}} = 280 \text{ nm}$ (рис. 6, *a*) и $\lambda_{\text{exc}} = 395 \text{ nm}$ (рис. 6, *b*) и повышении T_{ann} в диапазоне 150–600°С,

Рис. 6. Зависимости интегральной интенсивности люминесценции ионов Eu^{3+} от T_{ann} при различных значениях λ_{exc} для восьмислойных пленок 90GeO₂-10Eu₂O₃ (1) и 70GeO₂-10Eu₂O₃-20Ag (2). $\lambda_{exc} = 280$ (a), 395 (b), 465 (c) и 530 nm (d). $t_{ann} = 30$ min.

а также $T_{\rm ann} = 850^{\circ}{\rm C}$ интенсивность люминесцении пленок без Ад существенно выше. Однако при $600 < T_{\rm ann} \le 800^{\circ} {
m C}$ ситуация меняется на обратную, причем наибольшее (приблизительно 30-кратное) превышение I_{lum} в присутствии Ag реализуется при $\lambda_{\text{exc}} = 280 \,\text{nm}$ и $T_{\text{ann}} = 700^{\circ}\text{C}$. Для $\lambda_{\text{exc}} = 465 \,\text{nm}$ (рис. 6, *c*) и 530 nm (рис. 6, *d*) люминесценция пленки без Ад заметно интенсивнее при всех T_{ann} . Примечательно, что в этих случаях I_{lum} для обеих пленок достигает максимальных значений при отжиге в диапазоне 600-700°C. Характер приведенных зависимостей сохраняется при изменении количества слоев, а также варьировании концентраций Eu₂O₃ и Ag.

Ha рис. 7 представлена кинетика залюминесценции Eu³⁺ тухания ионов ИЗ ${}^{5}D_{0}$ состояния в восьмислойных пленках $80GeO_2 - 20Eu_2O_3$ (a), $70\text{GeO}_2 - 20\text{Eu}_2\text{O}_3 - 10\text{Ag}$ (b) и 70GeO₂-10Eu₂O₃-20Ag (*c*) при различных *T*_{ann}, $\lambda_{\text{exc}} = 213 \,\text{nm}$. На вставках приведены значения средней длительности затухания люминесценции для каждой кинетической кривой. Видно, что для всех случаев процесс затухания люминесценции является неэкспоненциальным. При этом для пленки без Ag значение $\bar{\tau}$ с увеличением T_{ann} от 600 до 750°C возрастает в 2.3 раза и практически не изменяется при дальнейшем увеличении T_{ann} до 850°С (кривые 1–3 на рис. 7, *a*). Соактивация этой пленки серебром сопровождается двукратным уменьшением $\bar{\tau}$ при $T_{ann} = 600^{\circ}$ С, примерно одинаковым значением $\bar{\tau}$ с пленкой без Ag при $T_{ann} = 750^{\circ}$ С и существенным уменьшением при $T_{ann} = 850^{\circ}$ С (см. кривые 1-3 на рис. 7, b). С увеличением концентрации Ag описанное поведение кинетических кривых сохраняется, а величина $\bar{\tau}$ при $T_{ann} = 750^{\circ}$ С и особенно при 850° С снижается более значительно (рис. 7, c). При переходе от $\lambda_{exc} = 213$ nm к $\lambda_{exc} = 266$ и 395 nm для Еu-содержащей пленки дисперсия $\bar{\tau}$ находится на уровне 20%, в то время как для Eu-Ag-содержащей пленки имеет место уменьшение $\bar{\tau}$ соответственно в 1.5 и 10 раз главным образом за счет ускорения затухания люминесценции на неэкспоненциальной стадии.¹

На рис. 8 изображены ЭПР-спектры восьмислойных пленок состава 70GeO₂-10Eu₂O₃-20Ag (*a*) и 80GeO₂-20Ag (*b*) при различных T_{ann} и амплитуде модуляции 0.5 (*a*) и 5.0 G (*b*), T = 77 К. Здесь кривые I-3 получены при $T_{ann} = 350$, 500 и 700°C соответственно. Видно, что для Eu-Ag-содержащей пленки при всех значениях T_{ann} в спектрах присутствует синглетный сигнал с *g*-фактором, близким к *g*-фактору свободного электрона (2.0008-2.0046). Амплитуда этого сигнала и

¹ Зависимость кинетики затухания люминесценции Eu^{3+} в подобных пленках от λ_{exc} и мощности возбуждения будет подробно рассмотрена в отдельной работе.

Рис. 7. Кинетика затухания люминесценции восьмислойных пленок $80\text{GeO}_2-20\text{Eu}_2\text{O}_3$ (*a*), $70\text{GeO}_2-20\text{Eu}_2\text{O}_3-10\text{Ag}$ (*b*) и $70\text{GeO}_2-10\text{Eu}_2\text{O}_3-20\text{Ag}$ (*c*). $T_{\text{ann}} = 600$ (*1*), 750 (*2*) и 850°C (*3*). $t_{\text{ann}} = 30$ min. $\lambda_{\text{exc}} = 213$ nm, $\lambda_{\text{rec}} = 613$ nm.

значение его g-фактора с увеличением T_{ann} уменьшаются. В спектрах Ag-содержащей пленки имеется сигнал с g-фактором 2.002–2.004, который также претерпевает изменения при увеличении T_{ann} в исследованном диапазоне. При $T_{ann} = 350^{\circ}$ С наблюдается асимметричный триплет, имеющий ряд дополнительных линий, с изотропной константой сверхтонкой структуры ≈ 60 G. При $T_{ann} = 500^{\circ}$ С в спектре присутствует сложный сигнал с $g \approx 2.038$ и синглетный сигнал с $g \approx 2.002-2.004$, а увеличение T_{ann} до 700°С ведет к некоторому упрощению спектра и появлению на нем, кроме синглетного сигнала, анизотропного дублета с параметрами $g_{\parallel} = 2.249$, $A_{\parallel} = 36$ G и $g_{\perp} = 2.064$, $A_{\perp} = 28$ G.

На рис. 9 изображены дифрактограммы 30-слойной пленки $70\text{GeO}_2-10\text{Eu}_2\text{O}_3-20\text{Ag}$ при различных T_{ann} . Как видно, при $T_{\text{ann}} = 300^{\circ}\text{C}$ (кривая I) на дифрактограмме имеется лишь один слабый и уширенный ре-

флекс при $2\theta \approx 38.1^{\circ}$. Для пленок с $T_{ann} = 500$ и 700° С (кривые 2 и 3 соответственно) наблюдаются рефлексы, принадлежащие кристаллическому серебру ($2\theta \approx 38.1$, 44.8, 81.8, 99.1°), однако их положение несколько отлично от данных каталога JCPDS-1998. При $T_{ann} = 700^{\circ}$ С помимо указанных "серебряных" рефлексов появляются

Рис. 8. ЭПР-спектры восьмислойных пленок 70GeO₂-10Eu₂O₃-20Ag (*a*) и 80GeO₂-20Ag (*b*). Амплитуда модуляции 0.5 (*a*) и 5.0 G (*b*). $T_{ann} = 350$ (*I*), 500 (*2*) и 700°C (*3*). $t_{ann} = 30$ min. T = 77 К. A — амплитуда сигнала.

Рис. 9. Рентгеновские дифрактограммы тридцатислойной пленки 70GeO₂-10Eu₂O₃-20Ag. $T_{ann} = 300$ (1), 500 (2), 700 (3) и 900°С (4). $t_{ann} = 30$ min.

малоинтенсивные рефлексы в области углов $2\theta \approx 12.0$, 21.6, 22.5, 25.7, 29.2°. При $T_{ann} = 900^{\circ}$ С (кривая 4) наблюдается снижение интенсивности "серебряных" рефлексов при $2\theta \approx 38.2$, 44.8 и 81.8° и исчезновение при $2\theta \approx 99.1^{\circ}$. Одновременно рефлексы в области $2\theta \approx 10-30^{\circ}$ становятся более узкими и интенсивными и появляются новые слабые и уширенные рефлексы при $2\theta \approx 31.3$ и 36.1°. При повышении T_{ann} до 1000°С "серебряные" рефлексы не проявляются, а интенсивность рефлексов в области $2\theta \approx 10-36^{\circ}$ увеличивается.

4. Обсуждение результатов

Асимметричная плазмонная полоса в ССО трехслойной пленки 70GeO₂-20Eu₂O₃-10Ag при T_{ann} = 150°C (кривая 1 на рис. 1) свидетельствует о формировании полидисперсных наночастиц (Ag⁰)_m в результате терморазложения аммиачных комплексов серебра, присутствующих в исходном золе. Этой же причиной можно объяснить и общее увеличение интенсивности светоослабления при $T_{ann} = 300^{\circ}$ С (кривая 2). Радикальное уширение плазмонной полосы при $T_{\rm ann} = 400^{\circ}{\rm C}$ (кривая 3), сужение ее при дальнейшем увеличении T_{ann} (кривые 4-6) и исчезновение при $T_{\rm ann} = 800^{\circ} {\rm C}$ (кривая 7), что значительно ниже температуры плавления монолитного серебра ($T = 960.8^{\circ}$ С), можно связать с влиянием ионов европия на взаимодействие серебра с оксидом германия. Как известно [13], в пленке системы GeO₂–Ag на воздухе при $T_{ann} = 500-600^{\circ}$ С наблюдается образование фазы германата серебра (Ag₂Ge₄O₉), термолиз которой при $T \ge 700^{\circ}$ С ведет к вторичному формированию наночастиц (Ag⁰)_m. По-видимому, присутствие в такой пленке европия сопровождается конкурирующим формированием его германата, что должно влиять на состав и кинетику образования германия серебра и соответственно на температуру его термолиза, размеры и форму наночастиц (Ag⁰)_m. В свою очередь эти процессы будут отражаться на стойкости последних к окислению при дальнейшем отжиге. Кроме того, присутствие Eu₂O₃ может вести к изменению морфологии пленки (например, пористости и зернистости), что также будет оказывать влияние на процесс окисления серебра. Здесь следует обратить внимание и на малые полуширину и асимметрию плазмонной полосы на кривой 5, свидетельствующие о возможности формирования в подобных пленках монодисперсных наночастиц $(Ag^{0})_{m}$.

Отличие формы и положения плазмонной полосы в ССО восьмислойной пленки 70GeO₂-10Eu₂O₃-20Ag (рис. 2) от одноименных характеристик рассмотренной трехслойной пленки при одинаковых условиях отжига, вероятнее всего, связано с ослаблением конкурирующего влияния европия на образование германата серебра с увеличением атомарного соотношения Ag/Eu. Наблюдающийся при этом существенный длинноволновой сдвиг максимума плазмонной полосы по сравнению с соответствующими полосами на рис. 1 свидетельствует, со-

гласно теории Ми, об образовании бо́льших по размеру наночастиц $(Ag^0)_m$, которые требуют более высокую T_{ann} для их окисления. Очевидно, свой вклад в увеличение размеров этих наночастиц вносит и повышение толщины пленки.

Сложный характер СЛ И СВЛ пленки 70GeO₂-10Lu₂O₃-20Ag (рис. 3) свидетельствует о многотипности оптических центров серебра. Наиболее однозначно здесь можно интерпретировать лишь коротковолновые составляющие в этих спектрах с $\lambda_{max}\approx 350$ и 220 nm соответственно (кривые 1). Согласно [1,2], их следует приписать запрещенным по симметрии, но разрешенным по спину $4d^95s^{1}(^1D_2) \leftrightarrow 4d^{10}(^1S_0)$ ионов Ag⁺. Полоса переходам изолированных люминесценции с $\lambda_{max} \approx 450$ nm и длинноволновая часть соответствующей ей полосы возбуждения (кривые 2) могут обусловливаться парными (Ад⁺)₂ центрами и/или спин-запрещенными переходами ${}^{3}D_{1-3} \leftrightarrow {}^{1}S_{0}$ изолированных Ag⁺, интенсивность которых увеличивается при сильном перемешивании синглетного и триплетного состояний [2]. Длинноволновая полоса люминесценции $(\lambda_{\text{max}} \sim 630 \,\text{nm})$, СВЛ которой простирается в видимую область спектра (кривые 3), по-видимому, имеет более сложную природу. Вклад в нее могут вносить как изолированные кластеры Ag_3^{2+} [5], так и олигомерные Agⁿ⁺, формирующиеся на поверхности наночастиц $(Ag^{0})_{m}$ [6]. Небольшое коротковолновое плечо при $\lambda \approx 440\,\mathrm{nm}$ на этой полосе, учитывая литературные данные [14,15], можно связать с поверхностными кислородно-дефицитными центрами (=Ge-O-)₂Ge:. Полосы возбуждения и люминесценции таких центров обусловлены синглет-триплетной системой уровней и уверенно регистрируются для пленки 90GeO2-10Lu2O3 (кривые 4). Очевидно, при окислении $(Ag^0)_m$ образующийся дефицит кислорода будет способствовать увеличению концентрации центров (=Ge-O-)2Ge: и они могут играть заметную роль в качестве "кластерной" сенсибилизаторов люминесценции серебра. Судя по протяженности длинноволновой части кривой 3 в СВЛ (рис. 3, *b*) — она перекрывает максимум плазмонной полосы, расположенной при $\lambda \approx 430 \, \text{nm}$ соответствующую небольшой вклад в полосу люминесценции возможен и от наночастиц $(Ag^0)_m$.

Исчезающе малая интенсивность полосы ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ в СЛ Еu–Ag-содержащей пленки при $T_{ann} = 300^{\circ}$ С (рис. 4, *a*, кривая 1) свидетельствует о более высокой по сравнению с Еu-содержащей пленкой (кривая 2) инверсной симметрии оптических центров Eu³⁺, что логично объяснить разрыхляющим влиянием Ag⁺ на матрицу. Увеличение интенсивности указанной полосы для пленки с Ag при $T_{ann} = 700^{\circ}$ С можно связать с повышением ацентричности оптических центров из-за упрочнения матрицы, а ее заметный длинноволновой сдвиг (ср. кривые 1 и 2 на вставке рис. 4, *b*) свидетельствует об увеличении степени ковалентности связи Еu–O, которое возможно из-за образования цепи Eu–O–Ag.

Действительно, оценка силы единичной химической связи Ge⁴⁺-O²⁻ и Ag⁺-O²⁻ по методу [16] показывает, что она составляет ~ 1.55 и 1.29 относительных единиц соответственно. Это, согласно известному правилу "поляризации и контрполяризации", должно приводить к более слабому смещению кислорода от европия в цепи Eu-O-Ag по сравнению с Eu-O-Ge и появлению наблюдаемого сдвига. В пользу формирования таких сложных Eu-Ад-центров свидетельствует и исчезновение широкой диффузной полосы при $\lambda < 700 \, \mathrm{nm}$ (ср. кривые 1 на рис. 4, a и b), обусловленной рассмотренными выше центрами серебра, которое возможно из-за повышения эффективности передачи возбуждений от них на ионы Eu³⁺ при образовании связей Eu–O–Ag. Примечательно, что структура Eu-Ag-центров при повышении T_{ann} с 700 до 900°С, судя по подобию кривых 1 на рис. 4, b и c, практически не изменяется. Структура же Еи-центров при аналогичном увеличении T_{ann}, как следует из сравнения кривых 2 с кривыми 1 на этих рисунках, претерпевает изменения, приближающие ее к структуре Eu-Ag-центров.

Наличие в СВЛ Еu-содержащей пленки с $T_{ann} = 300^{\circ}$ С широкой интенсивной полосы при $\lambda \sim 280$ nm (рис. 5, *a*, кривая 1) можно связать с передачей электронных возбуждений редкоземельному иону от органического лиганда в тартратном комплексе. Исчезновение этой полосы с одновременным многократным ослаблением коротковолновых *f*-*f*-полос и появлением интенсивной ППЗ при увеличении T_{ann} до 700°C (кривая 2, a) свидетельствует о разрушении тартратного комплекса европия в результате выгорания его органической составляющей и встраивании Eu³⁺ в матрицу GeO₂ с образованием связей Eu-O-Ge. Сравнение СВЛ Eu-Ag-(рис. 5, b) и Lu–Ag-содержащих пленок (рис. 3, b) позволяет объяснить увеличение интенсивности и ширины УФ-полосы возбуждения люминесценции Eu³⁺ при $T_{\rm ann} = 300^{\circ} {\rm C}$ дополнительной реализацией передачи возбуждений от большинства люминесцентных центров серебра, рассмотренных при обсуждении рис. 3. Значительное увеличение интенсивности длинноволновой части этой полосы с повышением T_{ann} от 300 до 700°С (ср. кривые 1 и 2 на рис. 5, b) можно объяснить совместным влиянием ряда факторов. Здесь и возрастание эффективности сенсибилизации люминесценции Eu³⁺ из-за формирования связей Eu–O–Ag, и увеличение концентрации Ag_mⁿ⁺ с одновременным ослаблением экранирования полосы возбуждения плазмонной полосой при окислении наночастиц $(Ag^0)_m$, и, как показано далее при обсуждении кинетики затухания люминесценции, ослабление тушения состояния ${}^{5}D_{0}$ этими наночастицами. Важно отметить, что при $T_{\rm ann} \approx 700^{\circ} {\rm C}$ интенсивность в СВЛ Eu-Ag-содержащей пленки на отдельных участках (например, в области 310-370 nm) может на три порядка превосходить интенсивность в СВЛ пленки без серебра. Исчезновение длинноволновой составляющей широкой УФ-полосы возбуждения люминесценции Eu-Ag-содержащей пленки при $T_{ann} = 900^{\circ}$ С (кривая 3 на рис. 5, *b*), т. е. в отсутствие плазмонной полосы, позволяет полагать, что ответственные за эту составляющую кластеры серебра формируются на поверхности наночастиц $(Ag^0)_m$ и распадаются с исчезновением последних.

Реализация максимального значения I_{lum} Eu-содержащей пленки при $T_{ann} = 300^{\circ}$ С и $\lambda_{exc} = 280$ nm (рис. 6, *a*, кривая 1) возможна по двум причинам: благодаря ослаблению тушения люминесценции редкоземельных ионов из-за дегидратации пленки и увеличению эффективности сенсибилизации их люминесценции в тартратном комплексе. Как известно [17], в гель-пленках SiO₂ с $T_{\rm ann} = 300^{\circ} {\rm C}$ концентрация ионов гидроксила достигает 60 mass.%, и нет оснований полагать, что в гельпленках GeO₂ она значительно ниже, т.е. тушение люминесценции при $T_{\rm ann} \leq 300^{\circ} {
m C}$ будет существенным. Однако небольшое различие между значениями I_{lum} при $T_{\rm ann} = 150$ и $300^{\circ}{\rm C}$ для случая возбуждения в слабочувствительной к локальному окружению магнитодипольной полосе ${}^{7}F_{0} \rightarrow {}^{5}D_{1}$ (рис. 6, *d*, кривая *1*) позволяет пренебречь дегидратацией и отдать предпочтение второй причине. Поскольку при $T \approx 290^{\circ}$ С происходит удаление аммиака [18], подобное увеличение эффективности сенсибилизированной люминесценции ионов Eu³⁺ свидетельствует, что его присутствие в исходной пленке ($T_{ann} = 150^{\circ}$ C) ведет к формированию смешанных аммиачно-тартратных комплексов европия, характеризующихся меньшей эффективностью такой люминесценции. Значительное снижение I_{lum} при $T_{\text{ann}} = 400^{\circ}\text{C}$ на рис. 6, а, очевидно, связано с дезактивацией возбужденных состояний Eu³⁺ в результате переноса энергии на продукты выгорания углерода в тартратных комплексах, о появлении которых свидетельствует наличие в ССО Еu-содержащей пленки широкой полосы с $\lambda_{\rm max} \approx 440$ nm, исчезающей при $T_{\rm ann} \approx 600^{\circ}$ C. Относительно низкие значения I_{lum} при T_{ann} > 400°C можно объяснить невысоким поглощением при $\lambda = 280\,\mathrm{nm}$ в ППЗ оксокомплексов Еu. Сохранение характера зависимости $I_{\text{lum}}(T_{\text{ann}})$ при $\lambda_{\text{exc}} = 395 \text{ nm}$ (рис. 6, *b*, кривая 1) логично связать с высокой интенсивностью сверхчувствительной полосы ${}^7F_0 \rightarrow {}^5L_6$ ионов Eu³⁺ в тартратном комплексе. Радикальное же изменение хода I_{lum} в диапазоне $T_{\rm ann} = 600 - 700^{\circ} {\rm C}$ при переходе к возбуждению с $\lambda_{\text{exc}} = 465 \,\text{nm}$ (рис. 6, *c*, кривая *I*) можно объяснить тем, что параметр Джадда Ω₆, определяющий интенсивность полосы ${}^7F_0 \rightarrow {}^5L_6$, отражает главным образом изменение радиальной части волновой функции, а определяющий интенсивность полосы ${}^7F_0 \rightarrow {}^5D_2 \ (\lambda \approx 465 \,\mathrm{nm})$ параметр Ω_2 — изменение асимметрии и величину энергетической щели между конфигурациями 4fⁿ и $4f^{n-1}5d^1$ [19]. Что касается значительного повышения I_{lum} при увеличении T_{ann} в диапазоне 500-700°С на рис. 6, d, то для него наиболее вероятной причиной является дегидратация пленки. Уменьшение же I_{lum} при T_{ann} > 700°C в этом случае, очевидно, связано с сокращением расстояний Eu-Eu в результате уплотнения пленки и интенсификации процессов самотушения [20] и/или ее частичного испарения [21].

Вполне естественно, что аналогичное поведение $I_{\rm lum}$ на начальном этапе отжига при $\lambda_{exc} = 280$ и 395 nm характерно и для Eu-Ag-содержащей пленки (кривые 2 на рис. 6, а и b), в которой также присутствуют тартратные комплексы Еи. При этом значительно более низкие величины I_{lum} свидетельствуют об эффективном тушении люминесценции Eu^{3+} наночастицами $(Ag^{0})_{m}$. Многократное повышение I_{lum} этой пленки при данных $\lambda_{\rm exc}$ и $T_{\rm ann} = 700^{\circ} {\rm C}$ обусловлено причинами, перечисленными при обсуждении СВЛ, изображенного кривой 2 на рис. 5, b. Основной причиной резкого снижения I_{lum} при $T_{\rm ann} > 700^{\circ}{\rm C}$ с учетом активизации процесса окисления наночастиц серебра при этих температурах (ср. кривые 1-5 на рис. 2), по-видимому, является тушение люминесценции Eu³⁺ в результате переноса возбуждений на триплетное состояние формирующихся многомеров окисленного серебра с его последующей безызлучательной релаксацией. В пользу такого объяснения свидетельствуют и значительно более низкие величины I_{lum} для Eu–Ag-содержащей пленки при $T_{ann} = 850^{\circ}$ С, когда имеет место практически полное окисление $(Ag^{0})_{m}$. Близкий к симбатному ход кривых 1 и 2 при $\lambda_{exc} = 465$ и 530 nm и $T_{\rm ann} \ge 500^{\circ}{\rm C}$ (рис. 6, *с* и *d*) указывает на то, что наблюдаемая зависимость $I_{lum}(T_{ann})$ для пленки с серебром в данных случаях обусловлена теми же причинами, что и для пленки без него. При этом более слабую люминесценцию Eu³⁺ в присутствии серебра можно связать с ее тушением вначале наночастицами $(Ag^0)_m$, а затем многомерами окисленного серебра.

Здесь следует обратить внимание на отсутствие превышения интенсивности люминесценции Eu-Ag-содержащей пленки над Eu-содержащей при возбуждении в полосе ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ (рис. 6, *c*), приходящейся на область максимальной интенсивности плазмонной полосы, но лежащей за пределами полосы возбуждения сенсибилизатора (кривая 2 на рис. 5, b). Это позволяет заключить, что увеличение вроятности соответствующего перехода для ионов Eu³⁺, расположенных вблизи наночастиц $(Ag^{0})_{m}$, не имеет места или обусловленный им прирост доли поглощенных квантов существенно уступает их потере в результате тушения и гашения люминесценции. Естественно, данное заключение справедливо при отсутствии значительного уменьшения интенсивности перехода ${}^7F_0 \rightarrow {}^5D_2$ при формировании сложных Ln–Agцентров.

Существенная неэкспоненциальность кинетики затухания люминесценции Eu^{3+} и малая величина $\bar{\tau}$ для пленки $80GeO_2 - 20Eu_2O_3$ при $T_{ann} = 600^{\circ}C$ (кривая 1на рис. 7, a), вероятнее всего, вызваны дезактивацией состояния 5D_0 путем размена возбуждений на колебания ионов гидроксила. В пользу такого объяснения свидетельствует и значительное уменьшение неэкспоненциальности кинетической кривой при $T_{ann} = 750^{\circ}C$ (кривая 2, a), когда происходит более эффективное замещение ионов гидроксила мостиковым кислордом по реакции \equiv Ge-OH + HO-Ge $\equiv \rightarrow \equiv$ Ge-O-Ge \equiv + H₂O \uparrow . Судя по незначительному изменению формы кинетической кривой и величины $\bar{\tau}$ при повышении T_{ann} до 850°С (кривая 3, *a*), дальнейший отжиг мало влияет на дегидратацию пленки и остаточная неэкспоненциальность процесса высвечивания, скорее всего, обусловлена дисперсией постоянных затухания в пределах активаторного ансамбля.

Значительное увеличение неэкспоненциальности распада состояния ${}^{5}D_{0}$ ионов Eu^{3+} и уменьшение постоянной его дальней стадии при наличии серебра и $T_{\rm ann} = 600^{\circ} {\rm C}$ (ср. кривые 1 на рис. 7) можно связать с переносом возбуждений на наночастицы $(Ag^0)_m$, концентрация которых, судя по кривым 2 и 3 на рис. 2, велика. Здесь обращает на себя внимание совпадение в пределах ошибки эксперимента значений $\bar{\tau}$ для пленок 80GeO₂-20Eu₂O₃ и 70GeO₂-20Eu₂O₃-10Ag при $T_{\rm ann} = 750^{\circ}$ С (кривые 2 на рис. 7, *a* и *b*). Согласно [11], в отсутствие плазмонного резонанса энергия возбуждения активатора диссипирует в металлической наночастице тем эффективнее, чем меньше ее радиус и расстояние активатор-наночастица. Поэтому слабое тушение люминесценции Eu³⁺ в данном случае можно объяснить главным образом "разбуханием" оболочки из оксидоподобных структур, формирующихся на поверхности наночастиц серебра в результате их окисления, и соответствующим увеличением расстояния $(Ag^{0})_{m}$ -Eu³⁺. Указанное совпадение значений $\bar{\tau}$ при наличии перекрытия плазмонной и ${}^5D_0 \rightarrow {}^7F_i$ -полос являетя дополнительным свидетельством отсутствия в Eu-Ад-содержащих пленках увеличения вероятности оптических переходов редкоземельного активатора. Прогрессирующее с увеличением концентрации Ад ускорение процесса затухания при $T_{ann} = 850^{\circ}$ С (ср. кривые 3), т.е. практически в отсутствие наночастиц $(Ag^0)_m$, указывает на появление нового канала тушения люминесценции. Данный факт подкрепляет сделанное при обсуждении рис. 6 предположение о тушении люминесценции Eu³⁺ через триплетное состояние многомеров окисленного серебра и позволяет заключить, что оно расположено ниже состояния ${}^{5}D_{0}$. Следует отметить, что скорость неэкспоненциального затухания люминесценции характеризуется функцией $Y = \ln I_{\max}/I(t) - t/\tau_f$, где τ_f — постоянная экспоненты конечного участка высвечивания. В рассмотренных случаях функция У удовлетворительно аппроксимируется линейной зависимостью от $t^{1/2}$. Это позволяет сделать вывод о диполь-дипольном механизме взаимодействия Eu³⁺ с соответствующими тушителями люминесценции. Что касается отмеченного при описании рис. 7 значительного ускорения начальной стадии процесса затухания сенсибилизированной люминесценции при переходе от возбуждения через ППЗ и Ад+ $(\lambda_{\text{exc}} = 213 \text{ nm})$ к возбуждению при $\lambda_{\text{exc}} = 266$ и 395 nm, то этот факт требует дополнительного исследования.

Синглетный сигнал в ЭПР-спектре пленки $70\text{GeO}_2 - 10\text{Eu}_2\text{O}_3 - 20\text{Ag}$ (рис. 8, *a*), наблюдающийся при $T_{\text{ann}} \leq 700^{\circ}\text{C}$, в основном обусловливается радикалами, образующимися из органических компонент

пленки в процессе ее отжига. Парамагнитные центры с $g \approx 2.002 - 2.004$ для полученной без добавления органических веществ пленки 80GeO₂-20Ag (рис. 8, b), которые не исчезают при $T_{ann} = 700^{\circ}$ С и $t_{ann} = 30$ min, могут быть отнесены к сигналам от ультрадисперсных частиц металлического серебра. Как известно [22], эффекты квантования орбитального движения электронов в ультрадисперсных (< 50 Å) металлических частицах позволяют наблюдать их методом ЭПР. Подтверждает такое отнесение и совпадение полуширины сигнала ЭПР и значения g-фактора для данной пленки с наблюдаемыми для ультрадисперсных частиц серебра в цеолитах [23]. Наблюдающийся для этой пленки при $T_{\rm ann} = 350^{\circ} {\rm C}$ асимметричный триплет (кривая l, b), исчезающий при $T_{ann} = 500^{\circ}$ С (кривая 2, b), можно отнести к радикалу •NO2, возникающему в результате реакции $NO_2^- + Ag^+ \rightarrow \bullet NO_2 + Ag^0$ или других окислительно-восстановительных процессов с участием NO₂. Не вызывает затруднений и интерпретация анизотропного дублета, наблюдающегося при $T_{\rm ann} = 700^{\circ}{\rm C}$ (кривая 3, b), параметры которого хорошо соответствуют параметрам центров Ag²⁺ [24]. Известно [25], что эти центры поглощают в широкой полосе при $\lambda \sim 280\,\mathrm{nm}$ и, по-видимому, также могут участвовать в сенсибилизации, однако их концентрация невелика ее оценка путем двойного интегрирования спектра и сопоставления его со стандартом (четвертая линия спектра Mn²⁺) дает величину $\sim (7 \pm 3) \cdot 10^{14}$ ions/g.

Отсутствие сигналов от обладающих парамагнетизмом изолированных атомов Ag⁰ — эти сигналы наблюдаются в виде дублетов с константой сверхтонкой структуры ~ 500-700 G [26] — позволяет утверждать, что в исследованных пленках атомарное серебро не стабилизируется. Это же можно сказать и в отношении кластеров Ag₃²⁺, дающих сигналы в области 3000-3500 G [27]. Однако для более крупных кластеров ситуация не так однозначна. Например, при $m \sim 10$ и симметричном строении кластера величина константы спин-спинового взаимодействия и полуширина линий будут близкими, что может привести к взаимогашению линий поглощения и затруднению наблюдения его ЭПРспектра. Еще сложнее ситуация с несимметричными кластерами, в которых неспаренный электрон взаимодействует с ядрами Ag с разными константами сверхтонкой структуры. Так, для кластера с семью ядрами серебра в ЭПР-спектре может наблюдаться до 128 слабоинтенсивных линий и такой спектр будет потерян в шумах. Естественно, что регистрация взаимодействующих с наночастицами (Ag⁰)_m олигомерных кластеров на их поверхности будет еще более проблематичной. Поэтому можно утверждать, что результаты ЭПР-исследования не противоречат предложенной интерпретации об ответственности за длинноволновую составляющую полосы возбуждения сенсибилизированной люминесценции Eu^{3+} олигомерных кластеров Ag_m^{n+} , формирующихся на наночастицах серебра в процессе их окисления.

Наличие на дифрактограммах 30-слойной пленки 70GeO₂-10Eu₂O₃-20Ag (рис. 9) рефлексов, соответствующих металлическому серебру, при T_{ann} вплоть до 900°C обусловлено повышением температуры полного окисления наночастиц $(Ag^0)_m$ с увеличением толщины пленки. Заметим, что такая многослойная пленка была выбрана с целью поиска слабых рефлексов от возможных новых фаз и с учетом отсутствия зависимости СЛ от числа слоев. Отличие полученного нами положения "серебряных" рефлексов от литературных данных указывает на изменение в процессе отжига структурных и электронных свойств серебра в пленке по сравнению с массивным серебром. В качестве основных процессов, обусловливающих эти изменения, помимо указанных при обсуждении рис. 1 и 2, можно отметить диффузию атомов серебра в глубь пленки и, возможно, в подложку, адсорбцию кислорода и возникновение дефектных состояний серебра. Особо отметим тот факт, что при $T_{\rm ann} = 700^{\circ}$ С, когда имеют место значительное увеличение интенсивности люминесценции ионов Eu³⁺ при УФ-возбуждении и резкое снижение оптической плотности плазмонной полосы, на дифрактограммах появляются неидентифицированные рефлексы в области $2\theta \approx 10-36^{\circ}$ (кривая 3 на рис. 9). Можно предположить, что эти рефлексы относятся к сложной оксидной системе, включающей GeO2, Eu2O3 и окисленные с поверхности наночастицы (Ag⁰)_m с небольшим числом атомов. Большие же наночастицы $(Ag^0)_m$, судя по относительной интенсивности "серебряных" рефлексов, существуют как отдельная кристаллическая фаза.

Отметим, что выполненное нами недавно [28] исследование зависимости I_{lum} ионов Eu³⁺ от T_{ann} для пленок системы GeO2-Eu2O3-Ag-Au при возбуждении через сенсибилизатор ($\lambda_{exc} = 280 \, \text{nm}$) позволило выявить увеличение T_{ann}, соответствующее пиковой интенсивности сенсибилизированной люминесценции, с 700°С (для пленки системы GeO₂-Eu₂O₃-Ag) до 900°С и более. Обнаруженный эффект является весомым аргументом в пользу доминирующего вклада в сенсибилизацию люминесценции Eu³⁺ олигомерных кластеров Ag_mⁿ⁺ на малых наночастицах (Ag⁰)_m. Действительно, замена последних на наночастицы $(Ag^0 - Au^0)_m$ и $(Au^0)_m$, характеризующиеся существенно большей термостойкостью, и должна приводить к смещению максимальной интенсивности сенсибилизированной люминесценции Eu³⁺ в сторону бо́льших *T*_{ann}.

Важно также отметить, что значение квантового выхода сенсибилизированной люминесценции пленки 70GeO₂-20Eu₂O₃-10Ag при $T_{ann} = 700^{\circ}$ С и $\lambda_{exc} = 280$ nm ($\approx 80\%$) при учете потери испущенных квантов из-за поглощения наночастицами (Ag⁰)_m при $\lambda = 600$ nm дает величину, близкую к 100%. Это является дополнительным свидетельством в пользу сделанного вывода о наличии химической связи ионов Eu³⁺ с ионами и олигомерными кластерами серебра, так как именно в этом случае возможна реализация сверхобменного взаимодействия, способного обеспечить скорость передачи возбуждений, превышающую скорость их диссипации в кластере. Такое корректированное на перепоглощение значение η согласуется и с заключением о слабом тушении люминесценции редкоземельного активатора малыми наночастицами серебра из-за увеличения расстояний (Ag^0)_m- Eu^{3+} в результате "разбухания" оксидоподобной оболочки этих наночастиц при их окислении. По-видимому, указанное расстояние оказывается чрезмерно большим и для реализации электромагнитного взаимодействия между Eu^{3+} и (Ag^0)_m, которое могло бы привести к увеличению вероятности оптических переходов активатора в полосах, резонансных с полосой поверхностного плазмонного поглощения.

5. Заключение

В гель-пленках системы GeO2-Eu2O3-Ag при отжиге на воздухе имеет место образование фазы германата серебра, термолиз которой сопровождается формированием наночастиц (Ag⁰)_m различных, в том числе и меньших 5 nm, размеров. При этом европий оказывает конкурирующее влияние на взаимодействие серебра с оксидом германия, приводя к зависимости положения полосы плазмонного поглощения наночастиц (Ag⁰)_m как от концентрации Ag, так и от атомарного соотношения Аg/Eu. Кроме этих наночастиц, при дальнейшем отжиге может быть сформирована значительная доля изолированных ионов серебра и олигомерных кластеров Ag_mⁿ⁺ на поверхности $(Ag^0)_m$, а также небольшое количество ионов Ag^{2+} . Одновременно имеет место образование сложных Eu-Ag-центров, представляющих собой оксокомплексы европия, химически связанные с одиночными и, возможно, парными ионами серебра и/или его олигомерными кластерами.

Реализация химических связей Eu-O-Ag позволяет добиться при 600 < T_{ann} < 800°С высокого (близкого к 100%) квантового выхода передачи электронных возбуждений редкоземельному активатору от ионов и олигомерных кластеров серебра. Это с учетом достаточно интенсивного поглощения УФ-излучения сенсибилизаторами люминесценции и слабого тушения последней малыми наночастицами (Ag⁰)_m обеспечивает пленкам системы GeO2-Eu2O3-Ag эффективность люминесценции, сравнимую с одноименной характеристикой пленок, активированных органическими комплексами европия. Однако необходимость наличия наночастиц $(Ag^0)_m$, стабилизирующих олигомерные кластеры, ограничивает возможности использования данных пленок в качестве световых трансформаторов в случаях, когда требуется отсутствие поглощения в видимой области спектра. При полном окислении (Ag⁰)_m формируются многомеры окисленного серебра, тушащие люминесценцию ионов Еи³⁺.

Авторы выражают признательность А.В. Суходолову и А.А. Суходоле за помощь в проведении измерения кинетики люминесценции.

Список литературы

- [1] Е.Г. Бондаренко, В.О. Кабанов, О.В. Януш. ФХС **10**, 16 (1984).
- [2] E. Borsella, G. Battaglin, M.A. Garcia, F. Gonella, P. Mazzoldi, R. Polloni, A. Quaranta. Appl. Phys. A 71, 125 (2000).
- [3] L.A. Peyser, A.E. Vinson, A.P. Bartko, R.M. Dickson. Science 291, 103 (2001).
- [4] I. Bilharouak, F. Weill, C. Parent, G. Le Flem, B. Moine. J. Non-Cryst. Sol. 293–295, 649 (2001).
- [5] E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, R. Polloni. J. Non-Cryst. Sol. 245, 122 (1999).
- [6] M. Treguer, F. Rocco, G. Lelong, A. Le Nestour, T. Cardinal, A. Maali, B. Lounis. Solid State Sci. 7, 812 (2005).
- [7] Z. Jiang, W. Yuan, H. Pan. Spectrochimica Acta A 61, 2488 (2005).
- [8] S.T. Selvan, T. Hayakawa, M. Nagami. J. Phys. Chem. B 103, 7064 (1999).
- [9] H. Nabika, S. Deki. Eur. Phys. J. D 24, 363 (2003).
- [10] R.M. Almeida, A.C. Marques. In: Abstracts of the 13th Int. Workshop on sol-gel science and technology. University of California (2005). P. 143.
- [11] В.В. Климов, М. Дюклуа, В.С. Летохов. Квантовая электрон. 31, 569 (2001).
- [12] С. Паркер. Фотолюминесценция растворов. Мир, М. (1972). С. 232.
- [13] S.V. Serezhkina, G.P. Shevchenko, S.K. Rakhmanov. Superlatt. Microstruct. 36, 47 (2004).
- [14] В.А. Радциг. Хим. физика 14, 125 (1995).
- [15] С.В. Сережкина, Е.В. Фролова, Г.П. Шевченко, Г.Е. Малашкевич. Весці НАН Беларусі. Сер. хім. навук 1, 21 (2006).
- [16] Н.Н. Ермоленко. В сб.: Стекло, ситаллы и силикатные материалы. Вышэйш. шк., Минск (1976). В. 5. С. 3.
- [17] Г.Е. Малашкевич, Е.Н. Подденежный, И.М. Мельниченко, В.Б. Прокопенко, Д.В. Демьяненко. ФТТ 40, 466 (1998).
- [18] Г.П. Шевченко, Л.Т. Потапенко, В.В. Свиридов. Весці НАН Беларусі. Сер. хім. навук 1, 53 (1997).
- [19] H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, A. Speghini. J. Non-Cryst. Sol. 240, 66 (1998).
- [20] Н.С. Полуэктов, Н.П. Ефрюшина, С.А. Гава. Определение микроколичеств лантаноидов по люминесценции кристаллофосфоров. Наук. думка, Киев (1976). С. 107.
- [21] М.Р. Гордова, Ю.Н. Кондратьев, В.П. Куркин, М.Ф. Попов, В.В. Сахаров, Ю.А. Соколов, А.А. Соколовский, Р.Я. Ходаковская, М.Д. Ходаковский. В сб.: Технология силикатных и тугоплавких неметаллических материалов (Итоги науки и техники). ВИНИТИ АН СССР, М. (1989). Т. 2. С. 3.
- [22] Z. Hui-Dan, Q. Jian-Rong, J. Xiong-Wei, Q. Shi-Liang, Z. Cong-Shan, G. Fu-Xi. Chin. Phys. Lett. 20, 932 (2003).
- [23] X. Bo, L. Kevan. J. Phys. Chem. 95, 1147 (1991).
- [24] N. Kanzaki, I. Yasumori. J. Phys. Chem. 82, 2351 (1978).
- [25] Н.Д. Крейдл, Ф. Ассабги, Е. Булос, П. Пател. ФХС 2, 170 (1976).
- [26] H. Yamada, J. Sadlo, K. Tamura, S. Shimomura, J. Turek, J. Michalik. Nucleonika 49, 131 (2004).
- [27] A.V. Dmitryuk, S.E. Paramzina, A.S. Perminov, N.D. Solov'eva, N.T. Timofeev. J. Non-Cryst Sol. 202, 173 (1996).
- [28] Г.Е. Малашкевич, Г.П. Шевченко, С.В. Сережкина, Г.А. Денисенко, П.П. Першукевич. Изв. РАН. Сер. физ. 11, 1662 (2006).