Зонная структура, упругие, магнитные свойства и стабильность антиперовскитов $MCNi_3$ (M = Y - Ag) по данным расчетов FLAPW-GGA

© В.В. Банников, И.Р. Шеин, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, 620041 Екатеринбург, Россия

E-mail: bannikov@ihim.uran.ru

(Поступила в Редакцию 23 ноября 2006 г.)

С использованием полнопотенциального линейного метода присоединенных плоских волн (FLAPW, код WIEN2k) выполнены расчеты зонной структуры, упругих, магнитных характеристик и рассмотрены особенности межатомных взаимодействий для семейства тройных карбидов со структурой антиперовскита MCNi₃, где M = Y, Zr,... Ag (всего девять фаз). На основе расчетов энергий формирования MCNi₃ из простых элементов (по формальной реакции M + C + 3Ni $\rightarrow M$ CNi₃) обсуждается стабильность данных антиперовскитных фаз в зависимости от типа 4*d*-металла, сделан вывод о возможности успешного синтеза антиперовскитов YCNi₃, ZrCNi₃ и PdCNi₃. Результаты сопоставлены с имеющимися данными для известных изоструктурных фаз: никельсодержащих карбидов — антиперовскитов MgCNi₃ и ZnCNi₃.

Работа поддержана грантом Президента РФ по поддержке ведущих школ (проект НШ-5138.2006.3).

PACS: 71.20.-b, 62.20.Dc

1. Введение

Карбиды и нитриды со структурой антиперовскита общего состава $M(C,N)M'_3$, где M, M' - s - f металлы, составляют семейство тройных кубических фаз, обладающих большим разнообразием интересных физических свойств, которые могут радикально различаться в зависимости от их состава [1]. Например, карбиды $MC(Mn,Fe)_3$, где M = Al, Ga, In, Ge, Sn или *d*-металлы, и некоторые родственные нитриды (например, GaNMn₃, SnNFe₃) — магнетики, обнаруживают ферро-, антиферромагнитные или более сложные типы магнитного упорядочения и температурно-зависимые магнитные фазовые переходы [2-8]. Резко отличаются свойства фаз $M(C,N)M'_{3}$ с участием щелочно-земельных металлов. В частности, фазы $MNCa_3$ (M = Ge, Sn, Pb или P, As, Sb, Ві) обладают межатомными связями преимущественно ионного типа [9,10], среди них (Bi,Pb)NCa₃ относятся к группе так называемых ионных металлов [11]. Недавно синтезированы [12] фазы AsNMg₃, SbNMg₃ — ионные полупроводники [13]. Наоборот, фазы на основе металлов III–V групп (AlCSc₃, SnCSc₃, M(C,N)Ti₃, где M = Al, Ga, In и т.д.) проявляют металлические свойства и одновременно являются высококовалентными соединениями [2,14-16].

Мощным стимулом исследований физических свойств фаз семейства MCM'_3 стало открытие в 2001 г. [17] критического перехода ($T_{\rm C} \sim 8 \,\rm K$) в карбиде MgCNi₃ со структурой антиперовскита. Уникальность этой системы (см. обзоры [18,19]) определяется тем, что MgCNi₃ — первый бескислородный сверхпроводник среди перовскитоподобных фаз и одновременно первый сверхпроводник среди тройных карбидов и нитридов $M(\rm C,N)M'_3$. Кроме того, MgCNi₃ занимает особое место среди других низкотемпературных сверхпроводников, являясь

фазой, богатой никелем — магнитным металлом. Наличие сверхпроводимости в такой системе сближает ее с недавно открытыми так называемыми ферромагнитными сверхпроводниками, например UGe₂, URhGe или Sr₂RuO₄, обладающими поверхностным ферромагнитным упорядочением [18].

Отмеченные особенности привлекли внимание к изучению свойств MgCNi₃, определили многочисленные попытки модификации его физических параметров (например, при введении различных электронных или дырочных легирующих примесей [20–28], а также стимулировали теоретический поиск его возможных аналогов и родственных антиперовскитных фаз [29,30]). Так, выполнен прогноз электронных, магнитных и механических свойств тройных боридов (Sc,Y)BM'₃, где в роли M' — элементов выступают 4*d*-металлы [30]. Недавно синтезирован изоструктурный аналог MgCNi₃ — антиперовскит ZnCNi₃ [31] — и исследован ряд его физических свойств [29].

К настоящему времени синтезировано около 70 тройных карбидов МСМ' со структурой антиперовскита [32]. Авторы [32] провели прогноз возможности существования еще около 80 неизвестных ранее фаз МСМ'₃, который основан на соответствии расчетных значений факторов толерантности $t = (R_M + R_{M'})/\sqrt{2}(R_C + R_{M'})$, где $R_{M,M',C}$ — радиусы атомов, диапазону, характерному для известных карбидов-антиперовскитов (0.889 < t < 1.123). Как известно, эмпирический t-фактор учитывает структурные особенности кристаллов, когда в плотной упаковке *М'М*₃ размер октаэдрических пустот считается достаточным для внедрения атомов углерода, а величины так называемых напряженностей связей $\mu_{M'-C} =$ $= \{ [L_{M'-C}/(R_C + R_{M'})] - 1 \} \cdot 100\%$ (где $L_{M'-C}$ — длина связи между атомами М' и С) отрицательны, т.е. связи *M'*-С сжаты. Естественно, что схема [32] использует только радиусы атомов-компонентов, не учитывая особенностей электронной структуры, межатомных взаимодействий и энергетических факторов образования кристаллов.

Согласно [32], в число вероятных антиперовскитов *MCM*[']₃ входит несколько карбидов с участием никеля: PtCNi₃, SnCNi₃, ZrCNi₃ и MoCNi₃.

Учитывая большой интерес к этим фазам, в настоящей работе с использованием зонного метода линеаризованных присоединенных плоских волн мы провели систематические исследования возможности существования и свойств серии новых никельсодержащих антиперовскитов *M*CNi₃, где в качестве *M* выступают металлы 4*d*-ряда: Y, Zr,...Pd и Ag.

На основе расчетов энергии формирования фаз *M*CNi₃ обсуждаются возможности их синтеза, а также выполнен прогноз закономерностей изменений их зонного спектра, структурных, механических и магнитных характеристик в зависимости от природы 4*d*-подрешетки. Результаты сопоставлены с данными для синтезированных ранее никельсодержащих антиперовскитов MgCNi₃ и ZnCNi₃.

2. Методика расчета

Кристаллическая структура тройных карбидов MCNi₃ имеет кубический перовскитоподобный тип, ее пространственная группа Pm3m. Позиции атомов (в ячейке) следующие: Ni — 3c (1/2, 1/2, 0); M — 1a (0,0,0); C — 1b (1/2,1/2,1/2). Координационными полиэдрами (КП) атомов Ni и C являются октаэдры [C₂ M_4] и [Ni₆], КП атомов 4*d*-металлов (M) — кубооктаэдры [Ni₁₂]. Межатомные расстояния: Ni–Ni = $a/\sqrt{2}$, Ni–C = a/2, Ni– $M = a/\sqrt{2}$ и M–C = $a\sqrt{3}/2$, где a — параметр ячейки. Число формульных единиц в ячейке Z = 1.

Расчеты антиперовскитов $MCNi_3$ (M = Y-Ag) выполнялись спин-поляризованным полнопотенциальным методом линеаризованных присоединенных плоских волн (FLAPW, код WIEN2k [33]) с обобщенной градиентной аппроксимацией (GGA) обменно-корреляционного потенциала [34]. Радиусы атомных сфер составляли 0.846 Å (C), 0.952 Å (Ni) и 1.217 Å (M). Набор плоских волн K_{cut} определялся из соотношения $R_{\text{mt}}K_{\text{cut}} = 7.0$. Интегрирование выполнялось методом тетраэдров [35] для 35 точек в неприводимой части зоны Бриллюэна. Для магнитных фаз MCNi₃ принят тип ферромагнитного упорядочения. К остовным (отделены от верхних занятых состояний энергетической щелью $\Delta E_g \ge 6 \operatorname{Ry}$ отнесены *M*: (1s-3d)-; Ni: (1s-3s)- и 1*s*-состояния углерода. Для всех фаз MCNi₃ проведена оптимизация параметров решеток из условия минимизации полной энергии системы E_{tot} с точностью менее 0.0001 Ry.

Стандартным способом получения известных в настоящее время никельсодержащих антиперовскитов является их твердофазный синтез из исходных веществ. Например, образцы ZnCNi₃ были получены [31] при термообработке (1000°С, в течение 2 h) смеси порошков Zn, Ni и графита. Поэтому анализ стабильности фаз выполнялся на основе расчетов энергий их формирования ΔH (по формальным реакциям образования этих фаз из исходных реагентов — простых веществ: $M + C + 3Ni \rightarrow MCNi_3 + \Delta H$) следующим образом:

$$\Delta H = E_{\text{tot}}^{M\text{CNi}_3} - \left[E_{\text{tot}}^M + E_{\text{tot}}^\text{C} + 3E_{\text{tot}}^{\text{Ni}} \right]. \tag{1}$$

Здесь E_{tot}^M , E_{tot}^C , E_{tot}^{Ni} — полные энергии исходных "реагентов": металлов (ГЦК: Ni, Rh, Pd, Ag; ГПУ: Mg, Zn, Y, Zr, Tc, Ru; ОЦК: Nb и Mo) и углерода, которые также были вычислены в рамках метода FLAPW-GGA. Для углерода рассмотрен его наиболее устойчивый аллотроп — графит.

Как известно, фазовая стабильность соединений определяется свободной энергией Гиббса $\Delta G = \Delta H + PV$ – *TS*. Учитывая, что вычисления выполнены при условиях P = 0 и T = 0, т.е. когда $\Delta G = \Delta H$, величины ΔH можно трактовать как критерий стабильности фаз *M*CNi₃ относительно механической смеси исходных веществ.

В результате для всех фаз MCNi₃ впервые выполнены численные оценки энергий их формирования, а также расчеты их структурных, магнитных характеристик и параметров упругости: упругих констант (C_{ij}) , модулей сжатия (B), сдвига (G). На основе расчетов полных, парциальных плотностей состояний (ПС), а также пространственных распределений зарядовой (ρ) и спиновых $(\rho \uparrow \downarrow)$ плотностей обсуждаются закономерности изменения зонной структуры и межатомных взаимодействий в ряду фаз MCNi₃ в зависимости от природы 4*d*-металла.

3. Обсуждение результатов

3.1. Фазовая стабильность. Результаты расчетов энергий формирования (ΔH) фаз MCNi₃ приведены в табл. 1. Согласно определению величин ΔH (см. (1)), их отрицательные значения свидетельствуют о том, что образование MCNi₃ из исходных компонентов энергетически выгодно и эти фазы будут устойчивы (относительно смеси исходных веществ); и наоборот: при $\Delta H > 0$ синтез этих фаз при нормальных условиях будет маловероятен. Из табл. 1 следует, что $\Delta H < 0$ для антиперовскитов с участием металлов начала и конца 4d-ряда (YCNi₃, ZrCNi₃ и PdCNi₃), что указывает на возможность синтеза этих соединений из соответствующих простых веществ.

Для проверки данного заключения были проведены аналогичные расчеты ΔH для экспериментально синтезированных фаз: MgCNi₃ И ZnCNi₃. Получено, что в соответствии с экспериментом их $\Delta H < 0$, причем, согласно нашим данным, $|\Delta H(MgCNi_3, ZnCNi_3)| < |\Delta H(YCNi_3, ZrCNi_3)|,$ т.е. устойчивость прогнозируемых фаз с участием иттрия и циркония будет по крайней мере не хуже, чем для известных никельсодержащих антиперовскитов.

Возвращаясь к ряду рассматриваемых фаз $MCNi_3$, из данных табл. 1 можно заключить, что антиперовскит AgCNi₃ ($\Delta H \sim 0$) является метастабильным. Что касается остальных фаз (с положительной энергией образования), то величины их ΔH оказываются весьма значительными (не менее +0.5 eV/form. unit) и их синтез при обычных условиях будет маловероятен.

Отметим, что авторы [32] делают прогноз устойчивости карбидов ZrCNi₃ и MoCNi₃, тогда как, согласно нашим расчетам, к стабильным следует отнести только ZrCNi₃ ($\Delta H = -0.851 \text{ eV}/\text{from. unit}$), а для MoCNi₃ $\Delta H = +1.555 \text{ eV}/\text{from. unit}$. Таким образом, заключения об устойчивости антиперовскитов, базирующиеся исключительно на соотношениях радиусов входящих в состав атомов [32], по-видимому, не всегда оказываются корректными, и более достоверный прогноз требует оценки энергий их образования.

3.2. Структурные и упругие свойства. Параметры решетки (*a*) фаз *M*CNi₃ приведены в табл. 1 вместе с рассчитанными нами величинами *a* синтезированных фаз — MgCNi₃ и ZnCNi₃ и имеющимися экспериментальными и расчетными данными. Видно, что наши расчеты воспроизводят экспериментальные данные с точностью не хуже 1% (MgCNi₃) и 3.6% (ZnCNi₃) и разумно согласуются с другими расчетными данными [29,37,38].

Для прогнозируемых фаз MCNi₃ изменение параметров a коррелирует с атомными радиусами 4d-металлов (R_M) , определяя понижение a в ряду YCNi₃ \rightarrow RuCNi₃ и некоторый рост a для карбидов конца 4d-ряда: RhCNi₃ \rightarrow AgCNi₃. Отметим, что полученные нами оптимизированные величины a для ZrCNi₃ (3.915 Å) < MoCNi₃ (3.840 Å) оказались соответственно на ~ 3.9 и $\sim 1.6\%$ выше, чем предсказанные в [32], а их соотношение — обратное: a(ZrCNi₃) = 3.77 Å > a(MoCNi₃) = 3.78 Å [32].

В табл. 2 представлены величины упругих констант $(C_{11}, C_{12}$ и $C_{44})$ всех рассмотренных фаз $MCNi_3$ в сравнении с MgCNi_3 и ZnCNi_3. Видно, что эти величины для $MCNi_3$ фаз (M = Y, Zr, Tc, Ru, Rh, Pd, Ag), а также для MgCNi_3 и ZnCNi_3 соответствуют критерию механической устойчивости кристаллов [39]: $(C_{11} - C_{12}) > 0$, $(C_{11} + 2C_{12}) > 0$, $C_{11} > 0$, $C_{44} > 0$, и для них величины упругих модулей: сжатия $(B = (C_{11} + 2C_{12})/3)$, сдвига $(G = C_{44})$ и тетрагонального сдвига $(G' = (C_{11} - C_{12})/2)$ положительны. Наоборот, согласно расчетам, антиперовскиты NbCNi_3 и MoCNi_3 следует отнести к механически нестабильным системам $(C_{44} < 0)$.

Получено, что для всех $MCNi_3$ B > G' > G, т.е. для этих материалов параметром, лимитирующим их механическую стабильность, является модуль сдвига G. Отметим также, что модуль всестороннего сжатия Bизвестных (MgCNi_3 и ZnCNi_3) и прогнозируемых нами как наиболее устойчивые фазы (YCNi_3 и ZrCNi_3) антиперовскитов оказываются сравнимыми, тогда как модули сдвига G для MgCNi_3 и ZnCNi_3 примерно вдвое

Таблица 1. Энергии формирования ΔH (eV/form. unit) и равновесные параметры решетки *a* (Å) антиперовскитов $MCNi_3$ (M = Y-Ag) по данным расчетов FLAPW-GGA в сопоставлении с данными для синтезированных изоструктурных антиперовскитов MgCNi₃ и ZnCNi₃

Фаза	ΔH	$a(R_M)^*$
YCNi ₃	-1.147	3.975(1.81)
ZrCNi ₃	-0.851	3.915(1.60)
NbCNi ₃	0.543	3.863(1.45)
MoCNi ₃	1.555	3.840(1.39)
TcCNi ₃	1.908	3.825(1.36)
RuCNi ₃	1.647	3.800(1.34)
RhCNi ₃	0.499	3.800(1.34)
PdCNi ₃	-0.183	3.813(1.37)
AgCNi ₃	-0.071	3.825(1.44)
MgCNi ₃ **	-0.793	3.834(1.60), 3.81 [17],
		3.78 [37]
ZnCNi ₃ **	-0.692	3.793(1.39), 3.66 [31],
-		3.75 [29], 3.733 [38]
	-	-

* В скобках приведены: для гипотетических $MCNi_3$ — атомные радиусы 4*d*-металлов, для MgCNi₃ и ZnCNi₃ — радиусы Mg и Zn $(R_M, \text{Å} [36])$.

** Для синтезированных MgCNi₃ и ZnCNi₃ приведены также параметры решетки согласно имеющимся экспериментальным [17,31] и теоретическим [29,37,38] данным.

Таблица 2. Упругие константы C_{11}, C_{12}, C_{44} (GPA) и модули сдвига ($G = C_{44}$, GPa), тетрагонального сдвига ($G' = (C_{11} - C_{12})/2$, GPa) и всестороннего сжатия ($B = (C_{11} + 2C_{12})/3$, GPa) для MCNi₃ (M = Y-Ag) по данным расчетов FLAPW-GGA в сопоставлении с данными для синтезированных изоструктурных антиперовскитов MgCNi₃ и ZnCNi₃

Фаза	<i>C</i> ₁₁	C_{12}	$C_{44}(G)$	G'	В
YCNi ₃	285.02	95.36	20.32	94.84	158.72
ZrCNi ₃	313.99	114.37	18.09	99.81	180.91
NbCNi ₃	278.91	144.59	-3.67	67.17	189.36
MoCNi ₃	325.78	163.28	-12.29	90.60	217.45
TcCNi ₃	354.00	148.41	37.71	102.80	216.94
RuCNi ₃	361.84	144.58	59.31	108.63	217.00
RhCNi ₃	348.87	144.70	52.05	102.08	212.76
PdCNi ₃	290.09	128.42	45.59	80.84	182.31
AgCNi ₃	251.43	108.12	19.04	71.66	155.89
MgCNi ₃	309.47	101.84	42.64	103.82	171.05 (210 [27], 214 [40], 156.9 [41])
ZnCNi ₃	319.53	105.72	39.42	106.91	176.99(251 [40])

выше, чем для YCNi₃ и ZrCNi₃. Рост хрупкого поведения последних можно объяснить, очевидно, как результат образования в кристаллах YCNi₃ и ZrCNi₃ дополнительных ковалентных связей 4*d*-металлов (см. далее).

3.3. Зонная структура и магнитные свойства. Обсудим особенности зонной структуры антиперовскитов *MCNi*₃ с использованием приводимых на рис. 1 профилей распределения полных и парциальных

Рис. 1. Плотности электронных состояний антиперовскитов YCNi₃, TcCNi₃ и AgCNi₃, а также гипотетической фазы \Box CNi₃ (см. текст). Приведены полные плотности состояний (сплошные линии) и плотности состояний 4*d*-атомов (штриховые линии). Уровень Ферми $E_F = 0$ eV.

ПС для фаз начала (YCNi₃), середины (TcCNi₃) и конца (AgCNi₃) обсуждаемого MCNi₃-ряда. Тенденции их изменения (в зависимости от типа 4*d*-металла) удобно рассмотреть в сравнении с гипотетическим "антиперовскитом" \Box CNi₃ с "пустой" M-подрешеткой. Видно, что спектр валентных состояний \Box CNi₃ включает три основные полосы — A, B и C (рис. 1), составленные в основном вкладами C2*p*-, гибридных связывающих C2*p*-Ni3*d*- и несвязывающих Ni3*d*-состояний соответственно. Для \Box CNi₃ полосы A и B заполнены, полоса C пустая.

Общая эволюция зонной структуры фаз MCNi₃ в ряду YCNi₃ \rightarrow AgCNi₃ определяется 1) ростом электронной концентрации (ЭК) от 37 е для YCNi₃ до 45 е для AgCNi₃ в пересчете на формульную единицу, что приводит к заполнению прифермиевской полосы; 2) понижением орбитальной энергии *d*-состояний атомов металлов *M* при переходе к концу 4*d*-ряда.

Последняя тенденция наглядно прослеживается по распределению парциальных M4d-состояний на рис. 1. Например, в спектре YCNi₃ (ЭК = 37 е) Y4d-полоса в основном вакантна и расположена выше уровня Ферми $E_{\rm F}$. Наоборот, для TcCNi₃ (ЭК = 41 е) полоса Tc4d-состояний расположена вблизи $E_{\rm F}$ и оказывается частично заполненной. Наконец, для AgCNi₃ (ЭК = 45 е) Ag4d-полоса полностью занята и находится на $\sim 3.5-4.3$ eV ниже $E_{\rm F}$. В результате получаем следующее.

1) Общий профиль ПС валентной зоны антиперовскитов *M*CNi₃ с участием 4*d*-металлов начала ряда определяется в основном вкладами состояний углерода и никеля, а состояния 4*d*-металлов примешиваются достаточно незначительно.

2) Для антиперовскитов $MCNi_3$ с участием 4*d*-металлов середины ряда их состояния образуют интенсивную, частично заполненную полосу вблизи E_F , что обусловливает магнитное поведение этих фаз (см. далее).

3) Для антиперовскитов $MCNi_3$ с участием 4*d*-металлов конца ряда их состояния образуют выделенную, полностью заполненную полосу, находящуюся ниже полосы C2p-Ni3*d*-состояний, тогда как структуру зон вблизи E_F вновь определяют состояния подрешеток никеля и углерода.

Таким образом, с ростом атомного номера 4*d*-металлов их вклады в прифермиевскую область MCNi₃ резко возрастают, что приводит для фаз MCNi₃ (M = Nb-Ru) к нестабильности их немагнитного состояния, заметным спиновым расщеплениям M4*d*-зон и формированию на атомах M значительных магнитных моментов (MM, табл. 3). Для MCNi₃ (M = Rh-Ag) M4*d*-зоны оказываются практически заполненными и располагаются ниже E_F , что способствует "восстановлению" парамагнитного состояния этих антиперовскитов.

В табл. З приводятся расчетные значения MM отдельных атомов в составе $MCNi_3$. Видно, что MM атомов углерода и никеля во всех фазах незначительны (не более $0.25 \mu_B$), поэтому C, Ni подрешетки в $MCNi_3$ можно считать парамагнитными, т.е. магнитные свойства $MCNi_3$ будут регулироваться поведением M-подрешетки. Видно, что для "крайних" соединений

Рис. 2. Разностные спиновые плотности ($ho\uparrowho\downarrow$) в плоскости [110] для антиперовскитов ZrCNi₃, MoCNi₃, RuCNi₃ и PdCNi₃.

ряда их ММ малы (не превышают $0.02 \mu_B$), однако резко возрастают к середине ряда, достигая значений $0.7-1.7 \mu_B$ для соединений Мо, Тс, Ru. Описанную ситуацию наглядно демонстрирует рис. 2, где представлены карты распределения разностной спиновой плотности ($\rho \uparrow -\rho \downarrow$) в плоскости [110] для ZrCNi₃, MoCNi₃, RuCNi₃ и PdCNi₃. Отметим, что все магнитные

Таблица 3. Магнитные моменты атомов (μ_B) для антиперовскитов *M*CNi₃ (M = Y-Ag) по данным расчетов FLAPW-GGA

Фаза	MM(M)	MM(C)	MM(Ni)
YCNi ₃	0.007	0.015	0.061
ZrCNi ₃	-0.006	-0.001	0.001
NbCNi ₃	0.210	-0.008	0.060
MoCNi ₃	1.268	-0.006	0.199
TcCNi ₃	1.787	0.026	0.255
RuCNi ₃	0.743	0.016	0.138
RhCNi ₃	0.151	-0.026	0.018
PdCNi ₃	0.023	-0.007	0.005
AgCNi ₃	-0.006	0.040	0.237

фазы *MCNi*₃, согласно оценкам величин их энергий образования, являются неустойчивыми.

Из приводимых в табл. 4 величин спиновых ПС на уровне Ферми $(N_{\rm F})$ видно, что $N_{\rm F} > 0$, т.е. все фазы MCNi₃ обладают металлической проводимостью. В зависимости от типа 4*d*-металла N_F меняется немонотонно, принимая минимальные значения для крайних членов ряда (так, $N_{\rm F}({\rm ZrCNi}_3) = 3.575$, $N_{\rm F}({\rm AgCNi_3}) = 3.998 \, {\rm states/eV})$ и максимальные для средних ($N_{\rm F}({\rm RuCNi}_3) = 10.13$ states/eV). Для всех антиперовскитов основной вклад (более 50%) в N_F вносят 3d-состояния никеля, вклад 4d-состояний элемента M меньше и зависит от природы атома М. Например, для крайних членов ряда YCNi₃, ZrCNi₃, AgCNi₃ эти вклады не превышают 15% от вклада Ni3d-состояний, тогда как для средних он достигает 40-60%. Вклад состояний углеродной подрешетки на порядок меньше и достаточно мало зависит от типа М-катиона.

Согласно нашим расчетам изоструктурного сверхпроводника — антиперовскита $MgCNi_3$, величина N_F этой фазы составляет около 4.6 states/eV и включает

Таблица 4. Полные и парциальные плотности электронных состояний на уровне Ферми $N(E_{\rm F})$ (states/eV per cell) антиперовскитов $M \,{\rm CNi}_3$ ($M = {\rm Y}, {\rm Zr}, \ldots, {\rm Ag}$)

			1						
$N(E_{ m F})^*$	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag
Полная	5.288	3.575	6.083	6.043	8.289	10.13	7.208	7.539	3.998
$N_{\rm F1}$	3.220	1.785	4.367	1.922	5.232	3.495	3.125	3.779	3.398
$N_{\rm F}$	2.068	1.790	1.716	4.121	3.057	6.634	4.083	3.760	0.600
М	0.204	0.399	1.707	1.603	2.467	3.077	1.896	1.567	0.123
$N_{\mathrm{F}\uparrow}$	0.136	0.198	1.354	0.726	1.489	1.174	0.778	0.788	0.104
5s 1	0.001	0.001	0.002	0.001	0.002	0.003	0.004	0.001	0.001
4 <i>d</i> 1	0.121	0.186	1.333	0.719	1.466	1.148	0.753	0.768	0.057
$N_{ m F\downarrow}$	0.068	0.201	0.353	0.877	0.978	1.903	1.118	0.779	0.019
5s	0.001	0.001	0.001	0.003	0.002	0.002	0.004	0.001	0.001
4d	0.056	0.188	0.345	0.860	0.967	1.845	1.088	0.759	0.013
С	0.353	0.201	0.120	0.221	0.598	0.300	0.288	0.338	0.283
$N_{ m F\uparrow}$	0.209	0.101	0.064	0.117	0.535	0.161	0.121	0.167	0.257
2p	0.198	0.092	0.040	0.093	0.451	0.147	0.103	0.154	0.237
$N_{ m F\downarrow}$	0.144	0.100	0.056	0.104	0.063	0.139	0.167	0.171	0.026
2p	0.139	0.091	0.042	0.090	0.049	0.120	0.148	0.157	0.025
Ni	3.729	2.228	2.796	3.345	4.121	5.393	4.227	4.905	2.907
$N_{ m F\uparrow}$	2.256	1.113	1.864	0.813	2.539	1.742	1.882	2.458	2.430
4 <i>s</i> 1	0.101	0.026	0.013	0.013	0.038	0.018	0.033	0.009	0.064
3 <i>d</i> 1	2.116	1.051	1.763	0.774	2.417	1.676	1.821	2.384	2.293
$N_{ m F\downarrow}$	1.473	1.115	0.932	2.532	1.582	3.651	2.345	2.447	0.477
4 <i>s</i>	0.044	0.026	0.019	0.062	0.024	0.042	0.035	0.009	0.007
3d	1.394	1.052	0.880	2.416	1.524	3.522	2.265	2.378	0.463

* Приведены вклады для спинов "вверх" и "вниз".

орбитальные вклады Ni3d- (88.2%), Mg3s, p, d-(3.3%) и C2s, 2p-состояний (5.08%) соответственно. Из данных табл. 4 можно видеть, что по величинам $N_{\rm F}$ и их орбитальному составу наиболее близкими к сверхпроводнику MgCNi₃ оказываются антиперовскиты MCNi₃ для M =Y, Zr и Ag, тогда как для фаз с участием 4d-металлов середины ряда существенную роль в формировании прифермиевских состояний играют их M4d-спиновые состояния.

3.4. Межатомные взаимодействия. Выводы об основных механизмах межатомных взаимодействий в фазах *MCNi*₃ можно сделать на основе анализа

карт полной электронной плотности (ЭП). В качестве примера на рис. З приведены карты ЭП для YCNi₃ и TcCNi₃ в плоскости [110]. Можно видеть заметную локализацию ЭП вдоль линий Ni–C, свидетельствующую о ковалентной составляющей этих связей. Связи между атомами *M*-подрешетки имеют металлический тип, тогда как связи между атомами *M*-Ni имеют направленный характер, что указывает на образование гибридных Ni3*d*-*M*4*d*-состояний ковалентного типа.

Более подробные сведения о межатомных взаимодействиях в фазах *M*CNi₃ позволяет получить анализ эффектов орбитальной гибридизации (рис. 4, 5).

Рис. 3. Карты полной электронной плотности (ρ) в плоскости [110] антиперовскитов YCNi₃ (a) и TcCNi₃ (b).

Рис. 4. Полные (вверху) и парциальные плотности валентных состояний антиперовскитов ZrCNi3 и TcCNi3.

Для того чтобы выяснить, какие типы гибридных орбиталей (ГО) возможны в обсуждаемых соединениях, рассмотрим фрагмент их кристаллической структуры — атом никеля в ближайшем окружении из двух атомов углерода и четырех M-атомов. Такой комплекс обладает симметрией точечной группы D_{4h} , и электронные состояния входящих в него атомов формируют ГО, отвечающие неприводимым представлениям этой группы. В этом случае Ni3*d*- и C2*p*-состояния могут образовывать следующие ГО:

$$\begin{split} \Psi(A_{1g}) &\sim 3d_{z2}^{\text{Ni}} + c[2p_z^{\text{C1}} - 2p_z^{\text{C2}}], \\ \Psi(E_{g\pm}) &\sim \left\{ |+\rangle \sim \left(3d_{yz}^{\text{Ni}} + c_1[2p_y^{\text{C1}} - 2p_y^{\text{C2}}] \right), \\ |-\rangle &\sim \left(3d_{xz}^{\text{Ni}} + c_2[2p_x^{\text{C1}} - 2p_x^{\text{C2}}] \right) \right\}. \end{split}$$

Из рис. 4 видно, что гибридные С-Ni-орбитали расположены в интервале от -0.7 до -3.5 eV ниже $E_{\rm F}$. Другой общей особенностью является относительно слабое перекрывание C2p-Ni $(3d_{xz,yz}, 3d_{z^2})$ -состояний в диапазоне -2.5 - 1 eV. В диапазонах -3.5 - 2.5 eV и -1 eV- $E_{\rm F}$ также имеет место перекрывание этих состояний, однако их вклад в ЭП в направлении С-Ni-связи менее нагляден, поскольку эти состояния в значительно большей степени делокализованы. Вблизи $E_{\rm F}$ для всех фаз MCNi₃ плотности Ni3 d_{z^2} -состояний заметно ниже, чем $3d_{xz,yz}$ -состояний, т.е. гибридные С-Niорбитали (2) около уровня Ферми имеют тип $\Psi(E_g)$. Отметим, что в этом диапазоне перекрывание плотностей Ni3 $D_{xz,yz}$ - и C2p-состояний особенно заметно для

Рис. 5. Карты спиновой плотности ($\rho \downarrow$) ZrCNi₃ (*a*, *c*) и TcCNi₃ (*b*, *d*) в плоскости [200] (*a*, *b*) и в плоскости [001] (*c*, *d*) в энергетическом интервале от -1.0 eV до E_{F} .

УСNi₃ и ZrCNi₃ (рис. 4). Как отмечалось, в других фазах *M*CNi₃ в "прифермиевской" области концентрируются *M*4*d*-состояния.

На рис. 5 приведены карты спиновой плотности $(\rho \downarrow)$ ZrCNi₃ и TcCNi₃ в энергетическом интервале от -1.0 eV до E_{F} . Видно, что в обоих случаях характер распределения этой плотности в C–Ni-направлении демонстрирует образование гибридных C–Ni-орбиталей. На примере ZrCNi₃ можно наглядно проследить наряду с образованием гибридных состояний $\Psi(E_g)$ также состояний типа $\Psi(A_{1g})$.

Для MgCNi₃ Ni3*d*-орбитали могут образовывать с валентными 3*s*-состояниями квадратного окружения из четырех атомов Mg лишь следующие ГО:

$$\Psi(A_{1g}) \sim 3d_{z^2}^{\text{Ni}} + c \left[3s^{\text{Mg1}} + 3s^{\text{Mg2}} + 3s^{\text{Mg3}} + 3s^{\text{Mg4}}\right],$$

$$\Psi(B_{2g}) \sim 3d_{xy}^{\text{Ni}} + c \left[3s^{\text{Mg1}} - 3s^{\text{Mg2}} + 3s^{\text{Mg3}} - 3s^{\text{Mg4}}\right].$$
(3)

В рассматриваемых фазах $MCNi_3$ также возможно образование ГО вида (3) с участием M5s-Ni3d-состояний, но эти орбитали в значительной мере делокализованы. Кроме того, в фазах $MCNi_3$ могут образовываться ГО M4d-Ni3d-типа, допустимый набор которых оказывается значительно богаче. Так, $M4d_{e_g}$ - и Ni3d-состояния образуют ГО

$$\Psi(A_{1g}) \sim 3d_{z^2}^{\text{Ni}} + c\left[4d_{z^2}^{M1} + 4d_{z^2}^{M2} + 4d_{z^2}^{M3} + 4d_{z^2}^{M4}\right],$$

$$\begin{split} \Psi(B_{1g}) &\sim 3d_{x^2 - y^2}^{\text{Ni}} \\ &+ c \left[4d_{x^2 - y^2}^{M1} + 4d_{x^2 - y^2}^{M2} + 4d_{x^2 - y^2}^{M3} + 4d_{x^2 - y^2}^{M4} \right], \\ \Psi(B_{2g}) &\sim 3d_{xy}^{\text{Ni}} + c \left[4d_{z^2}^{M1} + 4d_{z^2}^{M2} + 4d_{z^2}^{M3} - 4d_{z^2}^{M4} \right], \quad (4) \end{split}$$

а $M4d(t_{2g})$ - и Ni3d-состояния образуют ГО вида

$$\Psi(A_{1g}) \sim 3d_{z^2}^{\text{Ni}} + c \left[4d_{xy}^{M1} - 4d_{xy}^{M2} + 4d_{xy}^{M3} - 4d_{xy}^{M4} \right],$$

$$\Psi(B_{2g}) \sim 3d_{xy}^{\text{NI}} + c \left[4d_{xy}^{\text{MI}} + 4d_{xy}^{\text{MI}} + 4d_{xy}^{\text{MI}} + 4d_{xy}^{\text{MI}} \right],$$

$$\Psi(E_{g\pm}^{(1)}) \sim \left\{ |+\rangle \sim \left(3d_{xz}^{\text{NI}} + c \left[4d_{xz}^{\text{MI}} + 4d_{xz}^{\text{M2}} + 4d_{xz}^{\text{M3}} + 4d_{xz}^{\text{M4}} \right] \right)$$

$$|-\rangle \sim \left(3d_{yz}^{\text{Ni}} + c\left[4d_{yz}^{M1} + 4d_{yz}^{M2} + 4d_{yz}^{M3} + 4d_{yz}^{M4}\right]\right)\right\},\$$

$$\Psi(E_{g\pm}^{(2)}) \sim \{ |+\rangle \sim \left(3d_{xz}^{\text{Ni}} + c \left[4d_{xz}^{M1} - 4d_{xz}^{M2} + 4d_{xz}^{M3} - 4d_{xz}^{M4} \right] \right), \\ |-\rangle \sim \left(3d_{yz}^{\text{Ni}} + c \left[4d_{yz}^{M1} - 4d_{yz}^{M2} + 4d_{yz}^{M3} - 4d_{yz}^{M4} \right] \right) \}.$$
(5)

Для фаз MCNi₃ перекрывание большинства *M*4*d*_{*t*_{2*e*},*e*_{*e*}- и Ni3*d*-состояний происходит в интервале} -4.5--1.3 eV (рис. 4). Исключение составляют PdCNi₃ и AgCNi₃, где такое перекрывание оказывается существенным в интервалах -4 eV-E_F и -3--0.25 eV соответственно. Отметим, что для всех фаз MCNi₃ формы парциальных плотностей Ni3d_{x²-v²}- и M4d_e,-состояний в нижней части валентной зоны (например, для ZrCNi₃ — в диапазоне примерно -4.2--2.8 eV, для TcCNi₃ — в диапазоне -4.5--2.7 eV, см. рис. 4) оказываются подобными. Можно предположить, что в фазах MCNi₃ имеет место образование гибридных M-Niорбиталей (4) вида $\Psi(B_{1g})$, за исключением AgCNi₃, для которого парциальная плотность $3d_{x^2-y^2}$ -состояний никеля в нижней части валентной зоны сравнительно мала.

Что касается перекрывания этих парциальных ПС вблизи $E_{\rm F}$, то для YCNi₃ и ZrCNi₃ оно сравнительно невелико (рис. 4), однако в ряду NbCNi₃ \rightarrow RuCNi₃ резко возрастает за счет роста плотности $M4d_{t_{2g},e_g}$ -состояний. Отметим, что из состояний, способных образовывать гибридные M-Ni-орбитали (4), (5), для фаз MCNi₃ наиболее существенным оказывается перекрывание состояний Ni3 $d_{x^2-y^2} - M4d_{e_g}$ и Ni3 $d_{xz,yz} - M4d_{t_{2g}}$ (рис. 4). Следует указать, что характер распределения ЭП не исключает и образования гибридных M-Ni-орбиталей с участием делокализованных Ni4s- и M5s-состояний.

4. Заключение

С помощью *ab initio* зонного метода FLAPW-GGA проведены прогноз фазовой устойчивости и систематический анализ структурных, упругих, электронных, магнитных свойств и природы межатомных связей для семейства гипотетических кубических фаз MCNi₃ (M = Y, Zr, ..., Ag), изоструктурных новому сверхпроводнику MgCNi₃.

На основе расчетов энергий формирования фаз MCNi₃ их исходных компонентов (ΔH) показано, что для антиперовскитов с участием металлов начала и конца 4*d*ряда (YCNi₃, ZrCNi₃ и PdCNi₃) их $\Delta H < 0$, что указывает на возможность успешного синтеза этих соединений из соответствующих простых веществ. Антиперовскит AgCNi₃ ($\Delta H \sim 0$) является метастабильным, тогда как синтез остальных фаз MCNi₃ (с $\Delta H > 0$), очевидно, при обычных условиях будет затруднен.

Расчеты независимых упругих констант (C_{11} , C_{12} и C_{44}) показали, что фазы $MCNi_3$ (M = Y, Zr, Tc, Ru, Rh, Pd, Ag) механически устойчивы, тогда как антиперовскиты NbCNi₃ и MoCNi₃ следует отнести к механически нестабильным системам. Для всех $MCNi_3$ B > G' > G, т. е. для этих материалов параметром, лимитирующим их механическую стабильность, является модуль сдвига G.

Общая эволюция зонной структуры в ряду антиперовскитов YCNi₃ \rightarrow AgCNi₃ определяется понижением орбитальной энергии 4*d*-состояний атомов *M* при переходе к концу 4*d*-ряда и ростом ЭК в ячейке (от 37 е для YCNi₃ до 45 е для AgCNi₃). В результате: 1) для *M*CNi₃ с участием 4*d*-металлов начала ряда валентный спектр определяется преимущественно состояниями подрешеток углерода и никеля, а полоса *M*4*d*-состояний расположена выше E_F ; 2) для *M*CNi₃ с участием 4*d*-металлов середины ряда полоса *M*4*d*-состояний оказывается частично заполненной и расположена вблизи E_F ; 3) для *M*CNi₃ с участием 4*d*-металлов конца ряда полоса *M*4*d*-состояний полностью заполнена и расположена ниже E_F .

Таким образом, с ростом атомного номера 4*d*-металлов их вклады в прифермиевскую область *M*CNi₃ резко возрастают, что приводит для фаз *M*CNi₃ (M = Nb-Ru) к спиновым расщеплениям *M*4*d*-зон и формированию на атомах *M* значительных магнитных моментов. Для *M*CNi₃ (M = Rh-Ag) *M*4*d*-зоны практически заполнены и располагаются ниже E_F , что способствует "восстановлению" парамагнитного состояния этих антиперовскитов. Согласно расчетам, С-, N-подрешетки углерода и никеля в *M*CNi₃ немагнитны, т.е. магнитные свойства *M*CNi₃ будут регулироваться прежде всего поведением *M*-подрешетки. Все магнитные фазы *M*CNi₃, согласно оценкам величин их энергий образования, неустойчивы.

Список литературы

- [1] А.Л. Ивановский, А.И. Гусев, Г.П. Швейкин. Квантовая химия в материаловедении. Тройные карбиды и нитриды переходных металлов и элементов III, V подгрупп. Изд-во УрО РАН, Екатеринбург (1996). 339 с.
- [2] А.Л. Ивановский. Успехи химии 64, 499 (1995).
- [3] K. Motizuki, H. Nagai, T. Tanimoto. J. Physique 49, C 8 (1998).
- [4] M. Shirai, Y. Ohata, N. Suzuki, K. Motizuki. Jap. J. Appl. Phys. 32, Suppl. 32-3, 250 (1993).
- [5] S. Ishida, S. Fujii, A. Sawabe, S. Asano. Jap. J. Appl. Phys. 32, Suppl. 32-3, 282 (1993).
- [6] C. Kuhnen, A. Dos Santos. Solid State Commun. 85, 273 (1993).
- [7] А.Л. Ивановский. ЖНХ 41, 650 (1996).
- [8] A. Dos Santos, C. Kuhnen. J. Appoys Comp. 321, 60 (2001).
- [9] F.J. DiSalvo. Science 247, 649 (1990).
 [10] M.Y. Chern, D.A. Vennos, F.J. DiSalvo. J. Solid State Chem. 96, 415 (1992).
- [11] D.A. Papaconstantopoulos. W.E. Pickett. Phys. Rev. B 45, 4008 (1992).
- [12] E.O. Chi, W.S. Kim, N.H. Hur, D. Jung. Solid State Commun. 121, 309 (2002).
- [13] I.R. Shein, A.L. Ivanovskii. J. Solid State Chem. 177, 61 (2004).
- [14] A.L. Ivanovskii, N.I. Medvedeva. Mendeleev Commun. 9, 36 (1999).
- [15] А.Л. Ивановский, Н.И. Медведева, Д.Л. Новиков. ФТТ 39, 1035 (1997).
- [16] А.Л. Ивановский, Н.И. Медведева, А.Н. Сказкин, Г.П. Швейкин. ЖНХ **44**, 1543 (1999).

- [17] T. He, Q. Huang, A.P. Ramirez, Y. Wang, K.A. Regan, N. Rogado, M.A. Hayward, M.K. Haas, J.S. Slusky, K. Inumara, H.W. Zandbergen, N.P. Ong, R.J. Cava. Nature 411, 54 (2001).
- [18] А.Л. Ивановский. ФТТ 45, 1742 (2003).
- [19] А.Л. Ивановский, В.Г. Бамбуров. Инженерная физика 1, 50 (2003).
- [20] S. Mollah. J. Phys.: Cond. Matter 16, R 1237 (2004).
- [21] W. Xian-Gang, W. Hong-Ming, D. Jin-Ming. Chin. Phys. Lett. 19, 1522 (2002).
- [22] И.Р. Шеин, А.Л. Ивановский, Н.И. Медведева. Письма в ЖЭТФ 74, 127 (2001).
- [23] J.H. Kim, J.S. Ahn, Jinsoo Kim, Min-Seok Park, S.I. Lee, E.J. Choi, S.J. Oh. Phys. Rev. B 66, 172 507 (2002).
- [24] L. Shan, K. Xia, Z.Y. Liu, H.H. Wen, Z.A. Ren, G.C. Che, Z.X. Zhao. Phys. Rev. B 68, 024 523 (2003).
- [25] H.D. Yang, S. Mollah, W.L. Huang, P.L. Ho, H.L. Huang, C.J. Liu, J.Y. Lin, Y.L. Zhang, R.C. Yu, C.Q. Jin. Phys. Rev. B 68, 092 507 (2003).
- [26] M.A. Hayward, M.K. Haas, A.P. Ramirez, T. He, K.A. Regan, N. Rogado, K. Inumaru, R.J. Cava. Solid State Commun. 119, 491 (2001).
- [27] T.G. Kumary, J. Janaki, A. Mani, S. Mathi Jaya, V.S. Sastry, Y. Hariharan, T.S. Radhakrishnan, M.C. Valsakumar. Phys. Rev. B 66, 064 510 (2002).
- [28] I.R. Shein, A.L. Ivanovskii, E.Z. Kurmaev, A. Moewes, S. Chiusbian, L.D. Finkelstein, M. Neumann, Z.A. Ren, G.C. Che. Phys. Rev. B 66, 024 520 (2002).
- [29] И.Р. Шеин, К.И. Шеин, А.Л. Ивановский. Металлофизика и новейшие технологии 27, 1193 (2004).
- [30] D. Music, Z. Sun, J.M. Schneider. Phys. Rev. B 71, 052104 (2005).
- [31] M.S. Park, J.S. Giim, S.-H. Park, Y.W. Lee, S.I. Lee, E.J. Choi. Supercond. Sci. Technol. 17, 274 (2004).
- [32] К.С. Александров, Б.В. Безносиков. Перовскиты: настоящее и будущее. Изд-во СО РАН, Новосибирск (2004). 231 с.
- [33] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz. In: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties / Ed. K. Schwarz. Techn. Universität Wien, Austria (2001).
- [34] J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [35] P.E. Blochl, O. Jepsen, O.K. Andersen. Phys. Rev. B 49, 16 223 (1994).
- [36] И.И. Корнилов, Н.М. Матвеева, Л.И. Пряхина, Р.С. Полякова. Металлохимические свойства элементов периодической системы. Наука, М. (1966). 350 с.
- [37] P. Joseph, P.P. Singh. Phys. Rev. B 72, 064 519 (2005).
- [38] P. Joseph, P.P. Singh. J. Phys.: Cond. Matter 18, 5333 (2006).
- [39] J. Wang, S. Yip, S.R. Phillpot, D. Wolf. Phys. Rev. Lett. 71, 4182 (1993).
- [40] M.D. Johannes, W.E. Pickett. Phys. Rev. B 70, 060 507 R (2004).
- [41] R.S. Kumar, A.L. Cornelius, Y. Shen, T.G. Kumary, J. Janaki, M.C. Valsakumar, M.F. Nicol. Physica B 363, 190 (2005).