Псевдоупругая деформация и генерация реактивных напряжений в сплаве с эффектом памяти формы Cu–AI–Ni в диапазоне температур 4.2–293 К

© В.И. Николаев, С.А. Пульнев, Г.А. Малыгин, В.В. Шпейзман, С.П. Никаноров

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

E-mail: malygin.ga@mail.ioffe.ru

(Поступила в Редакцию 26 декабря 2006 г.

В окончательной редакции 12 марта 2007 г.)

Экспериментально исследованы псевдоупругая деформация и величина реактивных напряжений в монокристаллах сплава с эффектом памяти формы Cu-14.2% Al-4.5% Ni в диапазоне температур 4.2-293 K. Установлено, что в этих сплавах эффекты псевдоупругости и памяти формы наблюдаются во всем указанном диапазоне. При нагреве защемленных образцов с постоянной скоростью от температуры кипения жидкого гелия найдено, что до 100 K величина реактивных напряжений непрерывно возрастает, а затем остается постоянной. Когда температура предварительной деформации была 77 K, генерация реактивных напряжений при повышении температуры происходила в два этапа, что согласуется с многостадийным характером кривых псевдоупругой деформации этого сплава выше температуры кипения жидкого азота. В рамках теории размытых мартенситных переходов сделан количественный расчет кривых псевдоупругой деформации и реактивных напряжений в области температур 4.2-293 K в условиях двухступенчатого характера мартенситного превращения.

Работа выполнена в рамках проекта, поддержанного грантом РФФИ № 05-08-50315-а.

PACS: 62.20.-x, 62.20.Fe, 81.30.Kf

Сплавы с памятью формы, такие как CuAlNi и TiNi, используются обычно в качестве функциональных элементов сенсоров и актуаторов в довольно узком температурном диапазоне вблизи комнатной температуры. Между тем существует потенциальная потребность в такого рода материалах для их работы при криогенных температурах вплоть до температуры кипения жидкого гелия. В настоящее время механические свойства сплавов с эффектом памяти формы в указанном диапазоне температур менее изучены, чем при температурах выше комнатной. В литературе отсутствуют сведения о том, возникают ли вообще эффекты псевдоупругой деформации и памяти формы в сплавах CuAlNi при температурах ниже 77 K и возможна ли в них генерация реактивных напряжений при этих температурах.

Снижение характеристических температур мартенситных переходов M_s в рассматриваемых сплавах может быть получено путем варьирования состава сплава и условий его термообработки. Как показано в [1–3], это достигается в кристаллах CuAlNi повышением содержания атомов Al сверх 13.4 wt.%, т.е. смещением композиции в область заэвтектоидных составов, и снижением температуры закалки: чем она ниже, тем ниже величина M_s . Кроме того, известно, что в сплавах с мартенситными переходами механизмом снижения M_s является образование когерентных преципитатов, ограничивающих подвижность межфазных границ [4].

В настоящей работе были получены монокристаллы Cu-14.2 wt.% Al-4.5 wt.% Ni с температурами перехода в ненагруженном состоянии вблизи 200 K, исследована их псевдоупругая деформация и реактивные на-

пряжения в диапазоне температур 4.2–293 К. Количественный анализ полученных в работе результатов, как и в предыдущей нашей работе, выполненной на сплаве Cu–13.4 wt.% Al–4.5 wt.% Ni [5], осуществлялся с помощью теории размытых мартенситных переходов (РМП) [6].

1. Методика и результаты эксперимента

Выращенные методом Степанова в виде прутков диаметром 2 mm ориентированные вдоль направления [100] монокристаллы CuAlNi указанного выше состава подвергались закалке от температуры 1223 К в воду при 20° С, после чего из них изготавливались образцы с длиной рабочей части 15 mm. Приготовленные таким образом образцы отжигались при температуре 373 К в течение 1 h и охлаждались на воздухе.

При исследовании силовых и деформационных свойств сплава CuAlNi при низких температурах проводились две серии опытов. В первой из них исследовалась деформация сплава путем растяжения образцов в испытательной машине Instron 1342 со скоростью деформации $4 \cdot 10^{-4} \, {\rm s}^{-1}$ при различных температурах в диапазоне $4.2-293 \, {\rm K}$. Во второй серии опытов после предварительной деформации и полной разгрузки захваты машины останавливались, в образце сохранялась остаточная деформация, затем образец нагревался со скоростью $\approx 1 \, {\rm K/min}$. Вследствие эффекта памяти формы в сплаве наблюдался рост нагрузки, возника-

ли растягивающие реактивные напряжения, величина которых фиксировалась как функция повышающейся температуры.

На рис. 1 приведены однотипные диаграммы напряжение σ -деформация ε исследуемого сплава при различных температурах. Верхний график (рис. 1, *a*)

Рис. 1. Кривые растяжения монокристаллов сплава Cu-14.2 wt.% Al-4.5 wt.% Ni при температурах 293 (*a*), 77 (*b*) и 4.2 K (*c*).

Рис. 2. Кривая растяжения сплава Cu-14.2 wt.% Al--4.5 wt.% Ni до предельной деформации при температуре 77 К.

демонстрирует псевдоупругую деформацию образца при 293 К, которая имеет двухступенчатый характер содержит два платообразных участка, обусловленных образованием в сплаве двух вариантов мартенсита М1 и М2. Псевдоупругий характер деформации сплава сохраняется приблизительно до 125 К. При более низких температурах разгрузка образцов сопровождается остаточной деформацией (рис. 1, b) и связанным с ней эффектом памяти формы. Испытания серии образцов при 77 К показали, что при дальнейшем увеличении деформации кривые $\sigma - \varepsilon$ приобретают трехступенчатый характер, третье плато обусловлено появлением еще одного варианта мартенсита (МЗ). Это обстоятельство отчетливо видно на рис. 2, где приведена диаграмма растяжения сплава до предельной (перед разрушением) деформации. Согласно [1,2], появление вариантов мартенситов М2 и М3 связано с дополнительной переориентацией решетки мартенсита М1 под действием напряжения в последовательности $2H - 18R_1$ ($18R_2$) - $6R_2$. Рис. 1, с демонстрирует кривую растяжения сплава при 4.2 К. Из-за опасности хрупкого разрушения образец не доводился до предельных деформаций, поэтому пока не установлено напряжение начала зарождения мартенсита МЗ при этой температуре.

Следует отметить также заметное различие величины гистерезиса напряжений $\Delta \sigma$ между прямым и обратным мартенситными превращениями у различных вариантов мартенсита. В случае M1 в температурном интервале $77-293 \text{ K} \Delta \sigma_1 \approx 20-30 \text{ MPa}$, в то время как для M2 гистерезис напряжений увеличивается при снижении температуры, так что при 293 K $\Delta \sigma_2 = 256 \text{ MPa}$, а при $77 \text{ K} \Delta \sigma_2 = 326 \text{ MPa}$. В монокристаллах CuAlNi, близких по своему составу к нашему сплаву, было обнаружено [2], что гистерезис напряжений при мар-

Рис. 3. Температурная зависимость реактивных напряжений в монокристалле сплава Cu-14.2 wt.% Al-4.5 wt.% Ni при его нагревании с постоянной скоростью в интервале 4.2-223 К в защемленном состоянии. Точки — расчет реактивных напряжений согласно уравнению (6b).

Рис. 4. Температурная зависимость реактивных напряжений в монокристалле сплава Cu-14.2 wt.% Al-4.5 wt.% Ni при его нагревании с постоянной скоростью в интервале 77-660 К.

тенситном превращении возрастает с ростом скорости деформации сплава. Оба этих обстоятельства, а именно чувствительность гистерезиса напряжений к скорости деформации и температуре, свидетельствуют о термоактивированном (дислокационном) характере движения межфазных границ при возникновении мартенсита M2.

Исследование реактивных напряжений при нагреве защемленных в неподвижных захватах образцов сплава показало, что при 4.2 К генерация напряжений начинается сразу от исходной температуры и заканчивается при температуре около 100 К (рис. 3, сплошная кривая). Затем вплоть до температуры 225 К наблюдается постепенное снижение напряжений. Скорость генерации напряжений в интервале 4.2-100 К остается приблизительно постоянной и равной 3.8 МРа · K⁻¹. Прекращение роста реактивных напряжений при температуре ≈ 100 К обусловлено завершением превращения мартенсита в

аустенит [5]. При дальнейшем повышении температуры из-за роста сжимающих напряжений вследствие термического расширения образца уровень достигнутых реактивных (растягивающих) напряжений ≈ 361 МРа медленно понижается.

На рис. 4 приведены температурные зависимости реактивных напряжений в сплаве, предварительно деформированном при температуре 77 К. Видно, что в этом случае при остановке захватов машины сначала происходит рост напряжений до 50 МРа, затем при нагреве сплава с постоянной скоростью напряжения вплоть до 250 К медленно нарастают со скоростью $d\sigma/dT \approx 0.15 \,\mathrm{MPa} \cdot \mathrm{K}^{-1}$. Выше 250 K рост напряжений происходит с большой скоростью и при температуре ≈ 500 К напряжения достигают максимальных значений. Скорость генерации напряжений $d\sigma/dT$ на этом этапе составляет 1.9 MPa · K⁻¹, что практически совпадает со скоростью генерации реактивных напряжений в исследованном нами ранее монокристалле сплава Cu-13.4 wt.% Al-4.5 wt.% Ni при нагреве его от исходной температуры 293 К [5]. Видно также, что после достижения максимального значения 360 МРа при $\approx 500 \, \mathrm{K}$ напряжения начинают необратимо падать и при 630К обращаются в нуль. Резкий спад реактивных напряжений в исследованном в настоящей работе сплаве Cu-14.2 wt.% Al-4.5 wt.% Ni при температуре выше 500 К обусловлен, так же как и в сплаве Cu-13.4 wt.% Al-4.5 wt.% Ni, температурной нестабильностью β -фазы, а именно ее распадом на γ_1 - и α -фазы с образованием выделений интерметаллидов [5].

2. Обсуждение результатов

В сплавах CuAlNi в отсутствие напряжений при снижении температуры в β -аустените возникают отдельно или γ' -, или β' -варианты мартенсита. Возможен также смешанный вариант перехода $\beta \to \gamma' + \beta'$ [4]. Под действием приложенных напряжений мартенситное превращение может развиваться в одну, в две или в три стадии, $\beta \to \gamma' \to \beta'(\beta'') \to \alpha'$ [1–3,7], а с учетом метастабильного варианта $\beta''(18R_2)$ — и в четыре. Какой именно из этих сценариев реализуется, зависит от многих обстоятельств и в первую очередь от состава сплава и его термообработки, а также от ориентации кристалла относительно действующего напряжения [3,7].

В нашей работе [5] генерация реактивных напряжений в сплаве Cu-13.4 wt.% Al-4.5 wt.% Ni при температурах выше 293 K была связана с переходом β' -мартенсита в β -аустенит. Для исследуемого в настоящей работе состава сплава критические температуры мартенситных переходов в отсутствие напряжений лежат ниже комнатной температуры [3]. На рис. 5 темными символами обозначены найденные в работе критические напряжения образования различных вариантов мартенсита при разных температурах. Светлыми значками указаны критические значения напряжений для исследованного в [1] сплава Cu-14.0 wt.% Al-4.2 wt.% Ni, близкого по

700 600 500 400 σ, MPa 300 ά 200 100 0 0 100 200 300 400 500 *T*, K

Рис. 5. Температурные зависимости критических напряжений образования различных вариантов мартенсита в сплавах Cu-14.2 wt.% Al-4.5 wt.% Ni (данные настоящей работы, темные символы) и Cu-14.0 wt.% Al-4.2 wt.% Ni (данные [1], светлые символы).

составу и ориентации оси растяжения (вдоль [100] в β -фазе) к исследованному в настоящей работе. Видно, что имеется хорошее соответствие между нашими данными при температурах ниже 200 К и данными [1] выше этой температуры. Греческими буквами на рис. 5 обозначены переходы между различными вариантами мартенсита согласно этой работе. Заметное количественное расхождение между нашими результатами и результатами [1] касаются критических напряжений $\beta \rightarrow \beta'$ и $\beta'' \rightarrow \alpha$ -переходов. В нашем случае критические напряжения на 50 К сдвинуты в область более низких температур (рис. 5, темные ромбы), а напряжения, соответствующие превращению $\beta'' \rightarrow \alpha$ (темные квадраты), лежат примерно на 100-200 МРа выше соответствующих напряжений, найденных в [1]. В целом, можно заключить, что в исследованном нами сплаве имеет место та же последовательность превращений, что и в близком к нему по составу сплаве CuAlNi в работе [1]. Как видно из рис. 5, эта последовательность сохраняется и при более низких криогенных температурах вплоть до 77 К и ниже.

В следующих двух подразделах полученные в настоящей работе данные будут проанализированы с количественной стороны при помощи теории РМП [6].

2.1. Псевдоупругая деформация. Особенностью деформационного и силового поведения исследуемого сплава является возникновение в нем под действием напряжений нескольких вариантов мартенсита, о чем свидетельствует двух- и трехступенчатый характер кривых сверхупругой деформации на рис. 1 и 2. Согласно теории РМП, фазовое равновесие между двумя вариантами мартенсита и аустенитом описывается соотношениями [8]

$$\varphi_1 = \varphi_A \exp(-\Delta U_1/kT), \quad \varphi_2 = \varphi_A \exp(-\Delta U_2/kT),$$
$$\varphi_A = \frac{1}{1 + \exp(-\Delta U_1/kT) + \exp(-\Delta U_2/kT)}, \quad (1)$$

где φ_1 и φ_2 — относительные объемные доли вариантов мартенсита 1 и 2, $\varphi_M = \varphi_1 + \varphi_2$ — полная концентрация мартенсита, $\varphi_A = 1 - \varphi_M$ — объемная доля аустенита в сплаве ($\varphi_M + \varphi_A = 1$), T — температура, k — постоянная Больцмана, $\Delta U_{1,2} = \omega_{1,2} \Delta u_{1,2}$ — изменение внутренней энергии сплава при образовании зародыша мартенсита объемом ω , Δu — изменение объемной плотности внутренней энергии сплава при структурном переходе,

$$\Delta u_{1,2} = q_{1,2} \frac{T - T_{c1,2}}{T_{c1,2}} - m_{1,2} \xi_{1,2} \sigma, \qquad (2)$$

q — теплота превращения, T_c — критическая (характеристическая) температура превращения, $\xi_{1,2}$ — сдвиговые деформации решетки при ее структурной перестройке, σ — приложенное к сплаву одноосное растягивающее напряжение, m — ориентационный фактор.

Соотношения (1), (2) описывают изменение относительных объемов вариантов мартенсита 1 и 2 в зависимости от температуры T и приложенного к сплаву напряжения σ . Для количественного расчета этих объемов энергии фазовых переходов ΔU в выражениях (1) и (2) удобно записать в виде

$$\frac{\Delta U_1}{kT} = B_1 \left(T/T_{c1} - 1 - \frac{\sigma \mp \sigma_{f1}}{\sigma_{m1}} \right), \qquad (3a)$$

$$\frac{\Delta U_2}{kT} = B_2 \left(T/T_{c2} - 1 - \frac{\sigma \mp \sigma_{f2}}{\sigma_{m2}} \right), \qquad (3b)$$

где

2

Z

$$B_{1}(T) = \omega_{1}q_{1}/kT, \qquad B_{2}(T) = \omega_{2}q_{2}/kT,$$

$$\sigma_{m1} = q_{1}/m_{1}\xi_{1}, \qquad \sigma_{m2} = q_{2}/m_{2}\xi_{2}, \qquad (3c)$$

 σ_f — напряжение при взаимодействии межфазных границ с препятствиями при прямом и обратном мартенситных переходах, вызывающее силовой гистерезис превращения; знаки минус и плюс относятся соответственно к прямой и обратной мартенситной реакциям. На рис. 6 показаны температурные зависимости объемных долей вариантов мартенсита 1 (кривая 1) и 2 (кривая 2) согласно соотношениям (1)–(3) в отсутствие напряжений трения и приложенного к сплаву напряжения ($\sigma_f = 0, \sigma = 0$). Численные значения параметров В и T_c приведены в табл. 1. Видно, что при указанных значениях параметров при T < 50 К доминирует вариант мартенсита 2, а в области температур 50 < T < 200 К —

вариант мартенсита 1. Штриховая линия на рис. 6 показывает общее количество мартенсита в сплаве.

Под действием приложенного к сплаву напряжения мартенситное превращение сопровождается макродеформацией сплава, зависящей от количества мартенсита в кристалле, величина деформаций решетки ξ при ее структурной перестройке и ориентационных факторов *m*. Деформация сплава, связанная с возникновением в нем вариантов 1 и 2 мартенсита, равна $\varepsilon_M(T, \sigma) = \varepsilon_M^{(1)}(T, \sigma) + \varepsilon_M^{(2)}(T, \sigma)$, где

$$\varepsilon_{M}^{(1)}(T,\sigma) = \varepsilon_{m1}\varphi_{1}(T,\sigma), \qquad \varepsilon_{M}^{(2)}(T,\sigma) = \varepsilon_{m2}\varphi_{2}(T,\sigma),$$
$$\varepsilon_{m1} = m_{1}\xi_{1}, \qquad \varepsilon_{m2} = m_{2}\xi_{2}. \tag{4}$$

Полная деформация растягиваемого образца сплава ε включает в себя также упругую компоненту. В результате получаем следующее уравнение для нахождения зависимостей $\sigma(\varepsilon)$, т.е. кривой псевдоупругой деформации

Рис. 6. Относительные объемные доли вариантов мартенсита M1 (1) и M2 (2) в сплаве CuAlNi согласно соотношениям (1)–(3) в отсутствие напряжения.

Рис. 7. Кривые псевдоупругой деформации сплава Cu-14.2 wt.% Al-4.5 wt.% Ni при 293 K согласно соотношениям (4), (5) (пунктир). Экспериментальные точки — данные настоящей работы (см. рис. 1, *a*).

Таблица 1. Параметры расчета кривых на рис. 6 и 7 согласно соотношениям (1)–(5)

Параметр	Мартенсит <i>М</i> 1	Мартенсит <i>M</i> 2
B^*	30	60
T_c , K	170	70
σ_m , MPa	250	125
σ_f , MPa	15*	105*
ε_m	0.03	0.07
$d\sigma/dT$, MPa \cdot K ⁻¹	1.39	1.78

* При T = 293 К.

сплава при данной величине температуры:

$$\varepsilon = \frac{\sigma}{K} + \varepsilon_M(\sigma, T), \tag{5}$$

где K — эффективный модуль упругости системы образец—машина. Нелинейное уравнение (5) содержит зависимость $\sigma(\varepsilon)$ в неявном виде.

На рис. 7 пунктирная кривая иллюстрирует результат численного решения этого уравнения при T = 293 К, $K \approx E_{[100]} = 20$ GPa и указанных в табл. 1 значениях параметров, где $E_{[100]}$ — модуль Юнга β -аустенита [9,10], $d\sigma/dT = \sigma_m/T_c$. Видно, что наблюдается хорошее соответствие теории и эксперимента. Что касается сравнения кривых псевдоупругой деформации при температурах 77 и 4.2 К (рис. 1, *b* и *c*), то при расчетах, согласно (5), получено лишь качественное согласие теории и эксперимента. Возможно, это обусловлено отмеченной выше сильной зависимостью гистерезисных напряжений σ_{f2} от температуры.

2.2. Реактивные напряжения. Генерация реактивных напряжений является результатом эффекта памяти формы при нагреве предварительно деформированного при исходной температуре и помещенного в неподвижные захваты образца. В достаточно жесткой машине длина образца остается практически постоянной, поэтому уравнение баланса упругой $\varepsilon_e = \sigma/K$, тепловой $\sigma_T = \alpha(T - T_0)$ и мартенситно-аустенитной $\varepsilon_A(T, \sigma) = \varepsilon_a \varphi_A(T, \sigma)$ деформаций образца имеет вид [5]

$$\frac{\sigma}{K} = -\alpha(T - T_0) + \varepsilon_a \varphi_A(T, \sigma).$$
 (6a)

Здесь α — коэффициент теплового расширения образца, T_0 — исходная температура нагрева, ε_a — предельная деформация при мартенситно-аустенитной релаксации напряжений. С учетом соотношения (1) уравнение баланса деформаций (6а) принимает вид

$$\frac{\sigma}{K} = -\alpha(T - T_0) + \frac{\varepsilon_a}{1 + \exp(-\Delta U_1/kT) + \exp(-\Delta U_2/kT)}, \quad (6b)$$

где показатели экспонент определяются соотношениями (3).

Таблица 2	. Параметры	расчета	точек	(кружки)	на	рис.	3
согласно ура	авнениям (6)						

Параметр	Мартенсит <i>M</i> 1	Мартенсит M2
B^*	$2.1 \cdot 10^{3}$	$4.2 \cdot 10^{3}$
T_c, K	170	70
σ_m , MPa	500	250
σ_f , MPa	590	250
$d\sigma/dT$, MPa · K ⁻¹	2.9	3.6

* При T = 4.2 К.

Уравнение (6b) использовалось в [5] для анализа реактивных напряжений при температурах выше 293 К. Как уже отмечалось, температурная зависимость реактивных напряжений в исследуемом в настоящей работе сплаве CuAlNi при его нагреве от исходной температуры 77 К (рис. 4) существенно не отличается от результатов [5]. Поэтому далее с помощью уравнения (6b) будут количественно проанализированы реактивные напряжения при нагреве сплава от температуры кипения жидкого гелия (рис. 3).

Из приведенных на рис. 6 результатов расчета следует, что исходная температура нагрева 4.2 К находится в температурной области существования мартенсита М2. Поэтому можно предполагать, что генерация реактивных напряжений связана с мартенситно-аустенитной реакцией $\beta' + \gamma' \rightarrow \beta$. Поскольку напряжения σ входят в левую и правую части нелинейного уравнения (6b), для каждой температуры оно решалось численно. На рис. 3 светлые кружки иллюстрируют результаты расчета реактивных напряжений согласно этому уравнению при $\varepsilon_a = 0.06$, $\alpha = 3.3 \cdot 10^{-5} \,\mathrm{K}^{-1}, K = 6.3 \,\mathrm{GPa}$, остальные параметры указаны в табл. 2 (низкое значение эффективного модуля системы образец-машина К при 4.2 К на рис. 1, с обусловлено большой длиной нагружающих тяг). Результаты решения согласуются с экспериментом при условии резкого увеличения гистерезиса напряжений σ_{f} при 4.2 К по сравнению с гистерезисом напряжений при комнатной температуре (табл. 1). Рост напряжений, как уже было отмечено выше, обусловлен термоактивационным характером перемещения межфазных границ в сплавах CuAlNi [2].

3. Заключение

Таким образом, экспериментальное и теоретическое исследования псевдоупругой деформации и реактивных напряжений в монокристаллах сплава CuAlNi при низких температурах показывают, что характерные для медно-алюминиевых сплавов мартенситные превращения и связанные с ними эффекты псевдоупругости и памяти формы имеют место вплоть до температуры кипения жидкого гелия, причем уровень максимальных значений реактивных напряжений при этих температурах 360–400 MPa практически тот же, что и при температурах выше 293 К.

Список литературы

- [1] Сплавы с эффектом памяти формы / Под ред. А.М. Глезера. Металлургия, М. (1990). 221 с.
- [2] K. Otsuka, C.M. Waymen, K. Nakai, H. Sakamoto, K. Shimizu. Acta Met. 24, 207 (1976).
- [3] V. Recarte, J.P. Perez-Landazabal, P.P. Rodriguez, E.H. Bocanegra, M.L. Nó, J. San Juan. Acta Mater. 52, 3941 (2004).
- [4] M. Nishida, T. Honma. Scripta Metal. 18, 1293 (1984).
- [5] С.А. Пульнев, В.И. Николаев, Г.А. Малыгин, С.Л. Кузмин, В.В. Шпейзман, С.П. Никаноров. ЖТФ 76, 42 (2006).
- [6] Г.А. Малыгин. УФН 171, 187 (2001).
- [7] C. Picornell, J. Pons, E. Cesari. Mater. Sci. Eng. A 378, 222 (2004).
- [8] Г.А. Малыгин. ФТТ 44, 2075 (2002).
- [9] S. Kustov, S. Golyandin, K. Sapozhnikov, J. Van Humbeeck, R. De Batist. Acta Mater. 46, 5117 (1998).
- [10] P. Sedlak, H. Seiner, M. Landa, V. Novak, P. Sittner, L. Manosa. Acta Mater. 53, 3643 (2005).