Прыжковая проводимость и магнитосопротивление наноматериалов на основе фуллерита С_{2N}, синтезированных в условиях высокого давления

© А.А. Пронин, В.В. Глушков, М.В. Кондрин*, А.Г. Ляпин*, В.В. Бражкин*, Н.А. Самарин, С.В. Демишев

Институт общей физики им. А.М. Прохорова Российской академии наук, 119991 Москва, Россия * Институт физики высоких давлений Российской академии наук, 142190 Троицк, Московская обл., Россия E-mail: demis@lt.gpi.ru

(Поступила в Редакцию 30 октября 2006 г.)

Для образцов фуллерита C_{2N} , обработанных в условиях высокого давления и высоких температур, выполнены детальные исследования прыжковой проводимости и магнитосопротивления. Обнаружено, что увеличение температуры синтеза под давлением $p_{syn} = 8$ GPa в интервале $800 < T_{syn} < 1000^{\circ}$ C индуцирует у образцов фуллерита C_{2N} переход металл-изолятор, что сопровождается значительным (9 порядков при комнатной температуре) падением сопротивления. В промежуточной области (900 $< T_{syn} < 1000^{\circ}$ C) образцы C_{2N} обладают прыжковой проводимостью моттовского типа, причем показатель степени α в законе Мотта $\rho(T) \sim \exp[(T_0/T)^{\alpha}]$ зависит от температуры синтеза и изменяется в пределах $1/4 < \alpha < 1/2$. Найдено, что в случаях $\alpha = 1/3$ и 1/4 прыжковая проводимость возникает в аномально широком диапазоне температур 4.2 < T < 300 K. Установлено, что для адекватного описания температурной зависимости магнитосопротивления у образцов C_{2N} необходимо учитывать совместное влияние спин-поляризационного механизма и эффекта сжатия волновой функции. Обсуждается модель, связывающая изменение эффективной размерности прыжковой проводимости в фуллеритах с физическими неоднородностями на наноразмерной шкале.

Работа выполнена в рамках проекта 2.8 Программы фундаментальных исследований Президиума РАН "Влияние атомно-кристаллической и электронной структуры на свойства конденсированных сред" при поддержке РФФИ (гранты № 04-02-16308 и 05-02-165969) и программы Президиума РАН по веществу в экстремальных условиях.

PACS: 72.80.Rj, 72.20.Ee

1. Введение

В последние годы был создан ряд новых некристаллических материалов на основе углеродных наноструктур [1-4], специфической особенностью которых является возникновение режима прыжкового токопереноса при низких температурах. Считается, что разупорядочение в материалах данного класса обусловлено как характером исходной углеродной фазы (микрокристаллической или аморфной), так и способностью атомов углерода образовывать ковалентные связи, различающиеся типом гибридизации (*sp*¹-, *sp*²- или *sp*³-состояния) [2]. Различные технологии синтеза позволяют управлять такими параметрами образцов, как тип гибридизации, степень ковалентной связанности, первое координационное число, молекулярный или атомарный тип структуры, характерная размерность (от нульмерных до трехмерных структур) и т.д. [1,2]. Поэтому углеродные наноматериалы (УНМ) оказываются весьма удобным экспериментальным объектом для проверки различных теоретических моделей транспорта в неупорядоченных средах, в том числе прыжковой проводимости [3-6].

Широкие возможности управления транспортными характеристиками УНМ могут быть реализованы с ис-

пользованием методики синтеза в условиях высоких давлений и температур. В качестве удачного примера следует отметить термобарическую модификацию образцов карбинов [5], в которых изменение температуры синтеза позволяет плавно изменять проводимость системы и индуцирует переход от одномерной к двумерной, а затем и к трехмерной прыжковой проводимости. Более сложной оказывается ситуация в случае фуллерита С₆₀ [2], для которого в технологически удобном диапазоне давлений *p* < 10 GPa характерно образование или диэлектрических молекулярных структур, различающихся типом и степенью полимеризации, или (при увеличении давления и температуры синтеза) атомарных графитоподобных фаз, обладающих квазиметаллическим типом проводимости [2]. Однако "графитизация" С₆₀ при давлении синтеза *p*_{syn} < 10 GPa, сопровождающаяся скачкообразным изменением удельного сопротивления на семь-восемь порядков, происходит в очень узком интервале температур, что существенно ограничивает возможность "тонкой настройки" степени разупорядочения. Поэтому в фуллеритах прыжковая проводимость наблюдалась лишь для фаз высокого давления С₆₀ [7]. Возможным выходом в данной ситуации является использование в качестве исходного материала для синтеза образцов фуллерита C_{2N} [8,9], представляющего собой смесь фуллеренов различного состава. Можно ожидать, что дополнительная степень разупорядочения, обусловленная вариацией размера молекул C_{2N} , приведет к расширению интервалов параметров синтеза, отвечающих образованию промежуточных структур полупроводникового типа, для которых окажется возможным изучение транспортных характеристик при низких температурах. Целью настоящей работы является экспериментальное исследование данного вопроса.

2. Методика эксперимента

Порошок из смеси фуллеренов С2N был приобретен в Российском научном центре "Курчатовский институт", где был синтезирован стандартными методами [10] как вторичный продукт при синтезе С₆₀ и С₇₀. Состав полученной фракции С_{2N} был сертифицирован производителем по составу по данным масс-спектроскопии на лазерно-десорбционном массспектрометре LAMMA 1000 и соответствовал значениям 2N из диапазона 48 < 2N < 180, причем максимум интенсивности масс-спектра приходился на интервал 88 < 2N < 106 [8]. Образцы фуллерита C_{2N} были подвергнуты термобарической закалке в ИФВД РАН. Обработка порошка C_{2N} осуществлялась в камерах типа "Тороид" под давлением 8 GPa в интервале температур $200 < T_{syn} < 1000^{\circ}$ С по методике, описанной в [1]. Структура полученных образцов УНМ исследовалась методом рентгеновской дифракции (Cu K_{α}) с использованием дифрактометра "Bruker AXS". Гальваномагнитные измерения в области температур 4.2 < T < 300 K в диапазоне магнитного поля $0 < H < 70 \, \mathrm{kOe}$ были выполнены в ИОФ РАН по методике, аналогичной использованной в [11].

Структурные превращения в фуллерите С_{2N} при изменении условий синтеза под давлением

Кривые интенсивности рентгеновской дифракции I(Q) для образцов C_{2N} , полученных при давлении синтеза 8 GPa и различных температурах синтеза, представлены на рис. 1 как функции структурного аргумента $Q = \frac{4\pi}{\lambda} \sin(\theta)$ (здесь λ — длина волны рентгеновского излучения, θ — угол рассеяния). Видно, что в интервале $T_{\rm syn} < 400^{\circ}$ С существенных структурных изменений не происходит и экспериментальные данные соответствуют типичной картине аморфного материала с широкими пиками в окрестностях 1 и 3 Å^{-1} . При дальнейшем увеличении температуры синтеза, начиная с $T_{\rm syn} \sim 600^{\circ}$ С, в спектрах рентгеновской дифракции появляется новый пик в окрестности 2 Å^{-1} , положение которого соответствует рефлексу (002) графита. В диапазоне 900 $< T_{\rm syn} < 1000^{\circ}$ С интенсивность особенности

Рис. 1. Интенсивность рентгеновской дифракции (CuK_{α}) для углеродных фаз, полученных термобарической обработкой фуллерита C_{2N} при $p_{syn} = 8$ GPa. Температура синтеза $T_{syn} = 200$ (1), 400 (2), 600 (3), 800 (4), 900 (5) и 1000°C (6).

при 2 Å⁻¹ увеличивается с ростом температуры синтеза, и для $T_{\rm syn} = 1000^{\circ}$ С наблюдаемый спектр рентгеновской дифракции характерен для разупорядоченного графита (кривая 6 на рис. 1).

По аналогии с результатами, полученными ранее для фуллерита C_{60} [2], данные рис. 1 можно объяснить тем, что с увеличением температуры синтеза под давлением происходит коллапс молекул фуллерена, сопровождающийся образованием графитоподобных кластеров. При этом уменьшение температуры синтеза, соответствующей началу процесса "графитизации" по сравнению с фуллеритом C_{60} [8], естественно связать с зависимостью характерной температуры разрушения молекул фуллерена C_{2N} от их размера.

По экспериментальным зависимостям интенсивности рентгеновской дифракции можно оценить корреляционную длину *L* из соотношения $L \approx 2\pi/\Delta Q$, где ΔQ — ширина на полувысоте первого максимума на кривой I(Q). Найдено, что для исследованных образцов C_{2N} , полученных при $T_{\rm syn} < 600^{\circ}$ С (кривые I-3 на рис. 1), значение корреляционной длины составляет $L_{\rm cor} \approx 13$ Å, что сравнимо с типичным межмолекулярным расстоянием в фуллеритах. В то же время для разупорядоченной графитоподобной фазы, полученной при нагревании до 1000°C под давлением (кривая 6 на рис. 1), аналогичная оценка дает масштаб $L_{\rm cl} \approx 40$ Å. Последнюю величину можно интерпретировать как характерный размер графитоподобных кластеров, образующихся из C_{2N} при высоких температурах синтеза.

Зависимость удельного сопротивления ρ образцов С_{2N}, измеренного при температуре 290 K, от температуры синтеза под давлением $T_{\rm syn}$ изображена на рис. 2. Как и в случае фуллерита С₆₀, повышение

температуры синтеза под давлением индуцирует переход металл–изолятор (ПМИ), сопровождающийся падением сопротивления на 9 порядков. Интересно, что основное изменение проводимости системы происходит в том же интервале температур синтеза $900 < T_{\rm syn} < 1000^{\circ}$ С, в котором наблюдается резкое увеличение интенсивности рефлекса в окрестности 2 Å⁻¹ (рис. 1). Таким образом, ПМИ в образцах фуллеритов C_{2N} можно связать с увеличением относительного объема графитоподобных нанокластеров, причем в отличие от C_{60} существует достаточно широкая область промежуточных значений $\rho(T_{\rm syn})$ в интервале 900 $< T_{\rm syn} < 1000^{\circ}$ С, для которой оказывается возможным исследование температурных зависимостей проводимости и магнитосопротивления.

Проводимость и магнитосопротивление образцов C_{2N}, синтезированных в условиях высокого давления

Согласно существующим теоретическим представлениям, температурная зависимость удельного сопротивления $\rho(T)$ в режиме прыжковой проводимости с переменной длиной прыжка описывается законом Мотта [12,13]

$$\rho = \rho_0 \exp[(T_0/T)^{\alpha}]. \tag{1}$$

В формуле (1) индекс α связан с размерностью пространства d и показателем степени n, характеризующим корреляционную щель в плотности состояний $g(E) \sim |E - E_F|^n$, и определяется выражением

$$\alpha = (n+1)(n+d+1).$$
 (2)

В случае образцов C_{2N} , синтезированных в условиях высокого давления, температурная зависимость (1) возникает в узком интервале 900 < $T_{\rm syn}$ < 1000°C (рис. 3),

Рис. 2. Удельное сопротивление при температуре T = 290 К для образцов C_{2N} , полученных при различных температурах синтеза ($p_{syn} = 8$ GPa).

Рис. 3. Температурные зависимости удельного сопротивления образцов C_{2N} , полученных при различных температурах синтеза. $I - T_{syn} = 980^{\circ}$ С ($\alpha = 1/4$), $2 - T_{syn} = 970^{\circ}$ С ($\alpha = 1/3$), $3 - T_{syn} = 965^{\circ}$ С ($\alpha = 1/2$). Штриховая линия 4 соответствует модельной зависимости $\rho(T)$ для образца с $T_{syn} = 980^{\circ}$ С при учете температурной зависимости радиуса локализации (см. пояснения в тексте).

в котором происходит "графитизация" образцов (рис. 1) и которому отвечает область наиболее резкого изменения $\rho(T_{\rm syn})$ (рис. 2). При этом показатель степени в законе Мотта сильно зависит от температуры синтеза и изменяется в пределах $1/4 < \alpha < 1/2$ (кривые I-3 на рис. 3). Следует отметить, что в случае $\alpha = 1/2$ формула (1) описывает экспериментальные данные в области температур 4.2 < T < 70 К (кривая 3 на рис. 3), в то время как для $\alpha = 1/3$ и 1/4 верхняя граница диапазона температур соответствующего прыжковой проводимости, расширяется до значений ~ 300 К (кривые I и 2 на рис. 3).

Из формулы (2) следует, что значения $\alpha > 1/4$ могут соответствовать как образованию корреляционной щели в плотности состояний ($n \neq 0$), так и понижению эффективной размерности пространства, в котором происходят прыжки (d < 3). В работах [5,11,14] на примере УНМ на основе карбинов было показано, что для корректного разделения корреляционных эффектов и эффектов, связанных с изменением эффективной размерности, исследования проводимости на постоянном токе недостаточно: необходимо привлекать данные по частотным и температурным зависимостям проводимости на переменном токе и данные термоэдс. Исследование этих кинетических характеристик у образцов C_{2N} является предметом будущих исследований, поэтому в настоящей работе ограничимся подробным анализом случая $\alpha = 1/4$, для которого прыжки трехмерны и плотность локализованных состояний не имеет корреляционной особенности на уровне Ферми (см. (2)).

Рис. 4. Полевые зависимости магнитосопротивления при различных температурах для образца C_{2N} , синтезированного при температуре $T_{syn} = 980^{\circ}$ С. Числа около кривых — температура (в K).

Существенно, что для образца с $\alpha = 1/4$ абсолютная величина удельного сопротивления при низких температурах заметно уменьшается по сравнению со случаями $\alpha = 1/2$ и 1/3 (рис. 3), что дает возможность провести измерения температурных зависимостей магнитосопротивления в прыжковой области.

Полевые зависимости магнитосопротивления $\rho(H, T)$ при различных температурах для образца C_{2N} , полученного при $T_{syn} = 980^{\circ}$ С, представлены на рис. 4 в координатах $\ln[\rho(H)/\rho(0)] = f(H^2)$. Обращает на себя внимание, что во всем исследованном диапазоне магнитных полей магнитосопротивление положительно и монотонно растет по амплитуде с понижением температуры, причем в интервале 0 < H < 30 кОе магнитосопротивление практически квадратично по магнитному полю. В области больших полей (H > 30 кОе) наблюдается небольшое отклонение кривой $\ln[\rho(H)/\rho(0)] = f(H^2)$ вниз от линейной зависимости, также увеличивающееся с понижением температуры (рис. 4).

5. Обсуждение результатов

Положительное магнитосопротивление вида $\ln[\rho(H)/\rho(0)] \sim H^2$ в области прыжковой проводимости моттовского типа традиционно принято связывать с эффектом сжатия волновой функции в магнитном поле [15]. Отметим, что в рамках данного подхода одновременное измерение температурной зависимости сопротивления и амплитуды квадратичного вклада в магнитосопротивление позволяет определить радиус локализации волновых функций *а* и плотность локализованных состояний на уровне Ферми $g(E_F)$ и осуществить так называемую

"моттовскую спектроскопию" локализованных состояний [16]. Действительно, для d = 3 и n = 0 параметр T_0 в формуле (1) определяется выражением [12,13,15]

$$T_0 = \frac{\eta_c}{k_{\rm B}g(E_F)a^3},\tag{3}$$

где $\eta_c = 17.6$, а $\rho(H, T)$ в пределе слабых магнитных полей имеет вид [15]

$$\ln \frac{\rho(H)}{\rho(0)} = \frac{5}{2016} \frac{e^2 a^4 H^2}{c^2 \hbar^2} \left(\frac{T_0}{T}\right)^{3/4}.$$
 (4)

Определив параметр $T_0 = 33\,200$ К из экспериментальной зависимости $\rho(T)$ (кривая *I* на рис. 3), с помощью формулы (4) по начальным квадратичным по *H* участкам кривых $\rho(H, T)$ (рис. 4) можно рассчитать радиус локализации для каждой из температур, при которых измерялись полевые зависимости магнитосопротивления, и затем, используя (3), найти $g(E_F)$ [6,16]. Результат обработки данных в модели сжатия волновой функции показан на рис. 5. Видно, что применение формулы (4) приводит к существенной температурной зависимости радиуса локализации, причем повышение температуры от 4.2 до 16 К приводит к изменению a(T) более чем в 1.5 раза.

Очевидно, что в стандартной теории прыжковой проводимости радиус локализации представляет собой температурно-независимую характеристику локализованного состояния. Тем не менее предположим, что в силу каких-то не учитываемых нами коллективных эффектов радиус локализации оказывается функцией температуры, т. е. данные рис. 5 отражают не температурную зависимость подгоночного параметра модели, а реальную физическую ситуацию. Поскольку параметр T_0 в (1) зависит от радиуса локализации (см. (3)), в случае a = a(T) возникнет изменение температурной

Рис. 5. Температурная зависимость радиуса локализации, возникающая при обработке экспериментальных данных в модели сжатия волновой функции локализованного состояния в магнитном поле.

асимптотики удельного сопротивления. Потребуем, чтобы при T = 4.2 К наблюдаемое в эксперименте и модельное (с учетом a(T)) значения $\rho(T)$ совпали, и оценим, насколько сильно учет температурной зависимости радиуса локализации исказит форму температурной зависимости удельного сопротивления. На рис. 3 (кривая 4) показано, как должен был бы выглядеть график $\rho(T)$ в том случае, когда $g(E_F) = \text{const}$ и имеет место температурная зависимость a(T), "следующая" из данных магнитосопротивления (рис. 5). Хорошо видно, что экспериментальные данные (кривая 1 на рис. 3) и модельный расчет (кривая 4 на рис. 3) существенно различаются во всем диапазоне температур T > 4.2 К, причем это расхождение нельзя связать с ошибкой эксперимента.

Таким образом, можно заключить, что температурнозависимый радиус локализации не позволяет согласованным образом описать температурную зависимость удельного сопротивления при H = 0 и магнитосопротивления при условии $g(E_F) = \text{const. B}$ результате применение формул (3) и (4) для количественного описания экспериментальных данных оказывается возможным только при дополнительном предположении о температурной зависимости плотности состояний, точно компенсирующей температурную зависимость куба радиуса локализации и обепечивающей тем самым выполнение условия $T_0 = \text{const}$ (см. (3)). Очевидно, что такое требование является искусственным и не может быть обосновано в рамках существующих представлений о прыжковом токопереносе.

Возможный выход из такой ситуации был предложен в работе [6], где, следуя [17,18], рассматривали вклад в проводимость от прыжков, связанный не только с однократно занятыми состояниями (D^0) , но и с двукратно занятыми центрами (D^{-}) . Предполагается, что в актуальной окрестности уровня Ферми, в которой происходят прыжки, присутствуют как состояния D⁰, так и D^- , формирующие единую сетку сопротивлений Миллера-Абрахамса [6]. Так как для D⁻-центров спины электронов должны быть ориентированы противоположно, то внешнее магнитное поле, поляризующее спиновые состояния, будет приводить к уменьшению доли прыжков с участием D⁻-центров и исключению соответствующих им сопротивлений из сетки Миллера-Абрахамса. В результате поляризация спинов электронов в магнитном поле приведет к появлению дополнительного вклада в магнитосопротивление [6].

Расчет, выполненный в [6], дает выражение для параметра T_0 в законе Мотта ($\alpha = 1/4$)

$$T_0 = \frac{2\eta_c}{k_{\rm B}(g_1a_1^3 + g_2a_2^3)} \tag{5}$$

и позволяет найти квадратичное по магнитному полю магнитосопротивление, учитывающее одновременный вклад от механизма сжатия волновой функции и спин-поляризационные эффекты

$$\ln\left[\frac{\rho(H)}{\rho(0)}\right] = \frac{\tilde{A}}{4} \left(\frac{T_0}{T}\right)^{1/4} \left(\frac{\mu H}{k_{\rm B}T}\right)^2.$$
(6)

В формулах (5), (6) величина T_0 выражается через перенормированные плотности состояний $g_{1,2}$ и радиусы локализации $a_{1,2}$ для D^0 - и D^- -состояний, μ обозначает эффективный магнитный момент электрона, а параметр \tilde{A} имеет вид

$$\tilde{A}(T) = A + B \left(\frac{T}{T_0}\right)^{3/2},\tag{7}$$

где

$$A = (g_2 a_2^3 - g_1 a_1^3) / (g_2 a_2^3 + g_1 a_1^3),$$
(8)

$$B = \frac{20}{2016} \frac{a_2^4 e^2 k_{\rm B}^2 T_0^2}{c^2 \hbar^2 \mu^2}.$$
 (9)

При этом чисто спин-поляризационный механизм магнитосопротивления соответствует случаю B = 0, для которого $\tilde{A} = \text{солst.}$ Если же в прыжковой области действует исключительно механизм сжатия волновой функции, то A = 0 и формулы (5)–(9) переходят в стандартные выражения (1)–(4) [6].

Отметим, что выполненный в [6] анализ магнитосопротивления у различных УНМ показывает, что для этих экспериментальных систем характерно выполнение условия $g_2a_2^3 > g_1a_1^3$ и формулы (5)–(9) описывают положительное магнитосопротивление.

Используя начальные участки кривых магнитосопротивления, для которых $\ln[\rho(H)/\rho(0)] \sim H^2$ (рис. 4), для образца C_{2N} , синтезированного при $T_{\text{syn}} = 980^{\circ}$ С, по формуле (6) были определены значения \tilde{A} при различных температурах. Из рис. 6 видно, что температурная зависимость $\tilde{A}(T)$ хорошо описывается формулой (7), в которой $\tilde{A} \equiv A \neq 0$. Таким образом, для исследованного образца C_{2N} в общем случае необходимо учитывать одновременный вклад в магнитосопротивление двух механизмов: спин-поляризационного эффекта и эффекта сжатия волновой функции.

Обработка экспериментальных данных $\tilde{A}(T)$ методом наименьших квадратов (рис. 6) позволяет выполнить оценку ряда параметров локализованных состояний у образцов С_{2N}. Обращает на себя внимание полученное в эксперименте значение параметра $A = 0.041 \pm 0.003$. Из формулы (6) следует, что в этом случае $g_2 a_2^3 \sim g_1 a_1^3$, т.е. выражения (3) и (5) для параметра T_0 в законе Мотта (1) практически эквивалентны. Другими словами, учет D⁻-состояний лишь незначительно влияет на параметр T₀ в законе Мотта (1), приводя к появлению небольшой поправки к температурной зависимости проводимости в нулевом магнитном поле, которая тем не менее оказывается существенной при количественном описании магнитосопротивления. Столь малое значение параметра А с учетом физически оправданного предположения $a_1 < a_2$ приводят к оценке $g_1 > g_2$ для плотности состояний, т.е. D⁻-состояния вносят относительно небольшой вклад в общую плотность лока-

Рис. 6. Обработка экспериментальных данных магнитосопротивления в модели, учитывающей спин-поляризационные эффекты и эффект сжатия волновой функции. Точки получены путем аппроксимации данных рис. 4 с помощью формулы (6), линия соответствует расчету по методу наименьших квадратов, с помощью которого находились коэффициенты *A* и *B* в формуле (7).

лизованных состояний. Кроме того, используя формулу (9) в предположении $\mu = \mu_{\rm B}$ и экспериментальное значение $B = (4.6 \pm 1) \cdot 10^{-4}$, можно рассчитать радиус локализации D^- -состояний $a_2 \sim 18$ Å и, следуя [6], оценить значение радиуса локализации в D^0 -полосе $a_1 \sim a_2/4 \sim 4.5$ Å.

Уместно сопоставить найденные параметры локализованных состояний с данными рентгеноструктурного анализа. При изменении температуры в интервале 4.2 < T < 300 К характерные длины прыжков могут быть оценены как $R_{1,2} \sim \frac{a_{1,2}}{2} \left(\frac{T_0}{T}\right)^{1/4}$ [6] и находятся в пределах $7 \le R_1 \le 20$ Å и $30 \le R_2 \le 80$ Å. В результате длины прыжков оказываются сравнимыми с характерным размером $L_{\rm cl} \sim 40$ Å кластеров разупорядоченной графитоподобной фазы, появление которой соответствует возникновению проводимости в системе. Поскольку молекулярные фазы фуллерена являются широкозонными (1.5-2 eV) полупроводниками с очень высоким удельным сопротивлением при низких температурах [2], можно предположить, что прыжковая проводимость у образцов C_{2N} контролируется относительным объемом и топологией разупорядоченных графитоподобных кластеров, другими словами, пространственное расположение центров, между которыми происходят прыжки, является существенно неоднородным. В рамках этой гипотезы можно естественным образом интерпретировать как возникновение ПМИ при увеличении температуры синтеза (рис. 2), так и феномен понижения "эффективной размерности" в законе Мотта (1) (рис. 3). Действительно, на начальных стадиях графитизации фуллерена относительный объем, занимаемый "проводящей" фазой невелик, и в объеме сферы, ограниченной оптимальной длиной прыжка, оказываются центры, принадлежащие лишь небольшому числу соседних кластеров. Таким образом, возникает одно (или несколько) локально выделенных направлений, что топологически эквивалентно понижению размерности. С уменьшением расстояния между кластерами таких направлений становится все больше, и в конечном итоге система становится трехмерной. Отметим, что предположение о локально неоднородном распределении центров у УНМ, впервые высказанное в [11] для случая карбинов, синтезированных под давлением, согласуется с результатами исследования морфологии образцов УНМ на основе C₆₀ [19]. Проверка адекватности такого механизма формирования прыжковой проводимости у образцов C_{2N} является задачей будущих структурных исследований.

6. Заключение

Основные результаты настоящей работы можно суммировать следующим образом. Во-первых, было обнаружено, что изменение температуры синтеза под давлением в интервале $800 < T_{\rm syn} < 1000^{\circ} {\rm C}$ индуцирует у образцов фуллерита С_{2N} ПМИ, что сопровождается значительным (на 9 порядков) падением сопротивления. В промежуточной области (900 < $T_{\rm syn}$ < 1000° C) образцы C_{2N} обладают прыжковой проводимостью моттовского типа, причем для образцов с $\alpha = 1/3$ и 1/4 прыжковый механизм доминирует уже при $T \sim 300 \, {
m K}$ (рис. 3). Во-вторых, анализ температурной зависимости магнитосопротивления образцов C_{2N} свидетельствует о том, что непротиворечивая количественная интерпретация экспериментальных данных $\rho(H, T)$ возможна только при совместном учете эффекта сжатия волновой функции локализованного состояния и вклада от спинполяризационного механизма. Выполненное в настоящей работе сопоставление параметров локализованных состояний с данными рентгеноструктурного анализа позволяет сделать вывод, что исследования различных транспортных характеристик, чувствительных к неоднородностям структуры на нанометровой шкале, являются весьма перспективными для уточнения сценария фазовых превращений в материалах на основе фуллеритов, синтезированных в условиях высоких давлений и температур.

Авторы благодарят С.В. Попову за полезные обсуждения, а также В.В. Мухамадьярова и Р.А. Садыкова за помощь в проведении некоторых экспериментов.

Список литературы

- A.G. Lyapin, V.V. Brazhkin, S.G. Lyapin, S.V. Popova, T.D. Varfolomeeva, R.N. Voloshin, A.A Pronin, N.E. Sluchanko, A.G. Gavrilyuk, I.A. Trojan. Phys. Stat. Sol. (b) **211**, 401 (1999).
- [2] В.В. Бражкин, А.Г. Ляпин, С.В. Попова, С.К. Бейлисс, Т.Д. Варфоломеева, Р.Н. Волошин, А.Г. Гаврилюк, М.В. Кондрин, В.В. Мухамадьяров, И.А. Троян, С.В. Демишев, А.А. Пронин, Н.Е. Случанко. Письма в ЖЭТФ 76, 805 (2002).

[3] A.W.P. Fung, Z.H. Wang, M.S. Dresselhaus, G. Dresselhaus, R.W. Pekala, M. Endo. Phys. Rev. B 49, 17 325 (1994).

1342

- [4] V.A. Samuilov, J. Galibert, V.K. Ksenevich, V.J. Goldman, M. Rafailovich, J. Sokolov, I.A. Bashmakov, V.A. Dorosinets. Physica B 294–295, 319 (2001).
- [5] С.В. Демишев, А.А. Пронин, Н.Е. Случанко, Н.А. Самарин, А.Г. Ляпин, В.В. Бражкин, Т.Д. Варфоломеева, С.В. Попова. Письма в ЖЭТФ 72, 547 (2000).
- [6] С.В. Демишев, А.А. Пронин. ФТТ 48, 1285 (2006).
- [7] S.G. Buga, V.D. Blank, G.A. Dubitsky, L. Edman, X.-M. Zhu, E.B. Nyeanchi, B. Sundqvist. J. Phys. Chem. Sol. 61, 1009 (2000).
- [8] A.G. Lyapin, Y. Katayama, V.V. Brazhkin, A.G. Gavrilyuk, Y. Inamura, M.V. Kondrin, V.V. Mukhamadiarov, S.V. Popova, I.A. Trojan, T.D. Varfolomeeva. In: Proc. Joint 20th AIRAPT and 43th EHPRG Int. Conf. on High Pressure Science and Technology / Eds E. Dinjus, N. Dahmen. Forschungszentrum Karlsruhe GmbH, Karlsruhe (2005). T10-O140.
- [9] V.V. Brazhkin, A.G. Lyapin, S.V. Popova, Yu.V. Antonov, Yu.A. Kluev, A.M. Naletov. Rev. High Press. Sci. Technol. 7, 989 (1998).
- [10] А.В. Елецкий, Б.М. Смирнов. УФН 165, 977 (1995).
- [11] С.В. Демишев, А.А. Пронин, В.В. Глушков, Н.Е. Случанко, Н.А. Самарин, М.В. Кондрин, А.Г. Ляпин, В.В. Бражкин, Т.Д. Варфоломеева, С.В. Попова. ЖЭТФ **122**, 140 (2002).
- [12] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1982).
- [13] И.П. Звягин. Кинетические явления в неупорядоченных полупроводниках. Изд-во МГУ, М. (1984).
- [14] С.В. Демишев, А.А. Пронин, В.В. Глушков, Н.Е. Случанко, Н.А. Самарин, М.В. Кондрин, А.Г. Ляпин, В.В. Бражкин, Т.Д. Варфоломеева, С.В. Попова. Письма в ЖЭТФ 78, 984 (2003).
- [15] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников. Наука, М. (1979).
- [16] С.В. Демишев, Д.Г. Лунц, А.Г. Ляпин, Н.Е. Случанко, Н.А. Самарин. ЖЭТФ 110, 334 (1996).
- [17] A. Kurobe, H. Kamimura. J. Phys. Soc. Jap. 51, 1904 (1982).
- [18] K.A. Matveev, L.I. Glazman, P. Clarke, D. Ephron, M.R. Beasley. Phys. Rev. B 52, 5289 (1995).
- [19] E.V. Tat'yanin, A.G. Lyapin, V.V. Mukhamadiarov, V.V. Brazhkin, A.L. Vasiliev. H. Phys.: Cond. Matter 17, 249 (2005).