Магнитоупругий механизм магнитоэлектрического взаимодействия

© М.И. Куркин, В.В. Меньшенин, В.В. Николаев, Е.А. Туров, Н.Б. Бакулина

Институт физики металлов Уральского отделения Российской академии наук, 620129 Екатеринбург, Россия

E-mail: bakulina@imp.uran.ru

(Поступила в Редакцию 7 ноября 2006 г.)

Теоретически анализируется магнитоупругий механизм магнитоэлектрического взаимодейстия Φ_{mu} . Для его описания используется разложение магнитной энергии Φ_m по степеням компонент векторов \mathbf{u}_j (смещений узлов кристаллической решетки от положения равновесия), а не $\nabla \mathbf{u}$, которые определяют магнитострикционную часть магнитоупругой энергии Φ_{ms} . Еще одно различие между Φ_{mu} и Φ_{ms} проявляется в том, что Φ_{mu} описывает взаимодействие магнитных возбуждений с оптическими фононами, а Φ_{ms} — только с акустическими.

Установлено, что для магнитоэлектричества важны только электроактивные (взаимодействующие с электрическим полем) оптические фононы, обычно составляющие малую часть от полного числа оптических ветвей фононного спектра. Предложено описание Φ_{mu} , автоматически исключающее из рассмотрения все неэлектроактивные ветви оптических фононов. Это описание строится на основе понятия электрической подрешетки, в которую объединяются все химически одинаковые, равновалентные ионы.

Рассмотрение проведено на примере соединения Fe₂TeO₆.

Работа выполнена при финансовой поддержке РФФИ (проект № 05-02-16087) и Президиума РАН.

PACS: 75.80.+q, 75.50.Bb

Магнитоэлектрическое взаимодействие и его связь со смещениями атомов

Магнитоэлектрическое (МЭ) взаимодействие Φ_{ME} , связывающее между собой электрические и магнитные характеристики магнетиков, стало объектом интенсивного изучения после экспериментального обнаружения МЭ-эффектов [1]. К таким эффектам обычно относят появление намагниченности **М** в электрическом поле **Е** и электрической поляризованности **Р** в магнитном поле **H**:

$$M^{\alpha} = \lambda_{E}^{\alpha\beta} E^{\beta}; \quad P^{\alpha} = \lambda_{H}^{\alpha\beta} H^{\beta}. \tag{1}$$

В работе речь пойдет о соизмеримых магнитных структурах. Энергию Φ_{ME} для таких структур принято записывать через инвариантные (относительно операций симметрии) комбинации компонентов векторов **M**, **P** и вектора антиферромагнетизма **L** [2]:

$$\Phi_{\rm ME} = -\Lambda^{\alpha\beta\gamma} M^{\alpha} L^{\beta} P^{\gamma} \tag{2}$$

 $(\alpha, \beta, \gamma \in [x, y, z])$. Обычно Φ_{ME} рассматривают как дополнительное слагаемое в термодинамическом потенциале магнетика Φ наряду с обменными слагаемыми, магнитной анизотропией, магнитострикцией и др. При анализе свойств Φ_{ME} основное внимание уделяется типу кристаллической симметрии и характеру магнитного упорядочения, которое определяет вид МЭ-инвариантов в (2).

Безусловно, такой анализ важен, поскольку позволяет сузить поиск веществ, обладающих МЭ-эффектами (магнитоэлектриков). Однако найденные таким образом ограничения касаются только кристаллической симметрии, но не химического свойства магнетиков. Для разработки критериев, позволяющих осуществить целенаправленный поиск хороших магнитоэлектриков по нескольким параметрам, а не только по симметрии, желательно связать Φ_{ME} (2) с теми основными взаимодействиями (обменным, спин-орбитальным, дипольным), которые определяют характеристики магнетиков. Предлагаемый далее вариант такой связи основан на использовании выражения для электрической поляризации среды (в единице объема) [3]

$$\mathbf{P} = \sum_{j} q_{j} \mathbf{r}_{j},\tag{3}$$

 \mathbf{r}_{j} — пространственная координата носителя электрического заряда q_{j} . Далее под \mathbf{r}_{j} и q_{j} понимаются заряд иона и координата узла кристаллической решетки, занимаемого этим ионом. Ограничимся кристаллами, имеющими центр инверсии в списке операций кристаллической группы. Такие кристаллы не имеют спонтанной электрической поляризации:

$$\mathbf{P}_0 = \sum_j q_j \mathbf{r}_{j0} = 0,$$

 \mathbf{r}_{j0} — равновесные координаты узлов кристаллической решетки. При этом условии формула (3) принимает вид

$$\mathbf{P} = \sum_{j} q_{j} \mathbf{u}_{j}; \tag{4}$$

$$\mathbf{u}_i = \mathbf{r}_i - \mathbf{r}_0 \tag{5}$$

— смещение положения *j*-иона от положения равновесия. Формулы (4), (5) наводят на мысль, что энергия $\Phi_{\rm ME}$ (2) связана с изменениями одной из базовых энергий магнитоэлектрика (обменной, магнитной анизотропии и т.д.) при смещении ионов из положения равновесия. Чтобы точнее установить природу Φ_{ME} , удобно рассматривать какой-нибудь конкретный пример. В качестве такого вещества мы выбрали тетрагональный кристалл со структурой трирутила — соединение Fe₂TeO₆, симметрия которого подробно анализировалась в [2].

Магнитоэлектрическая часть магнитоупругой энергии трирутила

Элементарная ячейка трирутила содержит четыре иона Fe, два иона Te и двенадцать ионов O (всего 18 ионов). Ионы Fe, занимающие позиции 4e, формируют четыре магнитные подрешетки с намагниченностями \mathbf{M}_k ($k \in [1, 2, 3, 4]$ (см. рисунок)). Взаимная ориентация векторов \mathbf{M}_k (обменная магнитная структура) определяется обменным взаимодействием

$$\Phi_{\text{ex}} = \sum_{k,k'} J_{k,k'}(\mathbf{M}_k, \mathbf{M}_{k'}).$$
(6)

Если вместо векторов \mathbf{M}_k использовать их специальные линейные комбинации (базисные векторы) [2]

$$L_a = M_1 + M_2 - M_3 - M_4;$$
 $L_b = M_1 - M_2 + M_3 - M_4;$

$$\mathbf{L}_{c} = \mathbf{M}_{1} - \mathbf{M}_{2} - \mathbf{M}_{3} + \mathbf{M}_{4}; \quad \mathbf{M} = \mathbf{M}_{1} + \mathbf{M}_{2} + \mathbf{M}_{3} + \mathbf{M}_{4},$$
(7)

то квадратичная форма (6) становится диагональной по переменным **M** и L_s ($s \in [a, b, c]$)

$$\Phi_{\rm ex} = \sum_{s} J_s \mathbf{L}_s^2 + J_M \mathbf{M}^2. \tag{8}$$

Из формулы (8) следует, что при разложении Φ_{ex} по степеням смещений ионов \mathbf{u}_j (5) не должно получиться выражение типа Φ_{ME} (2), в котором перепутаны переменные L, M и $\mathbf{u}_j \sim \mathbf{P}$ (4). Такое перепутывание наверняка получится, если разложить в ряд по \mathbf{u}_j энергию магнитной анизотропии

$$\Phi_{A} = \sum_{ss'\alpha\beta} K_{ss'}^{\alpha\beta} L_{s}^{\alpha} L_{s'}^{\beta} + \sum_{s\alpha\beta} K_{Ms}^{\alpha\beta} M^{\alpha} L_{s}^{\beta} + \sum_{\alpha\beta} K_{MM}^{\alpha\beta} M^{\alpha} M^{\beta}$$
$$(\alpha, \beta \in [x, y, z]). \tag{9}$$

Строго говоря, коэффициенты $K^{\alpha\beta}$ в (9) зависят не только от смещений u_i^{α} (5), но и от их производных

$$u_j^{\alpha\beta} = \frac{\partial u_j^{\alpha}}{\partial r_{\beta}}$$

по пространственным координатам r_{β} . Обычная магнитоупругая энергия, которая используется для описания

Изображение элементарной ячейки кристалла со структурой трирутила. Указаны положения генераторов группы $\overline{1}$, 42 и 2_d.

магнитострикции [2], получается из Φ_A (9) в линейном приближении по деформациям

$$u^{lphaeta} = \sum_j u_j^{lphaeta}$$

С $u^{\alpha\beta}$ связаны акустические фононные ветви в кристаллах [4], соответствующие таким смещениям ионов, при которых вся элементарная ячейка кристалла смещается как целое. При подобных смещениях из-за электронейтральности ячейки электрической поляризации **P** (4) не возникает. Для ее появления необходимы относительные смещения ионов внутри ячейки, связанные с оптическими фононными ветвями [4]. В решетке трирутилов с 18 ионами на элементарную ячейку спектр оптических фононов содержит 51 ветвь. Это делает полный симметрийный анализ магнитоупругого взаимодействия с оптическими фононами сложной задачей.

Задачу можно значительно упростить, если учесть, что вектор **P** связан не со всеми 51 ветвями оптических фононов, а лишь с некоторыми из них. Будем называть их электроактивными, поскольку они, как и вектор **P**, взаимодействуют с электрическим полем **E**. Чтобы получить динамические переменные, которые описывают только электроактивные оптические фононы, достаточно перегруппировать слагаемые в сумме (4) для **P** с учетом следующих соображений. Во-первых, координату узла решетки **r**_i удобно записать в виде суммы

$$\mathbf{r}_i = \mathbf{r} + \mathbf{r}_n$$

 \mathbf{r} — координата центра элементарной ячейки кристалла, \mathbf{r}_n — координата узла решетки внутри ячейки, поскольку

$$\mathbf{P} = \sum_{\mathbf{r}} \mathbf{P}(\mathbf{r}) = \sum_{\mathbf{r}} \sum_{n} q_n \mathbf{u}_n(\mathbf{r}).$$
(10)

Величина $\mathbf{P}(\mathbf{r})$ описывает поляризацию элементарной ячейки кристалла, которая в приближении сплошной среды ($\mathbf{P} = \int d\mathbf{r} \boldsymbol{\mathscr{P}}(\mathbf{r})$) переходит в плотность поляризации $\boldsymbol{\mathscr{P}}(\mathbf{r}) = \mathbf{P}(\mathbf{r})/V_0$, где V_0 — объем элементарной ячейки. Во-вторых, следует учесть, что ионы, принадлежащие одной из трех подрешеток Fe, Te и O, имеют одинаковые электрические заряды q_v ($v \in [Fe, Te, O]$). Это позволяет записать выражение для $\mathbf{P}(\mathbf{r})$ в виде

$$\mathbf{P}(\mathbf{r}) = \sum_{\nu} q_{\nu} \mathbf{u}_{\nu}(\mathbf{r}) = \sum_{\nu} \mathbf{P}_{\nu}(\mathbf{r}), \qquad (11)$$

 $\mathbf{P}_{\nu}(\mathbf{r})$ — поляризация ν -й подрешетки. В формуле (11) три вектора

$$\mathbf{u}_{\nu}(\mathbf{r}) = \sum_{n} \mathbf{u}_{n}^{\nu}(\mathbf{r})$$
(12)

описывают суммарные смещения ионов, принадлежащих подрешеткам Fe, Te и O. Из (10) - (12) непосредственно следует, что векторы $\mathbf{u}_{v}(\mathbf{r})$ (12) являются теми динамическими переменными, которые описывают все электроактивные оптические фононы. Во-первых, акустические ветви фононов, соответствующие одинаковым смещениям всех типов ионов внутри ячейки $(\mathbf{u}_{\nu}(\mathbf{r}) = \mathbf{u}(\mathbf{r}))$, не вносят вклад в $P(\mathbf{r})$ (10) из-за условия электронейтральности $\sum q_{\nu} = 0$. Во-вторых, из ветвей оптических фононов в $P(\mathbf{r})$ вносят вклад только те ветви, для которых $u_{\nu}(\mathbf{r}) \neq 0$. Следует напомнить, что решающим условием, обеспечивающим разбиение суммы по n в (10) на три суммы по трем подрешеткам ν в (11) и (12), явилось равенство электрических зарядов ионов, принадлежащих одной подрешетке. Поскольку группы ионов, имеющих одинаковые магнитные моменты, принято называть магнитными подрешетками, то для объединений ионов с одинаковыми электрическими зарядами естественно использовать термин "электрическая подрешетка".

Использование трех векторов $\mathbf{u}_{\nu}(\mathbf{r})$ (12) вместо 18 векторов $\mathbf{u}_{n}(\mathbf{r})$ в (10) существенно упрощает запись упругой энергии Φ_{u} . Для кристалла Fe₂TeO₆, структура которого относится к группе симметрии D_{4h}^{14} [2,5], энергия Φ_{u} определяется выражением

$$\Phi_{u} = \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \sum_{\nu\nu'} \{ W_{\nu\nu'}^{\parallel}(\mathbf{r} - \mathbf{r}') \left(u_{\nu}^{z}(\mathbf{r}) - u_{\nu'}^{z}(\mathbf{r}) \right) \\ \times \left(u_{\nu}^{z}(\mathbf{r}') - u_{\nu'}^{z}(\mathbf{r}') \right) + W_{\nu\nu'}^{\perp}(\mathbf{r} - \mathbf{r}') \left[\left(u_{\nu}^{x}(\mathbf{r}) - u_{\nu'}^{x}(\mathbf{r}) \right) \\ \times \left(u_{\nu}^{x}(\mathbf{r}') - u_{\nu'}^{x}(\mathbf{r}') \right) + \left(u_{\nu}^{y}(\mathbf{r}) - u_{\nu'}^{y}(\mathbf{r}) \right) \\ \times \left(u_{\nu}^{y}(\mathbf{r}') - u_{\nu'}^{y}(\mathbf{r}') \right) \right] \} - \int d\mathbf{r} \sum_{\nu\alpha} q_{\nu} u_{\nu}^{\alpha}(\mathbf{r}) E^{\alpha}(\mathbf{r}).$$
(13)

Последнее слагаемое в (13) описывает взаимодействие зарядов электрических подрешеток с электрическим полем $\mathbf{E}(\mathbf{r}), \alpha \in [x, y, z]$. В формуле (13) опущена часть

динамической матрицы, определяющая акустические фононные ветви.

Уравнения динамики для векторов \mathbf{u}_{ν}

$$\rho_{\nu} = \ddot{u}^{\alpha}_{\nu} = -\partial \Phi_{u} / \partial u^{\alpha}_{\nu} \tag{14}$$

описывают девять фононных ветвей, из которых три ветви $(\sum_{\nu} u_{\nu}^{\alpha} = u_{\alpha})$ акустические и шесть ветвей (вместо

51 ветви) относятся к электроактивным оптическим фононам.

Введение электрических подрешеток существенно упрощает запись энергии взаимодействий Ф_{ти}, связывающих магнитные базисные векторы М и L_s (7) с электрическими базисными векторами \mathbf{u}_{ν} (12). Как упоминалось выше, выражение для Φ_{mu} должно получаться из разложения энергии магнитной анизотропии Φ_A (9) по степеням смещений и_j. Однако нас интересует связь М и L_s только с электроактивными оптическими фононами, поэтому вместо **u**_i в этом разложении следует использовать компоненты вектров \mathbf{u}_{ν} (12). Вид этого разложения сильно зависит от симметрии кристалла. Соответствующий симметрийный анализ существенно упрощается благодаря тому, что все векторы \mathbf{u}_{ν} (12) под действием операций симметрии преобразуются так же, как и вектор электрической поляризации Р (4). Это позволяет для записи Ф_{ти} использовать методику получения МЭинвариантов, которая была развита в [2], с одним только отличием: компоненты вектора Р в ФМЕ (2) нужно заменить на компоненты векторов \mathbf{u}_{ν} (12). В частности, для Fe₂TeO₂ в линейном приближении по *u_v* формула для магнитоупругого взаимодействия Φ_{mu} получается из формул (6), (7), приведенных в работе [6],

$$\Phi_{mu} = \sum_{\nu} \Lambda_{M,\nu}^{x,y} \left(M^{x} u_{\nu}^{x} + M^{y} u_{\nu}^{y} \right) L_{b}^{z}$$
$$- \sum_{\nu} \Lambda_{M,\nu}^{z,z} M^{z} u_{\nu}^{z} L_{b}^{z} - \sum_{\nu} \Lambda_{a,\nu}^{x,y} \left(L_{a}^{x} u_{\nu}^{y} + L_{a}^{y} u_{\nu}^{x} \right) L_{b}^{z}.$$
(15)

Последняя сумма в (15) описывает так называемое антиферроэлектрическое взаимодействие. Этот термин использован в [2] для описания того факта, что соответствующие инварианты содержат только компоненты векторов антиферромагнетизма наряду с P^{α} . Следует также отметить, что в формуле (15) выписаны только те инварианты, которые содержат компоненту L_b^z , поскольку именно она является параметром антиферромагнитного порядка в Fe₂TeO₆. Полный список антиферроэлектрических инвариантов приведен в [6].

3. Следствия из формулы (15)

3.1. Поскольку коэффициенты Λ в (15) имеют ту же природу, что и константы магнитоупругости, то магнитоэлектрики с лучшими свойствами следует искать среди соединений с редкоземельными элементами, которые давно используются в качестве хороших магнитострикционных материалов. **3.2.** Взаимодействие магнонов и оптических фононов определяет не только статические, но и динамические МЭ-эффекты в переменных полях **E**(*t*) и **H**(*t*) [7]. В частности, вблизи частот магнонов $\omega = \omega_M$ и электроактивных оптических фононов $\omega = \omega_{uv}$ должно иметь место резонансное усиление МЭ-эффектов. Соответствующие уравнения получаются, если выразить коэффициенты $\lambda_{E,H}$ в (1) через Λ_{Mv} в (15) с учетом соотношений

$$M^{\alpha}(\omega) = \chi^{\alpha\beta}(\omega)H^{\beta}_{\omega},$$
$$P^{\alpha}_{\nu}(\omega) = q_{\nu}u^{\alpha}_{\nu}(\omega) = \kappa^{\alpha\beta}_{\nu}(\omega)E^{\beta}_{\omega}, \tag{16}$$

 $\chi(\omega)$ — магнитная восприимчивость с учетом временной дисперсии, а $\kappa_{\nu}(\omega)$ — электрическая поляризуемость ν -й подрешетки (15), которая находится из решений (14) в линейном приближении по **E**(*t*). В результате получаются соотношения, которые далее представлены в тензорном виде для того, чтобы не выписывать большого числа индексов:

$$\boldsymbol{\lambda}_{E}(\omega) = \sum_{\nu} \boldsymbol{\kappa}_{\nu}(\omega) \boldsymbol{\Delta}_{M\nu} \mathbf{L}_{b} \boldsymbol{\chi}(\omega);$$
$$\boldsymbol{\lambda}_{H}(\omega) = \sum_{\nu} \boldsymbol{\chi}(\omega) \boldsymbol{\Lambda}_{M\nu} L_{b} \boldsymbol{\kappa}_{\nu}(\omega).$$
(17)

Теперь можно воспользоваться стандартными выражениями для действительных частей $\chi(\omega)$ и $\kappa(\omega)$, которые обеспечивают соответствующие сигналы дисперсии [3]:

$$\chi'(\omega) = \chi(0) \frac{\omega_M(\omega_M - \omega)}{(\omega_M - \omega)^2 + \Gamma_M^2};$$

$$\kappa'_{\nu}(\omega) = \kappa_{\nu}(0) \frac{\omega_{\mu\nu}(\omega_{\mu\nu} - \omega)}{(\omega_{\mu\nu} - \omega)^2 + \Gamma_{\mu\nu}^2},$$
(18)

 ω_{M} — частоты магнонов, ω_{uv} — частоты оптических фононов, Γ_{M} и Γ_{uv} — частоты затуханий магнонов и оптических фононов. Из формул (17) и (18) следует, что вблизи частот магнонов $\omega \approx \omega_{M}$ и оптических фононов $\omega \approx \omega_{uv}$ (но вдали от магнитоупругого резонанса $\omega_{uv} \approx \omega_{M}$) имеют место соотношения

$$\lambda_{E,H}(\omega_M) = \lambda_{E,H}(0) \frac{\omega_M}{\Gamma_M};$$

$$\lambda_{E,H}(\omega_{uv}) = \lambda_{E,H}(0) \frac{\omega_{uv}}{\Gamma_{uv}}.$$
 (19)

Резонансное усиление имеет место при $\omega_M \gg \Gamma_M$ и $\omega_{uv} \gg \Gamma_{uv}$. Соответствующие эффекты на магнонной частоте анализировались в [7].

3.3. Наибольшего усиления МЭ-эффектов следует ожидать вблизи магнитоупругого резонанса с одной из частот оптических фононов $\omega_M \approx \omega_{uv}$, тогда усиление испытывают оба множителя $\chi(\omega)$ и $\kappa_v(\omega)$ в (17).

Обычно частоты ω_{uv} лежат выше ω_M , тем не менее условие $\omega_M \approx \omega_{uv}$ может реализовываться вблизи структурного фазового перехода со смягчением одной из частот ω_{uv} . В Fe₂TeO₆ такие структурные переходы отсутствуют, но они, возможно, существуют в других

магнетиках. Главное, чтобы температура структурного перехода была ниже, чем температура магнитного упорядочения.

3.4. Возможность совмещения частот магнонов, возбуждаемых полем $\mathbf{H}(t)$, и оптических фононов, возбуждаемых полем $\mathbf{E}(t)$, представляет интерес еще и как возможное условие существования сред с отрицательными электрической ($\varepsilon(\omega) = 1 + 4\pi\kappa(\omega) < 0$) и магнитной ($\mu(\omega) = 1 + 4\pi\chi(\omega) < 0$) проницаемостями (сред Веселаго) [8]. Особенности распространения электромагнитных волн в средах Веселаго настолько необычны и привлекательны, что исследование этих сред считается сейчас одним из наиболее перспективных направлений в физике конденсированного состояния [9]. Мы сочли необходимым отметить это обстоятельство, поскольку оно может служить дополнительным стимулом для изучения магнитоэлектриков.

Список литературы

- [1] Д.Н. Астров. ЖЭТФ 38, 984 (1960).
- [2] Е.А. Туров, А.В. Колчанов, В.В. Меньшенин, И.Ф. Мирсаев, В.В. Николаев. Симметрия и физические свойства антиферромагнетиков. ФИЗМАТЛИТ, М. (2001). 560 с.
- [3] Е.А. Памятных, Е.А. Туров. Основы электродинамики материальных сред в переменных и неоднородных полях. Наука, М. (2000).
- [4] А. Пуле, Ж.-П. Матье. Колебательные спектры и симметрия кристаллов. Мир, М. (1973).
- [5] W. Kunnmann, S. La Placa, L.M. Corliss, J.M. Hastings, E. Banks. J. Phys. Chem. Sol. 29, 1359 (1968).
- [6] И.Ф. Мирсаев, Е.А. Туров. ЖЭТФ 124, 338 (2003).
- [7] Е.А. Туров, В.В. Николаев. УФН 175, 457 (2005).
- [8] В.Г. Веселаго. УФН 92, 517 (1967).
- [9] В.Г. Веселаго. УФН 173, 790 (2003).