Электро- и магнетотранспортные свойства эпитаксиальных пленок La_{0.67}Ba_{0.33}MnO₃, двухосно механически сжатых подложкой

© Ю.А. Бойков, В.А. Данилов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: yu.boikov@mail.ioffe.ru

(Поступила в Редакцию 21 ноября 2006 г. В окончательной редакции 25 декабря 2006 г.)

Исследованы структура, электро- и магнетосопротивление пленок (20 nm)La_{0.67}Ba_{0.33}MnO₃, выращенных когерентно на подложке (001)La_{0.3}Sr_{0.7}Al_{0.65}Ta_{0.35}O₃, для которой рассогласование в параметрах кристаллических решеток составляет порядка 1%. Жесткая связь манганитного слоя с "массивной" подложкой обусловила искажение его элементарной ячейки ($a_{\perp}/a_{\parallel} \approx 1.02$) и способствовала уменьшению объема последней по сравнению с объемом ячейки в соответствущих массивных кристаллах (a_{\parallel} и a_{\perp} — параметры элементарной ячейки в соответствущих массивных кристаллах (a_{\parallel} и a_{\perp} — параметры элементарной ячейки, измеренные в плоскости подложки и вдоль нормали к ее поверхности соответственно). Температура $T_M \approx 295$ K, при которой электросопротивление ρ пленок (20 nm)La_{0.67}Ba_{0.33}MnO₃ достигало максимума, на 40–45 K ниже значения T_M для соответствующих объемных кристаллов. Пик отрицательного магнетосопротивления ($MR \approx -0.25$ при $\mu_0 H = 1$ T) сформированных пленок наблюдался при $T_{MR} \approx 270$ K. Реакция ρ на магнитное поле существенно зависела от угла между направлением протекания тока в пленочном образце и направлением магнитного поля.

Финансовая поддержка для проведения данных исследований получена из проекта РФФИ № 04-02-16212. PACS: 75.47.Gk, 75.47.Lx

1. Введение

Тонкие слои перовскито-подобных манганитов La_{1-x} R_x MnO₃, где R = Ba, Ca, Sr, ... перспективны для использования в головках для считывания информации с магнитных дисков [1] и в детекторах ИК-излучения [2]. Аномально резкая чувствительность электросопротивления ρ твердых растворов La_{1-x} R_x MnO₃ к магнитному полю и изменению температуры наблюдается в окрестности T_C (T_C — температуры Кюри). Температура ферромагнитного фазового перехода в пленках указанных соединений зависит от их структуры, концентрации носителей заряда (определяемой величиной x в химической формуле) и типа щелочно-земельного компонента.

Пленки La_{2/3}Ba_{1/3}MnO₃ (LBMO) особенно привлекательны для применения в резистивных сенсорах, поскольку ферромагнитное упорядочение спинов на ионах марганца в их объеме происходит при температуре, близкой к комнатной (для объемных стехиометрических кристаллов LBMO $T_C \approx 340$ K [3]). В [4] было показано, что существенное влияние на электронные свойства гетероэпитаксиальных пленок LBMO могут оказывать растягивающие механические напряжения. Механизмы, ответственные за повышение (понижение) температуры Кюри в упруго напряженных пленках LBMO, до сих пор четко не установлены.

В данной работе сформированы и исследованы пленки LBMO, двухосно механически сжатые подложкой в процессе своего формирования. Толщина d = 20 nm выращенных манганитных пленок не превышала критической, при которой начинается релаксация механических напряжений.

2. Эксперимент

Метод лазерного испарения (ComPex 205, KrF, $\lambda = 248$ nm, $\tau = 30$ ns) был использован для выравнивания пленок (20 nm)LBMO на подложках (001)La_{0.3}Sr_{0.7}Al_{0.65}Ta_{0.35}O₃ (LSATO). Плотность лазерного излучения на поверхности исходной керамической мишени LBMO равнялась 1.6 J/cm², а давление кислорода в ростовой камере составляло 0.3 mbar. Эффективная скорость роста манганитных слоев равнялась 0.2 Å/pulse.

Структура выращенных пленок исследовалась с использованием рентгеновской дифракции (Philips X'pert MRD, $\omega/2\theta$, ϕ -сканы, кривые качания). Толщина слоев LBMO контролировалась по ширине сателлитных пиков Лауэ на полученных рентгеновских сканах (см. вставку на рис. 1, *a*). Для определения параметров элементарной ячейки в выращенных слоях LBMO использовались значения 2θ для рентгеновских рефлексов (004) и (303)LBMO.

Морфология свободной поверхности пленок (20 nm)LBMO/LSATO исследовалась с использованием микроскопа атомных сил Nanoscope-IIIa (tapping mode).

Сопротивление *R* пленок измерялось в конфигурации Van der Pauw в магнитном поле *H* и без него. Магнитное поле ($\mu_0 H$ до 5 T) было направлено параллельно плоскости подложки. Электрический ток *I* пропускался вдоль цепочек Mn–O–Mn в манганитной пленке параллельно ($I \parallel H$) или нормально ($I \perp H$) к направлению магнитного поля. Электросопротивление ρ пленок рассчитывалось с использованием соотношения $\rho = \pi R d / \ln 2$ [5]. Для получения температурных зависимостей магнетосопротив-

Рис. 1. *а*) Дифрактограмма (Си $K_{\alpha 1}$, $\omega/2\theta$), полученная для пленки (20 nm)LBMO/LSATO в условиях, когда падающий и отраженный рентгеновские пучки находились в плоскости, перпендикулярной (001)LSATO. *1* — пик (001)LBMO. На вставке показан фрагмент того же скана в окрестности пика (002)LBMO. *2* —пик (002)LSATO. Стрелками показаны сателлитные пики Лауэ. *b*) Дифрактограмма для той же пленки, измеренная в условиях, когда падающий и отраженный рентгеновские пучки находились в плоскости, нормальной к (001)LSATO. *3* — пик (303)LSATO. На вставке — кривая качания ($\omega - 2\theta$) для рентгеновского рефлекса (002)LBMO от пленки (20 nm)LBMO/LSATO.

ления $MR = [\rho(\mu_0 H = 1 \text{ T}) - \rho(H = 0)]/\rho(H = 0)$ были использованы кривые $\rho(T, \mu_0 H = 1 \text{ T})$ и $\rho(T, H = 0)$, полученные в процессе охлаждения пленок со скоростью 20 K/min. Четыре серебряных контакта, расположенные на углах квадрата, напылялись на свободную поверхность выращенных пленок методом термического испарения.

3. Экспериментальные результаты и их обсуждение

Положительное рассогласование $m \approx 1\%$ в параметрах кристаллических решеток LBMO (параметр псевдокубической ячейки $a_1 = 3.910$ Å [6]) и LSATO (па-

раметр псевдокубической ячейки $a_2 = 3.868$ Å [7]) способствовало возникновению двухосных сжимающих в плоскости подложки механических напряжений в слое (20 nm)LBMO/LSATO ($m = (a_f - a_s)/a_s$, где a_f и a_s параметры решеток пленки и подложки соответственно). Температурные коэффициенты линейного расширения LBMO и LSATO имеют близкие значения [7,8].

3.1. Структура и морфология поверхности выращенных манганитных слоев. Ha сканах, рентгеновских полученных для пленок (20 nm)LBMO/LSATO, имелись только пики от манганитной пленки и подложки (рис. 1, a и b). Это позволяет считать, что в объеме выращенных слоев отсутствуют макровключения побочных кристаллических фаз. Нам не удалось выявить какой-либо сложной структуры рентгеновских пиков на полученных дифрактограммах, которая могла бы свидетельствовать о релаксации механических напряжений в манганитных пленках. Многочисленные сателлитные пики Лауэ (см. вставку на рис. 1, a), присутствующие на визуализированных рентгеновских сканах, указывают на высокую однородность сформированных пленок по толщине. Из полученных рентгеновских данных ($\omega/2\theta$ - и ϕ -сканы) следует, что выращенные пленки (20 nm)LBMO/LSATO были четко преимущественно ориентированы как относительно нормали к (001) LSATO, так и относительно выделенного направления в плоскости подложки.

Параметр элементарной ячейки пленки (20 nm)LBMO/LSATO, измеренный вдоль нормали к плоскости подложки $a_{\perp} = 3.958 \pm 0.005$ Å, был существенно больше эффективного параметра ячейки в плоскости подложки $a_{\parallel} = 3.869 \pm 0.005$ Å $(a_{\perp}/a_{\parallel} \approx 1.02)$. Последний практически совпадал с параметром решетки подложки $a_{\text{LSATO}} = 3.868 \pm 0.005$ Å, рассчитаным с использованием значений 20 для пика (303)LSATO на полученных рентгеновских сканах. Из рентгеновских данных следует, что пленки (20 nm)LBMO были выращены когерентно на подложке (001)LSATO. Объем элементарной ячейки в пленке (20 nm)LBMO/LSATO $(V_{\rm eff} = (a_{\perp} \cdot a_{\parallel}^2) \approx 59.22 \,\text{\AA}^3)$ был заметно меньше объема элементарной ячейки стехиометрических массивных кристаллов LBMO ($\sim 59.78\, {\rm \AA}^3$ [6]). Вероятной причиной уменьшения эффективного параметра элементарной ячейки $a_{\rm eff} = V_{\rm eff}^{1/3} \approx 3.898 \,{\rm \AA}$ в выращенных пленках (20 nm)LBMO/LSATO по сравнению с параметром ячейки в стехиометрическом объемном кристалле LBMO является высокая плотность вакансий в их катионной подрешетке.

Ширина кривой качания (0.1-0.08 deg, см. вставку на рис. 1, *b*, для рентгеновского пика (002) от пленки (20 nm)LBMO/LSATO), измеренная на половине его высоты, незначительно отличалась от соответствущих данных [9] для высококачественных манганитных пленок La_{0.67}Ca_{0.33}MnO₃, когерентно выращенных на подложках с малой величиной *m*.

Рис. 2. Изображение свободной поверхности пленки (20 nm)LBMO/LSATO, полученное с использованием микроскопа атомных сил (режим высоты). На поверхности манганитной пленки отсутствуют характерные углубления, которые обычно декорируют малоугловые границы в ее объеме.

Изображение свободной поверхности пленки (20 nm)LBMO/LSATO, полученное с использованием микроскопа атомных сил, показано на рис. 2. На рисунке четко виден верхний, полностью незавершенный слой (толщиной порядка 0.4 nm) манганитной пленки, через отверстия в котором просматривается поверхность слоя. Ha низколежащего поверхности пленки (20 nm)LBMO/LSATO не было выявлено характерных углублений, которые декорируют малоугловые межкристаллитные границы в гранулированных слоях манганитов. Частичная релаксация механических напряжений в манганитных пленках, как правило, неоднородна и сопровождается формированием в их объеме кристаллитов, относительная азимутальная разориентация которых составляет несколько десятых градуса. Такие границы хорошо видны [9,10] на изображениях свободной поверхности манганитных слоев, полученных с использованием микроскопа атомных сил.

3.2. Зависимость ρ И MR пленок от температуры. Темпе-(20 nm)LBMO/LSATO ратурные зависимости электросопротивления пленки (20 nm)LBMO/LSATO, измеренные в магнитном поле различной напряженности, показаны на рис. 3, *a*. При $\mu_0 H = 0$ максимальные значения ρ выращенных слоев наблюдались при температуре $T_M \approx 295 \,\mathrm{K}$, которая на 35–40 K ниже температуры максимума на соответствующей кривой для объемных кристаллов LBMO [3]. Понижение T_M для пленок (20 nm)LBMO/LSATO обусловлено их обогащением кислородом (формированием вакансий в катионной подрешетке). Нарушение стехиометрии в манганитах резко сказывается на относительной концентрации четырехвалентных ионов марганца в их объеме. В выращенных двухосно сжатых в плоскости подложки пленках (20 nm)LBMO/LSATO концентрация ионов Mn⁺⁴ должна быть выше, чем в объемных стехиометрических кристаллах LBMO. Вакансии в катионной подрешетке слоя LBMO способствуют уменьшению эффективного параметра его элементарной ячейки, что в свою очередь приводит к уменьшению энергии упругих напряжений в системе формируемая пленка-подложка. Механизмы, ответственные за нарушение стехиометрии манганитных пленок, механически напряженных (растяжение или сжатие) подложкой, рассмотрены нами в [10].

Магнитное поле способствовало ферромагнитному упорядочению спинов на ионах марганца в выращенных манганитных слоях. Это проявилось в последовательном сдвиге максимума на кривых $\rho(T)$, полученных для пленок (20 nm)LBMO/LSATO, в сторону высоких температур при увеличении $\mu_0 H$, см. рис. 3, a (при $\mu_0 H = 5$ T сдвиг достигал 40 K).

Резкое падение электросопротивления ρ пленок (20 nm)LBMO/LSATO с температурой при 250 < $T < T_M$ обусловлено: а) разрастанием ферромагнитных доменов за счет включений парамагнитной и антиферромагнитной фаз, что приводит к формированию

Рис. 3. *а*) Температурные зависимости электросопротивления пленки (20 nm)LBMO/LSATO, измеренные в магнитном поле различной напряженности. Кривые 1-6 соответствуют возрастанию $\mu_0 H$ от 0 до 5T с шагом 1T. На вставке показаны кривые $\rho(T^{4.5})$ для той же пленки, измеренные при $\mu_0 H = 0$ и 5T. *b*) Температурная зависимость магнетосопротивления $MR = [\rho(\mu_0 H = 1 \text{ T}) - \rho(H = 0)]/\rho(H = 0)$ для пленки (20 nm)LBMO/LSATO. На вставке приведены зависимости MR(H), полученные при различных температурах (указаны около кривых).

в объеме манганитного слоя высокопроводящих ферромагнитных "каналов протекания"; b) уменьшением пространственной разориентации электронных спинов на ионах марганца внутри ферромагнитных доменов. При T < 150 K основная часть объема пленок LBMO находилась в ферромагнитном состоянии, а температурная зависимость их электросопротивления хорошо экстраполировалась соотношением

$$\rho = \rho_0 + \rho_1(H)T^{4.5},\tag{1}$$

где $\rho_0 \approx 0.23 \,\mathrm{m}\Omega \cdot \mathrm{cm}$, а ρ_1 — не зависящий от температуры, но уменьшающийся с увеличением Н коэффициент. Зависимости $\rho(T^{4.5})$, полученные для пленки (20 nm)LBMO/LSATO при $\mu_0 H = 0$ и 5 T, показаны на вставке к рис. 3, а. Значения коэффициента ρ_1 , определенные из наклона экспериментальных кривых $\rho(T^{4.5}, \mu_0 H = 0)$ и $\rho(T^{4.5}, \mu_0 H = 5 \text{ T})$ (см. вставку на рис. 3, *a*), равны $3.6 \cdot 10^{-14} \Omega \cdot cm/K^{4.5}$ и $2.3 \cdot 10^{-14} \Omega \cdot cm/K^{4.5}$ соответственно. Приведенные значения коэффициента ρ_1 хорошо согласуются с соответствующими данными, полученными для тонких пленок La_{0.67}Ca_{0.33}MnO₃ [11]. В рамках теоретической модели, разработанной для манганитов R. Kubo и N. Ohata [12], зависимость $\rho \sim T^{4.5}$ должна наблюдаться в том случае, когда основным механизмом релаксации носителей заряда является их взаимодействие со спиновыми волнами.

Температурная зависимость магнетосопротивления MR пленки (20 nm)LBMO/LSATO показана на рис. 3, b. Пик отрицательного *MR* наблюдался при $T_{MR} \approx 270$ К. Ширина пика, измеренная на половине его высоты, составляла порядка 70 К, что примерно соответствует полуширине соответствующего пика для тонких пленок La_{0.67}St_{0.33}MnO₃ [13], когерентно выращенных на подложке (001)LSATO. Действующие в процессе образования зародышей и роста манганитной пленки механические напряжения оказывают влияние как на концентрацию микровключений неферромагнитных фаз в ее объеме, так и на концентрацию дырок в ферромагнитных доменах. Магнитное поле способствует трансформации неферромагнитных (слабопроводящих) включений в ферромагнитные (высокопроводящие), это отчасти обусловливает высокие значения MR и его нелинейную зависимость от напряженности магнитного поля при температурах несколько ниже T_M (см. вставку на рис.3, b). При низких ($T < 100 \,\mathrm{K}$) температурах, когда неферромагнитные включения составляли лишь незначительную часть объема пленки (20 nm)LBMO/LSATO, ее магнетосопротивление в значительной степени зависело от интенсивности рассеяния дырок на магнонах. При этом отрицательное MR практически линейно возрастало с увеличением $\mu_0 H$ (см. вставку на рис. 3, *b*). Аналогичная зависимость магнетосопротивления от напряженности магнитного поля наблюдалась в [14] для ферромагнитных пленок 3*d*-переходных металлов.

3.3. Реакция электросопротивления пленок (20 nm)LBMO/LSATO на магнитном поле.

Рис. 4. *а*) Зависимость электросопротивления пленки (20 nm)LBMO/LSATO от напряженности магнитного поля при $I \perp H$ и T = 95 К. На вставке показана кривая $\rho(\mu_0 H)$ для той же пленки, полученная при тех же условиях, при сканировании $\mu_0 H$ в интервале от 5 до -5 Т. *b*) Зависимость магнетосопротивления пленки (20 nm)LBMO/LSATO от напряженности магнитного поля при $I \parallel H$ и T = 95 К. На вставке показана зависимость H_c от температуры для той же пленки.

Характерной особенностью перовскито-подобных манганитов является четкая корреляция между их электронными параметрами и магнитными свойствами, причем существенное влияние на последние оказывает спинорбитальное взаимодействие. Наглядным проявлением такого влияния является значительная магнетокристаллическая анизотропия в пленках La_{1-x}R_xMnO₃ с тетрагонально искаженной (вследствие механических напряжений) элементарной ячейкой [15]. Двухосные сжимающие механические напряжения обусловливают преимущественную ориентацию вектора спонтанной намагниченности в манганитных пленках вдоль нормали к плоскости подложки [16]. Магнетокристаллическая анизотропия в выращенных пленках (20 nm)LBMO/LSATO является одной из причин появления гистерезиса на зависимостях их сопротивления от напряженности магнитного поля (рис. 4, a и b).

В данной работе магнитное поле было направлено параллельно плоскости подложки и поле размагничива-

ния не оказывало заметного влияния на величину намагниченности *M* в исследованных пленках. При *H* > *H*_K $(H_{\rm K}-$ коэрцитивное поле, примерно равно H_c , показанному на рис. 4, a) направление M в ферромагнитных доменах в пленках (20 nm)LBMO/LSATO было параллельно Н. Наблюдавшееся при T = 95 К практически линейное увеличение электросопротивления пленок с уменьшением $\mu_0 H$ в интервале 5-0.3 Г (рис. 4, *a* и вставка на нем) обусловлено уменьшением подвижности дырок вследствие усиления их рассеяния на спиновых волнах (магнитное поле способствует затуханию последних). В указанном интервале $\mu_0 H$ значения $d\rho/dH$ при $H\perp I$ и *H* || *I* практически совпадали. При уменьшении поля $\mu_0 H$ от 0.3 T до нуля и росте его отрицательных значений в интервале от 0 до $-\mu_0 H_c$ (при 95 К $\mu_0 H_c \approx 55 \,\mathrm{mT}$) в объеме слоя (20 nm)LBMO/LSATO увеличивалась плотность ферромагнитных доменов, вектор намагниченности в которых ориентирован вдоль оси легкого намагничивания (параллельно нормали к (001)LSATO). Это сопровождалось существенным (сверхлинейным) ростом электросопротивления пленок (20 nm)LBMO/LSATO в случае $H \perp I$ (рис. 4, *a*), и слабым (сублинейным) увеличением ρ при $H \parallel I$ (рис. 4, b). При $H = H_c$ имела место наиболее сильная пространственная разориентация вектора намагниченности в ферромагнитных доменах в пленках (20 nm)LBMO/LSATO, а их электросопротивление достигало своего максимума. Как следует из данных, представленных на вставке на рис. 4, b, Н_с заметно увеличивалось с понижением температуры. С увеличением напряженности магнитного поля (при $H > H_c$) происходило интенсивное зародышеобразование и разрастание ферромагнитных доменов, вектор намагниченности которых параллелен магнитному полю. Это приводило к резкому падению электросопротивления пленок. При $T = 95 \,\mathrm{K}$ и *H* несколько больше H_c величина параметра $\eta = \rho^{-1} d\rho/dH$, характеризующего зависимость электросопротивления манганитной пленки от магнитного поля, была примерно в 3 раза больше, чем при T_{MR} .

Из данных, представленных на рис. 4, a и b, сопротивления следует, что реакция пленок (20 nm)LBMO/LSATO на изменение магнитного поля при $\mu_0 H < 0.3 \,\mathrm{T}$ существенно зависела от угла между направлением протекания электрического тока и направлением магнитного поля. Среди возможных причин этого явления следует отметить анизотропное магнетосопротивление и рассеяние дырок на доменных стенках. Согласно [17], зависимость электросопротивления манганитной пленки от угла ϕ между направлением протекания электрического тока и вектором намагниченности в ее объеме, связанная с анизотропным магнетосопротивлением, может быть представлена в виде $\rho = \rho_2 + \rho_3 \sin^2 \varphi$, где ρ_2 — не зависящий от φ параметр, ho_3 — коэффициент, равный разности значений hoпри $M \parallel I$ и $M \perp I$. В [15] для пленок La_{0.67}Ca_{0.33}MnO₃ получены положительные значения коэффициента ρ_3 . Рассеяние дырок на доменных стенках должно вносить

максимальный вклад в электросопротивление пленок, когда указанные стенки перпендикулярны направлению электрического тока. Поэтому при H > H_K электросопротивление пленки (20 nm)LBMO/LSATO, измеренное при $H \parallel I$, может быть несколько меньше, чем ее ρ при $H \perp I$. При напряженности магнитного поля, близкой к нулю ($\mu_0 H < 0.1 \, \text{T}$), вектор намагниченности значительной части ферромагнитных доменов в ориентирован перпендикулярно плоскости подложки и вклад рассеяния на доменных стенках в электросопротивление манганитной пленки в случая, когда $H \parallel I$, должен быть примерно таким же, как и в случае $H \perp I$. Наиболее существенные отличия в зависимостях $\rho(H)$, полученных для выращенных пленок при $H \parallel I$ и $H \perp I$, наблюдались, однако, именно при малых значениях $\mu_0 H$. Таким образом, основной причиной зависимости магнетосопротивления пленок (20 nm)LBMO/LSATO от угла между направлением электрического тока и направлением магнитного поля является, по-видимому, анизотропное магнетосопротивление.

В заключение мы хотели бы отметить, что двухосные сжимающие механические напряжения, действующие в процессе формирования (зародышеобразование и последующий рост) эпитаксиальных пленок LBMO, способствуют понижению температуры, при которой наблюдаются экстремальные значения их электро- и магнетосопротивления.

Список литературы

- [1] Y. Tokura. In: Colossal magnetoresistive oxides / Ed. Y. Tokura. Gordon and Breach, Amsterdam (2000). P. 2.
- [2] A. Goual, M. Rajeswari, R. Shreekala, S.E. Lofland, S.M. Bhagat, T. Boettcher, C. Kwon, R. Ramesh, T. Venkatesan. Appl. Phys. Lett. **71**, 2535 (1997).
- [3] H.L. Ju, J. Gopalakrishnan, J.L. Peng, Qi Li, G.C. Xiong, T. Venkatesan, R.L. Greene. Phys. Rev. B 51, 6143 (1995).
- [4] J. Zhang, H. Tanaka, T. Kawai. J. Appl. Phys. 90, 6175 (2001).
- [5] T.I. Kamins. J. Appl. Phys. 42, 4357 (1971).
- [6] B. Wiedenhorst, C. Hofener, Y. Lu, J. Klein, L. Alff, R. Gross, B.H. Freitag, M. Mader. Appl. Phys. Lett. 74, 3636 (1999).
- [7] M. Ziese, H. Semmelhack, K.H. Han, S.P. Sena, H.J. Blythe. J. Appl. Phys. 91, 9930 (2002).
- [8] E.O. Wollan, W.C. Koehler. Phys. Rev. 100, 545 (1955).
- [9] Ю.А. Бойков, В.А. Данилов. Письма в ЖТФ **30**, 12 (2004).
- [10] Yu.A. Boikov, R. Gunnarsson, T. Claeson. J. Appl. Phys. 96, 435 (2004).
- [11] Ю.А. Бойков, В.А. Данилов. Письма в ЖТФ 31, 73 (2005).
- [12] K. Kubo, N. Ohata. J. Phys. Soc. Jpn. 33, 21 (1972).
- [13] Ю.А. Бойков, Т. Клаесон, В.А. Данилов. ФТТ 47, 2189 (2005).
- B. Raquet, M. Veret, J.M. Broto, E. Sondergard, O. Cespedes, R. Many. J. Appl. Phys. 91, 8129 (2002).
- [15] J. O'Donnell, M. Onellion, M.S. Rzchowski, J.N. Eckstein, I. Bozovic. Phys. Rev. B 55, 5873 (1997).
- [16] H.S. Wang, E. Wertz, Y.F. Hu, Q. Li. J. Appl. Phys. 87, 6749 (2000).
- [17] E.D. Dahlberg, K. Riggs, G.A. Prinz. J. Appl. Phys. 63, 4274 (1988).