Квазиобратимая твердофазная реакция в суперпротонном проводнике $Cs_5H_3(SO_4)_4 \cdot xH_2O$

© Е.Д. Якушкин, А.И. Баранов, В.В. Гребенев

Институт кристаллографии им. А.В. Шубникова Российской академии наук, 117333 Москва, Россия

E-mail: yakushkin@ns.crys.ras.ru

(Поступила в Редакцию 24 октября 2006 г.)

Из измерений теплового эффекта и теплоемкости установлено, что в гидратном сульфате цезия нестехиометрического состава состояние суперпротонной проводимости обусловлено изотермическим твердофазным превращением в объеме этого монокристалла. Тепловые измерения сопоставлены с измерениями проводимости.

Работа выполнена при финансовой поддержке РФФИ (грант № 05-02-17640).

PACS: 64.70.Kb, 65.40.Ba

Монокристаллы пентацезий-тригидросульфата гидрата, $Cs_5H_3(SO_4)_4 \cdot xH_2O$ (PCTS), принадлежат к достаточно обширной группе кристаллов-сульфатов, обладающих высокой протонной проводимостью. Как и другие подобные соединения, эти кристаллы потенциально представляют интерес для технологии водородных топливных элементов. При температуре 414 К кристалл PCTS переходит в "суперпротонное" состояние, в котором его проводимость возрастает на три порядка, а соответствующая энергия активации падает [1].

Имеющиеся к настоящему моменту результаты исследования кристаллов PCTS интерпретируются неоднозначно. Это относится, в частности, к различного рода аномалиям, предшествующим суперпротонному переходу. Таким образом, не удается сделать надежные заключения о фазовой диаграмме этого кристалла в области высоких температур. Представлялось важным провести измерения тепловых свойств монокристаллов PCTS в различных режимах изменения температуры и сопоставить их с измерениями проводимости, что и сделано в настоящей работе.

Измерения проводимости выполнялись мостовым методом на частоте 1 MHz. Из измерений проводимости (рис. 1) видно, что при первом нагревании кристалла наблюдается не только скачок проводимости при 414 К (T_c) , но и немонотонное изменение проводимости в окрестности 370 К (То). При последующих циклах изменения температуры эта "аномалия" сглаживается. Переход в суперпротонное состояние при этом воспроизводится, хотя изменение проводимости и варьируется в зависимости от термической предыстории образца. Примечательно, что температура этого перехода в пределах ошибки измерений совпадает с температурой суперпротонного перехода в кристалле CsHSO₄. Из измерений проводимости все же не следует заключение о наличии или отсутствии фазовых переходов. Для этого необходимы тепловые измерения, в том числе измерения теплоемкости.

Соответствующие тепловые измерения были выполнены методом дифференциальной сканирующей калориметрии (ДСК) и методом модуляционной калориметрии. Метод ДСК, как известно, фиксирует тепловые эффекты любой природы, причем возможны очень малые исследуемые объемы. Вместе с тем методически необходимое непрерывное изменение температуры не позволяет, например, выделить истинную теплоемкость. В модуляционной квазиадиабатической методике при пошаговом изменении температуры это возможно.

Методом ДСК анализировался монокристаллический порошок PCTS весом около 50 mg. Скорость изменения температуры составляла 5 К/min. Из приведенных кривых ДСК (рис. 2) видно, что имеется значительный тепловой эффект при структурном переходе в суперпротонную фазу (T_c), но также наблюдается эффект теплопоглощения и в некотором температурном интервале в окрестности T_0 . Этот эффект все более сглаживается при повторяющихся нагреваниях образца, как и при измерениях проводимости. При последующем охлаждении для

Рис. 1. Температурные зависимости проводимости монокристалла PCTS при первом (1) и втором (2) нагревании. 3 — изменение проводимости монокристалла CsHSO₄.

Рис. 2. Тепловые эффекты в монокристалле PCTS при первом (1) и втором (2) нагревании, а также тепловой эффект в монокристалле CsHSO₄.

суперпротонного перехода в T_c наблюдается обратный экзотермический эффект с характерным для фазового перехода первого рода температурным гистерезисом и с таким же тепловыделением ($\approx 24 \text{ J/g}$). Подобный же гистерезис наблюдается и в измерениях проводимости. В то же время в окрестности T_0 обратный по знаку эффект при охлаждении отсутствует независимо от скорости изменения температуры, что не позволяет связать аномалию при T_0 со структурным фазовым переходом.

Теплопоглощение при нагревании образца и отсутствие обратного по знаку экзотермического эффекта в окрестности То при охлаждении характерны именно для твердофазных реакций. Температуру То при этом следует понимать как температуру "инициирования" твердофазной реакции при нагревании образца, а нижнее и верхнее по температуре отклонения теплового потока от линейного хода соответствуют началу и завершению реакции. Таким образом, начиная с температуры То вещество находится в метастабильном состоянии и имеется термодинамический стимул перехода в более стабильное состояние. Учитывая нестехиометрическое содержание структурной воды, можно предположить реакцию разложения по схеме $Cs_5H_3(SO_4)_4 \cdot xH_2O \leftrightarrow 2CsHSO_4$ $+Cs_{3}H(SO_{4})_{2}+Cs_{5}H_{3}(SO_{4})_{4}\cdot yH_{2}O(x, y < 1)$. Ha taкие продукты реакции указывает совпадение температуры перехода исследуемого соединения с температурой суперпротонного перехода в кристалле CsHSO4 $(\approx 414 \, \text{K})$ [2]. О протекании указанного твердофазного превращения свидетельствует и близость значений поглощаемой теплоты при Т_с для исследуемого соединения и для кристалла CsHSO₄ (24 и 23 J/g соответственно). Большее значение для PCTS отвечает дальнейшему развитию твердофазной реакции при температуре T_c , что естественно в условиях фазового перехода первого рода. Из измерений проводимости можно предположить, что массовая доля CsHSO₄ после первого температурного цикла составляет около 25%. Примечательно, что для кристалла Cs₃H(SO₄)₂ по данным ДСК имеется указание о фазовом переходе при 419 K [3], что при обычной для таких измерений точности также можно считать соответствием, а также предполагать неустойчивость и этого продукта разложения. Следует отметить, что тепловой эффект при T_0 не является простой дигидратацией вещества: этому процессу обычно соответствуют значительно бо́льшие (на порядок) значения теплоты превращения. Очевидно, что изменение проводимости в окрестности T_0 обусловлено отличием по проводимости продуктов реакции от исходной матрицы PCTS.

В использованной квазиадиабатической модуляционной методике в качестве осциллирующего теплового потока использовался модулированный с частотой около 1 Hz световой поток. Образцы для измерений представляли собой пластинки толщиной около $150 \,\mu$ m и площадью около 3 mm². Измерялось относительное изменение теплоемкости в режиме пошагового нагревания и охлаждения при стабилизации температурных точек, а также временное изменение теплоемкости при фиксированной температуре.

Из измерений в квазиадиабатическом режиме видно (рис. 3), что в окрестности T_0 имеется некоторая избыточная теплоемкость, а при T_c наблюдается скачок теплоемкости, характерный для "некритического" фазового перехода первого рода. На рисунке показан и характерный в этом случае температурный гистерезис, величина которого зависит от скорости изменения температуры или от длительности стабилизации соответствующей экспериментальной точки при данной температуре. В этих измерениях наблюдается истинная теплоемкость вещества в отличие от метода ДСК, при котором аномалия собственно теплоемкости маскируется значительным тепловым эффектом. Фазовый переход

Рис. 3. Температурная зависимость теплоемкости монокристалла PCTS.

Рис. 4. Изменение теплоемкости монокристалла РСТЅ при двух временны́х режимах нагревания. На вставке показано экспоненциальное изменение теплоемкости со временем при температуре T_0 .

в суперпротонное состояние при *T_c* полностью обратим и при охлаждении наблюдается в обеих методиках тепловых измерений.

Относительно первой по температуре "аномалии" измерения в квазиадиабатическом режиме показали, что начиная с температуры T_0 возможны два режима изменения теплоемкости образца в зависимости от времени измерения (рис. 4). При достаточно "быстрых" измерениях, когда время измерений для каждой температурной точки составляет порядка 10 min, в окрестности T_0 наблюдается некоторая избыточная теплоемкость (кривая I). Важно при этом, что температура в образце и измерительной системе успевает установиться. Интеграл по этой избыточной теплоемкости соответствует росту конфигурационной энтропии в результате твердофазной реакции.

При длительном выдерживании образца при $T \ge T_0$ наблюдается релаксационное изменение теплоемкости. Эта временная зависимость теплоемкости обусловлена, очевидно, ростом объема V новой фазы (фаз). Если считать, что скорость роста этого объема dV/dt пропорциональна разности между полным объемом V_0 и объемом, претерпевшим превращение, то для объемной доли превращения имеем релаксационное соотношение

$$V/V_0 = 1 - \exp(-t/\tau).$$

Эксперимент показывает, что временна́я зависимость теплоемкости действительно описывается соотношением $C_p \sim \exp(-t/\tau)$, причем при температуре, близкой к T_0 , имеем $\tau \approx 86$ min (вставка на рис. 4). Таким образом, при $t > \tau$ наблюдается равновесная конфигурационная теплоемкость, пропорциональная образовавшемуся объему новой фазы и изменяющаяся в соответствии с изотермическим изменением (увеличением) энтропии.

Экспоненциальное изменение объемной доли превращения принципиально соответствует гомогенному зарождению новой фазы в исходной матрице. Таким образом, экспериментально наблюдаемое изменение теплоемкости означает реализацию именно этого механизма твердофазного превращения. Во всяком случае, такова ситуация на стадии зарождения и на средних временных интервалах превращения. Реальный твердофазный процесс, конечно же, сложнее и не описывается столь простыми соотношениями. В частности, очевидно, что возможна и смена временного режима из-за уменьшения со временем скорости роста превращенного объема, изза вклада границ раздела и т.п., но эти эффекты оказываются вне пределов доступной точности измерения. Следует отметить, что в случае структурных фазовых переходов времена структурной релаксации весьма малы и конфигурационная теплоемкость изменялась бы скачкообразно за время структурной релаксации, много меньшее времени измерения.

Измерения при непрерывном изменении температуры $(t \ll \tau)$ оказываются артефактом, поскольку эффективное время релаксации τ само зависит от температуры при изменяющейся структуре образца и не совпадает с равновесным при данной температуре. Поэтому и результаты всех измерений зависят от режима изменения температуры.

Важный вопрос — восстанавливается ли исходное состояние матрицы, т.е. обратимо ли наблюдаемое превращение? Из измерений методом ДСК следует, что стабилизации многофазного гетерогенного состояния не происходит — последующие циклы повторяют исходные зависимости, т. е. исходная матрица PCTS восстанавливается до гомогенного состояния (во всяком случае, после выдержки кристалла при $T < T_0$ в течение нескольких часов). Однако эти измерения проводились на монокристаллических порошках в запаянных капсулах. Исходные температурные зависимости проводимости полностью не восстанавливаются, но и измерения в данном случае выполнялись в неконтролируемой атмосфере, т.е. содержание структурной воды в кристалле, важное для осуществления указанной реакции разложения, не контролировалось. Релаксация теплоемкости в квазиадиабатических измерениях наблюдается во всех температурных циклах после достаточной выдержки при $T < T_0$. Очевидно, что квазиобратимость наблюдаемой твердофазной реакции зависит от состояния (влажности) атмосферы, особенно существенной при возрастающей газопроницаемости кристалла в результате фазового перехода первого рода в T_c .

Таким образом, проведенные исследования позволяют заключить, что в монокристалле PCTS начиная с T_0 наблюдается спонтанно развивающийся процесс (гомогенное зарождение фазы CsHSO₄, а также сопутствующих фаз), приводящий к существенному изменению структуры и свойств исходного вещества. Скорость развития этого процесса и его кинетика зависят от термической предыстории образца и временно́го режима. Эта кинетика определяется именно химическим превращением, а не диффузией, обычно более медленной. При дальнейшем повышении температуры процесс продолжается и еще в большей степени развивается по достижении 414 К температуры фазового перехода образовавшейся соли CsHSO₄. В результате этого процесса образуется гетерогенное состояние с достаточно высокой протонной проводимостью, сравнимой с проводимостью "чистого" монокристалла CsHSO₄.

Список литературы

- A.I. Baranov, V.V. Grebenev, A.N. Khodan. Solid State Ionics 176, 2871 (2005).
- [2] M. Friesel, B. Baranowski, A. Lunden. Solid State Ionics 35, 85 (1989).
- [3] A.R. Lim. Phys. Rev. B 72, 064 103 (2005).