Электронная структура и эффективные массы электронов и дырок в *а*- и *β*-фазах нитрида кремния

© А.В. Шапошников, И.П. Петров, В.А. Гриценко, С.W. Кіт*

Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия * R&D Center Samsung Electronics Co., Ltd, Process Development/Semiconductor San #24, Nongseo-Ri, Kiheung-Eup, Yongin-City, Kyunggi-Do, Korea

E-mail: grits@isp.nsc.ru

(Поступила в Редакцию 13 декабря 2006 г.)

Из первых принципов рассчитана электронная зонная структура двух основных кристаллических модификаций нитрида кремния α -Si₃N₄ и β -Si₃N₄. Полученные оценки для эффективных зарядов атомов Si и N и эффективных масс электронов и дырок в α -Si₃N₄ хорошо согласуются с экспериментальными данными для аморфного нитрида. Расчеты предсказывают существенное отличие тензора эффективных масс для β -Si₃N₄ по сравнению с α -Si₃N₄.

Работа поддержана проектом РФФИ № 06-02-16621, Интеграционным проектом № 97 Сибирского отделения Российской академии наук и Корейским министерством науки и технологии по программе терабитных приборов.

PACS: 77.22.Jp, 77.55.+f, 77.84.Bw

1. Введение

Двуокись (SiO₂) и нитрид (Si₃N₄) кремния являются основными диэлектриками в кремниевых приборах [1,2]. В аморфном нитриде кремния (*a*-Si₃N₄) имеется высокая ($\approx 10^{19}$ cm⁻³) концентрация электронных и дырочных ловушек. Инжектированные из кремния электроны и дырки захватываются на глубокие ($\approx 1.5 \text{ eV}$) ловушки в Si₃N₄ (эффект памяти). Время жизни электронов и дырок в локализованном состоянии превышает 10 лет при 85°C. В настоящее время этот эффект широко используется при разработке энергонезависимой быстродействующей (флэш) памяти [2,3]. Инжекция электронов и дырок в нитрид осуществляется туннельным механизмом. Темп инжекции электронов и дырок экспоненциально зависит от величин электронных m_e^* и дырочных m_h^* эффективных масс в Si₃N₄ [4–7].

В кристаллическом состоянии нитрид существует в виде α - и β -фаз. Низкотемпературная α -фаза переходит в энергетически более выгодную β -фазу при температуре 1723°С. Решетки α - и β -фаз нитрида кремния обладают гексагональной симметрией. Ближний порядок определяется тетраэдрическим окружением атома кремния (SiN₄). Атомы азота N координированы тремя атомами кремния, лежащими приблизительно в одной плоскости. Структурные параметры различных модификаций Si₃N₄ к настоящему моменту надежно определены экспериментально.

Элементарная ячейка α -фазы содержит 28 атомов (12 — Si и 16 — N) и имеет постоянные решетки a = 7.75 Å, c = 5.62 Å (рис. 1) [8]. Ячейка β -фазы содержит 14 атомов (6 — Si, 8 — N), постоянные решетки a = 7.71 Å, c = 2.91 Å (рис. 1) [9]. Средние значения углов Si–N–Si составляют 119°9′ в β -Si₃N₄ и 118°8′ в

 α -Si₃N₄. Плотности веществ различаются незначительно. С точки зрения атомной структуры, α -фаза наиболее близка аморфному нитриду a-Si₃N₄ [1].

В [10] из первых принципов была рассчитана электронная зонная структура α - и β -фаз нитрида кремния. Авторы отмечают, что зонные структуры обеих фаз очень близки и основные свойства электронной структуры определяются практически полностью ближним порядком. В работе были получены аномально большие значения для дырочной эффективной массы в α -Si₃N₄: $m_h^* \approx 2.5 - 3.5 m_e$. Экспериментальные зна-

Рис. 1. Элементарные ячейки α -Si₃N₄ (*a*) и β -Si₃N₄ (*b*).

чения эффективных масс как электронов, так и дырок в аморфном нитриде лежат в диапазоне $m_{\rm e}^* \approx m_{\rm h}^* \approx (0.4-0.5)m_{\rm e}$ [4–7].

В работе [10] рассчитанный перенос заряда по связи Si–N составил $\Delta = 0.70e$, что вдвое превышает экспериментальное значение $\Delta = 0.35e$ в аморфном Si₃N₄ [1]. В работе [11] в α -Si₃N₄ было получено значение дырочной эффективной массы $m_h^* \approx (0.55m_0)$, близкое к экспериментальной величине, однако эффективные массы для электронов вдвое больше экспериментальных значений для a-Si₃N₄. Перенос заряда по связи Si–N составил $\Delta = 0.63e$, что существенно превышает экспериментальное значение 0.35e [1]. Было обнаружено заметное отличие эффективных масс в α - и β -модификациях.

Следует отметить, что, насколько известно авторам, экспериментального изучения эффективных масс и эффективных зарядов в кристаллических модификациях не проводилось. В то же время известно, что средние значения тетраэдрических углов N–Si–N и межатомных расстояний Si–N в аморфном нитриде близки к соответствующим величинам в кристаллической α -фазе. Трудность в теоретическом моделировании из первых принципов аморфной структуры приводит к тому, что в большинстве работ вместо нее используется кристаллическая α -фаза. Как показывают наши расчеты, это приближение во многих случаях реализуется очень хорошо.

Целью настоящей работы является теоретическое изучение электронной структуры и уточнение значений эффективных зарядов и эффективных масс дырок и электронов в α - и β -фазах нитрида кремния на основе *ab initio* расчетов.

2. Методы расчета

Зонные расчеты электронной структуры проводились с использованием программного пакета Quantum-Espresso [12]. В основе лежит теория функционала плотности (DFT); в качестве принципиального расчетного базиса используются плоские волны и псевдопотенциалы. Периодическая структура кристалла учитывается через граничные условия на границе элементарной ячейки.

В расчете использовались следующие электронные конфигурации: для атомов Si — $[Ne]3s^23p^23d^0$, для атомов N — $[He]2s^22p^3$. Для атомов Si электроны в состояниях $3s^23p^2$ относились к валентным оболочкам, электроны в полностью заполенной оболочке [Ne] относились к остову. Для атомов N электроны в состояниях $2s^22p^3$ относились к валентным оболочкам, электроны в полностью заполенной оболочке [He] относились к остову. Влияние основных электронов учитывалось путем использования ультрамягких (ultrasoft Vanderbilt) псевдопотенциалов. Использовался нелокальный обменнокорреляционный функционал в параметризации Perdew–Вигке–Егпzerhof. Энергия обрезания плоских волн для самосогласованного расчета (SCF) выбиралась таким

образом, чтобы получить сходимость по полной энергии ячейки не хуже 0.001 Ry/atom, и равнялась 50 Ry. Плотность сетки *k*-точек в обратном пространстве для SCF-расчета выбиралась из таких же соображений.

Численная оценка эффективных масс электронов и дырок проводилась по полученной совокупности точек E(k) в зоне Бриллюэна путем аппроксимации дисперсионной кривой параболой в окрестности локального экстремума. Для точного определения положения экстремальных точек (вершины валентной зоны и дна зоны проводимости) и получения плотной дискретной сетки в окрестности экстремумов проводились дополнительные несамосогласованные (non-SCF) расчеты с помощью полученных в предыдущем SCF-расчете потенциалов.

3. Результаты и обсуждение

Зона Бриллюэна для α -Si₃N₄ предствлена на рис. 2. Для β -фазы картина качественно похожа, обратная ячейка более вытянута вдоль оси шестиугольной призмы. На рисунке показаны уникальные точки симметрии и путь в обратном пространстве, вдоль которого строилась дисперсионная зависимость E(k), приведенная на рис. 3 (α -Si₃N₄) и рис. 4 (β -Si₃N₄).

Рис. 2. Первая зона Бриллюэна для α-Si₃N₄. Приведены уникальные точки симметрии.

Рис. 4. Зонная структура β -Si₃N₄.

Парциальная плотность состояний (ППС) для Si 3s, 3p и N 2p в α -Si₃N₄ и β -Si₃N₄, а также экспериментальные спектры эмиссии и поглощения аморфного Si₃N₄, взятые из [13], совмещенные в единой энергетической шкале, представлены на рис. 5 и 6. За начало отсчета энергии принято положение верха валентной зоны E_v. Расчетные ППС для обеих фаз очень близки и качественно совпадают.

Рентгеновские спектры эмиссии и поглощения в дипольном приближении позволяют определить симметрию волновых функций электронов, которые формируют валентную зону и зону проводимости диэлектрика. Детали интерпретации рентгеновских спектров приведены в [1].

В соответствии с экспериментом валентная зона a-Si₃N₄ состоит из двух подзон, разделенных ионной щелью. В стандартной интерпретации нижняя валентная зона сформирована 2s-орбиталями азота с примесью 3s-, 3р-состояний кремния. Верхняя валентная сформирована 2*p*-орбиталями азота и 3*s*-, 3*p*-орбиталями кремния. В Si L_{2.3}-рентгеновских спектрах эмиссии проявляются переходы из валентной зоны на внутренний атомный Si 2*p*-уровень. В соответствии с дипольными правилами отбора на Si 2p-уровень разрешены переходы с Si 3s-состояний (одноцентровые локальные переходы). На рис. 5, а и 6, а представлена расчетная парциальная плотность Si 3s-состояний. Верхний пик при энергии $\approx -8\,\mathrm{eV}$ в расчетной ППС близок к положению соответствующего пика в Si L2.3-спектре эмиссии. Пик с энергией $\approx -3 \,\mathrm{eV}$ в экспериментальном Si $L_{2,3}$ -спектре эмиссии обусловлен, как это показано в [14], вкладом Si 3d-состояний, не занятых в свободном атоме кремния, и вкладом двухцентровых переходов.

Следует отметить, что хотя в расчетный базис были включены 3d-состояния для Si, парциальные плотности для них не приводятся. Корректная интерпретация Si L2.3-спектра эмиссии требует точного расчета дипольных матричных элементов перехода, включая вклады от нелокальных переходов (двухцентровые N $2p \rightarrow \text{Si} 2p$), что выходит за рамки данной работы. Более точный учет этих переходов приведен в работе [14].

Анализ заселенности по Лоудину позволил определить эффективные заряды на атомах кремния и азота в α -Si₃N₄: для Si q = 2.49e, для N q = 6.02e. Поскольку атом кремния в Si₃N₄ координирован четырьмя атомами азота, а атом азота — тремя атомами кремния, рассчитанный перенос заряда на связь Si-N составляет $\approx 0.37e$. Эта величина близка к экспериментальному значению 0.35е [1]. Эффективные заряды и перенос заряда на связь Si-N в β-Si₃N₄ практически не отличаются от α -Si₃N₄.

Значения эффективных масс для электронов и дырок в обеих модификациях Si₃N₄ приведены в таблице. Анализ зонной структуры *α*-Si₃N₄ позволяет сделать вывод, что этот материал является непрямозонным диэлектриком. Верх валентной зоны расположен в точке К зоны Бриллюэна. Во всей плоскости ГКМ (плоскость, перпендикулярная оси призмы, см. рис. 1, 2) значения

Рис. 5. Рассчитанные парциальные плотности (сплошные линии) состояний для α -Si₃N₄ в сравнении с экспериментальными рентгеновскими спектрами эмиссии и поглощения (штриховые линии) для аморфного Si₃N₄.

Рис. 6. Рассчитанные паршиальные плотности состояний (сплошные линии) для β-Si₃N₄ в сравнении с экспериментальными рентгеновскими спектрами эмиссии и поглощения (штриховые линии) для аморфного Si₃N₄.

Компоненты тензора эффективных масс	$lpha$ -Si $_3N_4$		β -Si $_3N_4$	
$m_{ m e}^{*\parallel}$	0.79(Γ– <i>A</i>)		0.23(Γ– <i>A</i>)	
$m_{ m e}^{*\perp}$	1	0.5	1.6	
	$(\Gamma - K; \Gamma - M)$	$(\Gamma - K; \Gamma - M)$	$(\Gamma - K; \Gamma - M)$	
$m_{ m h}^{*\parallel}$	0.5		2.9	1.5
	(M-L)		(верх $VB - \Gamma$)	(Bepx VB - A)
$m_{ m h}^{*\perp}$	$\begin{array}{c} 6\\ (M-\Gamma; M-K) \end{array}$		0.85	
			(перпендикулярно $\Gamma - A$)	

Компоненты тензоров эффективных масс электронов и дырок (в единицах m_0) в α -Si₃N₄ и β -Si₃N₄ для двух направлений вдоль шестиугольной призмы: перпендикулярно $(m_e^{*\perp}, m_h^{*\perp})$ и параллельно $(m_e^{*\parallel}, m_h^{*\parallel})$ ее оси

Примечание. В α -Si₃N₄, где наблюдается вырождение на дне зоны проводимости в Г-точке, снимающееся в направлении, перпендикулярном оси призмы, приведены два значения компоненты $m_e^{*\perp}$, соответствующие двум вырожденным зонам. В β -Si₃N₄, где значение компоненты m_h^* , параллельной оси призмы, зависит от направления вдоль оси, приведены два значения $m_h^{*\parallel}$.

энергии очень близки. В результате этого получаем большие значения эффективных масс m_h^* для дырок в этой плоскости. Значение эффективной массы m_h^* в направлении, перпендикулярном плоскости ГКМ, равно $m_h^* \approx 0.5m_0$, что близко к экспериментальным данным: $(0.4-0.5)m_0$.

Дно зоны проводимости расположено в центре зоны Бриллюэна Г (рис. 3). Здесь наблюдается вырождение по энергии, которое снимается при движении перпендикулярно оси призмы (направления $\Gamma \to M$ и $\Gamma \to K$) и остается при движении параллельно оси призмы (направление $\Gamma \rightarrow A$). Неучет этого вырождения привел к завышению эффективной массы электронов в 2 раза в работе [10]. С учетом вырождения эффективная масса "легких" электронов составляет $m_{\rm e}^* \approx 0.5 m_0$, что близко к экспериментальным данным: (0.4-0.5)m₀. Расчетная ширина запрещенной зоны α-Si₃N₄ составляет 4.5 eV. Это значение хорошо совпадает с результатами оптических измерений аморфного нитрида кремния [2] и ширины запрещенной зоны, определенной с помощью измерения барьеров для инжекции электронов и дырок [4].

Как и α -Si₃N₄, β -Si₃N₄ является непрямозонным диэлектриком. Анализ зонной структуры β -Si₃N₄ (рис. 4) показывает ряд заметных отличий от α -Si₃N₄. Вершина валентной зоны смещена из точки Γ в направлении точки A (рис. 2, 4). На рис. 7 приведен вид поверхности

Рис. 7. Поверхность постоянной энергии в зоне Бриллюэна для β-Si₃N₄.

постоянной энергии в зоне Бриллюэна для β -Si₃N₄. На рисунке хорошо заметно, что поверхность постоянной энергии имеет форму эллипсоида вращения с одной половиной, сжатой по оси шестиугольной призмы. Вид дисперсии E(k) и величина эффективной массы зависят от направления вдоль оси призмы. Тот факт, что вершина валентной зоны β -Si₃N₄ не находится в точке симметрии зоны Бриллюэна, приводит к кардинальному отличию эффективных масс дырок m_h^* по сравнению с α -Si₃N₄. Дно зоны проводимости β -Si₃N₄ находится в точке Г. Вырождения, характерного для α -Si₃N₄, не наблюдается.

4. Заключение

В настоящей работе проведено детальное изучение зонной структуры и эффективных масс электронов и дырок в α -Si₃N₄ и β -Si₃N₄. Расчет очень хорошо описывает экспериментально наблюдаемый перенос заряда по связи Si–N.

Согласно расчетам, "легкие" электроны и дырки в α -фазе имеют эффективную массу $m_e^* \approx m_h^* \approx 0.5 m_0$, что хорошо согласуется с экспериментальными массами в аморфном a-Si₃N₄. Из-за особенности в положении вершины валентной зоны в β -фазе (она смещена в направлении Γ -A и не находится в точке симметрии зоны Бриллюэна) и отсутствия вырождения на дне зоны проводимости тензоры эффективных масс электронов и дырок в β -Si₃N₄ существенно отличаются от соответствующих тензоров в α -фазе.

Список литературы

- В.А. Гриценко. Строение и электронная структура аморфных диэлектриков в кремниевых МДП-структурах. Наука, Новосибирск (2003). 280 с.
- [2] V.A. Gritsenko. In: Silicon nitride in electronics / Ed. A.V. Rhzanov. Elsevier, N.Y. (1986). 286 p.

- [3] V.A. Gritsenko, K.A. Nasyrov, Yu.N. Novikov, A.L. Aseev, S.Y. Yoon, J.-W. Lee, E.-H. Lee, C.W. Kim. Solid State Electron. 47, 1651 (2003).
- [4] V.A. Gritsenko, E.E. Meerson, Yu.N. Morokov. Phys. Rev. B 57, 2081 (1997).
- [5] К.А. Насыров, Ю.Н. Новиков, В.А. Гриценко, С.Ю. Юн, Ч.В. Ким. Письма в ЖЭТФ 77, 455 (2003).
- [6] K.A. Nasyrov, V.A. Gritsenko, Yu.N. Novikov, E.-H. Lee, S.Y. Yoon, C.W. Kim. J. Appl. Phys. 96, 4293 (2004).
- [7] В.А. Гриценко, С.С. Шаймеев, К.А. Насыров. ЖЭТФ 129, 926 (2006).
- [8] ICSD database 2003 Collection; http://icsd.ill.fr/icsd/index.html, Entry #92156.
- [9] ICSD database 2003 Collection; http://icsd.ill.fr/icsd/index.html, Entry #79798.
- [10] S.-Y. Ren, W.Y. Ching. Phys. Rev. B 23, 5454 (1981).
- [11] Yong-Nian Xu, W.Y. Ching. Phys. Rev. B **51**, 24 (1995).
- [12] S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj. http://www.pwscf.org/.
- [13] V.A. Gritsenko, Yu.N. Morokov, Yu.N. Novikov. Appl. Surf. Sci. 113/114, 417 (1997).
- [14] В.А. Гриценко, Ю.Н. Новиков, А.В. Шапошников, Ю.Н. Мороков. ФТП 35, 1041 (2001).