Рассеяние неравновесных акустических фононов в чистом крупнозернистом ZnSe с микродвойниковой хаотической структурой

© В.С. Багаев, Т.И. Галкина, А.И. Шарков, А.Ю. Клоков, В.П. Мартовицкий, В.С. Кривобок, Ю.В. Клевков, С.Г. Черноок

Физический институт им. П.Н. Лебедева Российской академии наук,

119991 Москва, Россия E-mail: shark@lebedev.ru

(Поступила в Редакцию 31 октября 2006 г.)

Исследовано распространение неравновесных акустических фононов в крупнозернистом ZnSe, полученном химическим синтезом из паровой фазы как при оптической генерации фононов, так и при их генерации металлическим нагревателем. Материал характеризуется микродвойниковой структурой внутри хаотически ориентированных зерен. Исследования фононного транспорта в сочетании с низкотемпературной фотолюминесценцией, оптической и электронной микроскопией, а также рентгеноструктурным анализом позволили установить определяющую роль протяженных дефектов в процессах рассеяния высокочастотных акустических фононов в этом материале.

Работа поддержана Российским фондом фундаментальных исследований (проекты № 06-02-17155, 05-02-17545 и 04-02-17078).

PACS: 66.70.+f, 63.20.Kr, 63.20.Mt

1. Введение

Из всего семейства соединений группы II–VI именно ZnSe находит все большее применение в целом ряде устройств и научном приборостроении. Так, он используется в качестве материала для ультразвуковых преобразователей, фотодетекторов, солнечных батарей, диодных лазеров, а также изготовления выходных окон для лазеров высоких энергий.

Известно, что двойники рекристаллизации образуются весьма часто в различных материалах с гранецентрированной кубической структурой. Ранее нами было обнаружено влияние двойниковых плоскостей на рассеяние акустических фононов в ZnTe и CdTe, полученных методом XCПФ, отличающимся высокими скоростями осаждения по сравнению с другими методами. Известно, что ZnSe отличается от ZnTe меньшей энергией образования дефектов упаковки.

Настоящая работа выполнена с целью получения сведений о длинах пробегов акустических фононов и о возможных механизмах их рассеяния.

2. Образцы

Поликристаллический ZnSe массой до 350 g был синтезирован при температурах ниже 650° C из предварительно очищенных компонентов [1] и впоследствии подвергнут гомогенизации и двукратной вакуумной сублимации при температуре 900° C. Средняя скорость осаждения конденсата зависела от состава синтезированного ZnSe (небольшого избытка Zn или Se) и изменялась в пределах 4-7 g/h. Максимальная скорость осаждения в диапазоне температур $790-830^{\circ}$ C соответствовала составу сублимата, близкому к составу так называемой

точки P_{min} на фазовой диаграмме P-x. Поверхность конденсата представляла собой ограненные кристаллы с произвольным направлением роста и размерами 50-200 µm. Образцы ZnSe в форме пластин размером $10 \times 10 \,\mathrm{mm}$ и толщиной $500 \,\mu\mathrm{m}$ были приготовлены шлифовкой и последующей полировкой (плоскопараллельность составляла 3.5'), затем они обезжиривались и травились в течение 1-3 min в 12.5% NaOH при температуре 120°С для лучшего выявления границ зерен и выходов плоскостей двойникования. На рис. 1 показана фотография поверхности образца, выполненная с помощью оптического микроскопа UNION 6551 (цена деления линейки внизу 10 µm). Видно, что образец состоит из беспорядочно ориентированных зерен размерами от нескольких десятков до сотен микрон, имеющих двойниковую структуру с характерным расстоянием в несколько микрон между видимыми выходами плоскостей двойникования и/или дефектов упаковки.

На рис. 2 показано изображение СЭМ в отраженных электронах в режиме Z-контраста поверхности ZnSe после обработки в селективном травителе, выполненное с помощью электронного микроскопа JEOL JSM-5910-LV. Одновременное использование двух датчиков отраженных электронов в этом микроскопе позволяет отличить контраст, связанный с вариациями элементного состава и внутренней структурой образца (Z-контраст), от контраста, связанного с рельефом поверхности. Наблюдается более тонкая структура внутреннего строения зерна, которая не проявляется в рельефе поверхности и не видна в оптическом микроскопе, что позволяет говорить о характерном расстоянии между плоскостями в 0.1-0.3 µm. Рентгеноспектральный микроанализ показывает, что различия в элементном составе в светлых и темных областях нет, что подтверждается структурным характером этих неоднородностей (дефекты упаковки

Рис. 1. Изображение поверхности крупнозернистого ZnSe после обработки в селективном травителе, полученное при помощи оптического микроскопа. Цена деления линейки 10 μ m.

Рис. 2. СЭМ-изображение поверхности крупнозернистого ZnSe в отраженных электронах в режиме *Z*-контраста.

и/или плоскости двойникования). Данное изображение получено в области скопления выходов таких плоскостей; заметим, что в некоторых других зернах присутствовали области материала без подобной структуры.

Рентгеноструктурный анализ образца ZnSe проводился на рентгеновском дифрактометре ДРОН-2.0 с графитовым монохроматором с использованием медного излучения. Предварительный анализ показал, что исследуемый образец состоит из отдельных практически монокристаллических зерен кубической структуры случайной ориентацией и размерами $50-150\,\mu$ m. Как было указано выше, параллельные контрастные полосы, видимые внутри зерен могут быть как границами двойниковых плоскостей, так и дефектами упаковки с тончайшими прослойками гексагональной фазы.

Для определения типа границ нами был проведен поиск ориентированных включений гексагональной фазы внутри кубической матрицы. Поскольку ориентация [111] кубической фазы совпадает с ориентацией [0001] гексагональной фазы, поиск гексагональной фазы из-за малой толщины прослоек проводился на рефлексе $(10\bar{1}0)$, который не перекрывается с рефлексами кубической фазы и на котором интенсивность тонких прослоек гексагональной фазы должна быть максимальной. Тщательные исследования показали отсутствие этого рефлекса во всех исследованных зернах, что означает отсутствие прослоек гексагональной фазы.

Поскольку двойники в кристаллах со структурой сфалерита образуются путем поворота на 60° вокруг направления [111] решетки одного двойника относительно решетки другого (рис. 3), кроме общих направлений [111]₁ || [111]₂ и [110]₁ || [110]₂ в сдвойникованных зернах должны совпадать также направления [111]₁ || [115]₂ и [110]₁ || [114]₂. Оба последних ориентационных соотношения были использованы для определения присутствия двойников. Поскольку межплоскостные расстояния рефлексов (333) и (115) совпадают, то критерием наличия двойника в исследуемом зерне были присутствие рефлексов (111)₁ и (113)₂ с угловым расстоянием 9.44° между максимумами их кривых качания. Заметим, что в бездвойниковом зерне угловое расстояние между рефлексами (111) и (113) составляет 29.5°. Для второго ориентационного соотношения критерием присутствия двойника было нахождение рефлекса (113)2, отстоящего на угол 5.77° от рефлекса (220)1. В бездвойниковом же зерне угловое расстояние между этими рефлексами составляет 31.48°. В большинстве зерен были обнаружены оба ориентационных соотношения, что позволяет сделать вывод о присутствии в каждом зерне системы двойниковых прослоек.

Для подтверждения вывода о двойниковом характере границ часть образца была расколота по границам зерен и в каждом отдельно исследованном зерне с ориентацией приблизительно [111] или [110] были обнаружены рефлексы от двойников.

Рис. 3. Сближение двух пар рефлексов при двойниковании вокруг (111): $\{220\} - \{113\}$ и $\{11\overline{1}\} - \{\overline{1}\overline{1}3\}$. Другие рефлексы не показаны.

Рис. 4. Схема эксперимента и основные процессы с неравновесными фононами. P — генерация фононов излучением импульсного лазера с возможностью сканирования по передней поверхности образца, G_1 и G_2 — генерация фононов фотовозбуждением и нагревом золотой пленки соответственно, D — тонкопленочный сверхпроводниковый болометр, 1 — спонтанный ангармонический распад фононов, 2 — рассеяние фононов на точечных дефектах, 3 — рассеяние на плоских дефектах, 4 — выход из образца в жидкий гелий.

3. Эксперимент

3.1. Фотолюминесценция (ФЛ). Измерения спектров низкотемпературной ФЛ проводились в парах гелия при температуре 5 К со свежетравленой поверхности кристалла. Источником стационарного возбуждения служил гелий-кадмиевый лазер с квантами возбуждения 2.81 eV (441.6 nm) и 3.81 eV (325.0 nm). Спект ФЛ анализировался двойным монохроматором ДСФ-24 с разрешением не хуже 0.25 meV. Сигнал от фотоумножителя регистрировался с помощью метода счета фотонов.

Для изучения возможных пространственных неоднородностей в люминесценции использовались два режима — анализ спектров ФЛ при равномерной засветке большой (2–3 mm) области на образце и локальное сканирование по поверхности образца пятном размером ~ 50 μ m. Основное их различие состояло в разной (примерно на три порядка) плотности мощности стационарного возбуждения.

3.2. Тепловые импульсы. Исследование распространения неравновесных акустических фононов проводилось в геометрии "на прохождение", когда генерация и регистрация фононов производится на противоположных сторонах пластины. Общая схема эксперимента и основные процессы с неравновесными фононами показаны на рис. 4. Неравновесные акустические фононы генерируются в образце в результате импульсного возбуждения Р; в данном случае в качестве генератора фононов использовались два способа генерации неравновесных фононов: фотовозбуждение поверхности образца импульсами азотного лазера ЛГИ-21 ($\lambda = 337 \text{ nm}$, $\tau_P = 10 \, \text{ns}) \, G_1$ или нагрев этими импульсами золотой пленки толщиной 150 nm, нанесенной на поверхность образца G₂. Эти два случая отличаются спектром испускаемых фононов: в первом случае генерируемые фононы имеют бо́льшую начальную частоту (~ 3.8 THz для ZnSe), чем во втором (< 1.5 THz). Далее фононы распространяются по образцу, испытывая процессы спонтанного ангармонического распада (1), упругого рассеяния на точечных (изотопы, атомы примесей) (2) и плоских (границы зерен, плоскости двойникования) дефектах (3). При попадании на границу образца в том случае, если она соприкасается с жидким гелием, большая часть фононов выходит из образца (4). Детектирование фононов осуществлялось в жидком гелии при температуре ~ 1.7 К тонкопленочным сверхпроводниковым болометром D, выполненным из гранулированного алюминия в форме мостика с размерами активной части 50 × 70 μ m.

Система регистрации была построена на основе широкополосного предусилителя и цифрового осциллографа TDS-1012 с частотой дискретизации 1 GHz, управляемого от компьютера. Временно́е разрешение системы регистрации составляло около 2 ns. Для выявления особенностей пространственного распространения неравновесных фононов в образце можно было осуществлять сканирование лучом лазера по передней стороне пластины с шагом 5 μ m.

4. Результаты и обсуждение

4.1. Люминесценция. Спектр ФЛ, записанный в режиме возбуждения большой области на поверхности поликристалла (длина волны возбуждения 325.0 nm), приведен на рис. 5. Видно, что при низких плотностях возбуждения в спектре доминируют три типа излучательных переходов, обозначенные Y (2.604 eV), S (~ 2.52 eV) и Z (2.45 eV), каждый из которых связан с протяженными дефектами [2]. При этом визуально люминесценция образца представляет собой однородное (в пределах разрешения наблюдательной системы ~ 3 μ m) зеленое свечение, на фоне которого проявляются области размером до нескольких десятков

Рис. 5. Спектр низкотемпературной (5 K) фотолюминесценции при интегральной засветке большой области поликристалла. Плотность мощности ~ 0.05 W/cm². Отрезок, обозначенный *LO*, соответствует энергии продольного оптического фонона в ZnSe.

Рис. 6. Спектры низкотемпературной (5 K) фотолюминесценции при локальном ($\sim 50\,\mu$ m) возбуждении двух разных точек поликристалла (верхняя и нижняя кривые). Плотность мощности ~ 100 W/cm².

Рис. 7. Фрагменты спектров низкотемпературной (5 K) фотолюминесценции при возбуждении поликристалла светом с длиной волны 325.0 (*a*) и 441.6 nm (*b*). E_G соответствует энергии дна экситонной зоны, E_{LO} — энергии продольного оптического фонона в ZnSe.

микрон с характерной зелено-голубоватой окраской. Как видно из рис. 5, голубоватому свечению соответствует Y-полоса, которая связывается обычно с дислокациями [2]. Так как в исследуемом поликристалле плотность дислокаций внутри зерен достаточно мала, за дислокационное излучение ответственны, по-видимому, области вблизи границ кристаллитов, что и приводит к сильной пространственной неоднородности Y-линии. Слабая бесструктурная полоса (SA), проявляющаяся в длинноволновой части спектра на рис. 5, совпадает по своему спектральному положению с самоактивационной полосой в ZnSe, которая проявляется обычно при наличии в кристалле комплексов с участием вакансий цинка и доноров [2].

В режиме возбуждения локальных областей кристалла, как и при интегральной засветке, также наблюдается сильная неоднородность в люминесценции образца. В зависимости от места возбуждения в спектре доминирует либо *Y*-линия (рис. 6, нижняя кривая), либо краевое излучение, обусловленное свободными (*FE*) и связанными (I_1^D, I_1, I_2, I_3) экситонами (рис. 6, верхняя кривая).

Более подробно фрагменты спектров ФЛ в краевой области при возбуждении линиями 325.0 и 441.6 nm приведены на рис. 7 (кривые а и b соответственно). Наиболее яркая полоса в районе 2.7831 eV (I_1^D) связывается обычно с излучением экситона, локализованного на меди (Cu_{Zr}) [2]. Линии I_1, I_2, I_2^*, I_3 обусловлены наличием небольшой концентрации мелких доноров и акцепторов [3]. I_2 (2.7977 eV) и I_2^* (~ 2.800 eV) представляют собой излучение основного и возбужденного состояний экситонно-примесных комплексов на нейтральных донорах (предположительно Al_{Zn} или Cl_{Se}). I_3 (2.7955 eV) соответствует экситонам, локализованным на тех же примесях, но находящихся в заряженном состоянии. І1 (2.7922 eV) соответствует основной линии излучения экситонов, локализованных на Lizn. Наличие небольшой концентрации Li_{Zn} подтверждается присутствием в спектрах на рис. 6 е-А-перехода (перехода, при котором свободный электрон рекомбинирует с дыркой, связанной на акцепторе), соответствующего именно этой примеси. Особенность I_V (~ 2.772 eV), возникающая при возбуждении светом с длиной волны 325.0 nm, близка по своему положению к излучательному переходу с участием собственного дефекта селеновой подрешетки [4]. Как и следовало бы ожидать при такой интерпретации, указанная особенность исчезает из спектра при возбуждении светом с длиной волны 441.6 nm [4].

Остановимся подробнее на специфике Z-линии в исследуемом образце. В режиме острой фокусировки интенсивность ФЛ, связанной с данным переходом, имеет тенденцию достаточно быстро убывать со временем (за несколько минут сигнал уменьшается в несколько раз). Эффект, по-видимому, не связан с перераспределением заряда вблизи границ зерен при фотовозбуждении, так как указанная особенность наблюдается и в крупных кристаллитах, размер которых существенно превышает 50 µm. Кроме того, как было указано выше, при возбуждении расфокусированным ($\sim 3 \, \mathrm{mm}$) пятном $\Phi \Pi$ образца представляет собой визуально однородное зеленое свечение, которое, согласно рис. 5, соответствует Z-линии и определяется, по-видимому, излучением не границ зерен, а кристаллитов. Отметим, что чрезвычайно низкое значение фактора Хуанга-Риса в случае Z-линии исключает ее связь с точечными дефектами [2]. Таким образом, за появление Z-линии ответственны протяженные дефекты, значительная концентрация которых присутствует непосредственно в кристаллитах. Принимая во внимание данные микроскопии и рентгеноструктурного анализа, можно предположить, что указанным типом дефектов являются двойники.

4.2. Тепловые импульсы. Структура исследованного образца ZnSe (размеры зерен, их хаотичная ориентация, расстояния между плоскостями двойникования)

Рис. 8. Экспериментальные отклики болометра, зарегистрированные на крупнозернистом ZnSe, при фотовозбуждении (точки) и при нагреве золотой пленки с энергией в импульсе 2.5, 5, 10 и 20 nJ (сплошные кривые *1–4* соответственно). Штриховой линией показан отклик на монокристаллическом ZnSe [6].

в целом такая же, как и у образца крупнозернистого ZnTe [5]. Тем не менее в тепловых импульсах имеются существенные отличия. В крупнозернистом ZnTe форма отклика была одинакова как при фотовозбуждении, так и при нагреве золотой пленки. В исследуемом же образце форма откликов, регистрируемых при нагреве золотой пленки, зависит от энергии импульса и отличается от формы отклика при фотовозбуждении (рис. 8). Длительность откликов болометра, регистрируемых при нагреве золотой пленки, растет (кривые 1-4 на рис. 8) с увеличением энергии лазерного импульса (т.е. с увеличением температуры пленки), а длительность отклика при фотовозбуждении (штриховая линия), когда генерируются еще более высокочастотные фононы, увеличивается еще больше. Это означает, что длина свободного пробега фононов зависит от их частоты. Другими словами, в данном случае вследствие малой толшины образца частотнонезависимое рассеяние фононов на протяженных границах не является доминирующим в такой степени, как в ZnTe [5]. Кроме того, для сравнения на рис. 8 штриховой линией показан отклик для образца монокристаллического ZnSe из работы [6]. Несмотря на второе бо́льшую толщину образца монокристаллического ZnSe, что видно по времени баллистического пролета фононов, этот отклик существенно короче и имеет баллистический характер.

Попробуем оценить из наших данных длины свободного пробега фононов λ . Считая распространение фононов чисто диффузионным, варьируем λ без конкретизации механизмов рассеяния. На рис. 9 предствлены отклики, рассчитанные методом Монте-Карло в геометрии эксперимента для разных средних длин свободного пробеа фононов в предположении, что длины свободного пробега не меняются со временем. Сравнение рассчитанных откликов с экспериментальными показывает в целом неплохое согласие. Однако имеется расхождение для больших энергий возбуждения при нагреве золотой пленки и для случая фотовозбуждения на временах свыше 1500 ns, что обусловлено уменьшением в реальности характерных частот фононов вследствие их распада и соответственно увеличением длин свободного пробега относительно рассеяния на точечных дефектах. Как видно из рис. 9, средние длины свободного пробега фононов доминирующих частот (от 0.1 до 1 THz в зависимости от условий генерации) в данном образце ZnSe составляют от 30 до $70\,\mu$ m, что на порядок меньше, чем для монокристаллического ZnSe, где они составляли $400\,\mu$ m [6].

Попытаемся определить вклад различных микроскопических процессов в рассеяние фононов. Для этого нами было проведено моделирование распространения

Рис. 9. Сравнение экспериментальных откликов болометра при фотовозбуждении (точки) и при нагреве золотой пленки с энергией в импульсе 2.5 и 20 nJ (тонкие кривые 1 и 2 соответственно) с рассчитанными откликами для средней длины свободного пробега фононов 60, 35 и $25 \mu m$ (жирные кривые 1-3 соответственно).

Рис. 10. Сравнение экспериментального отклика болометра при фотовозбуждении (точки) с рассчитанными откликами для вероятности рассеяния фононов на плоскостях двойникования 1, 3 и 5% для кривых *1–3* соответственно.

фононов в среде, состоящей из отдельных блоков, как это было сделано ранее для CVD алмаза [7], CdTe [8] и ZnTe [9] при учете процессов распада фононов и упругого рассеяния на точечных дефектах [10]. При моделировании размеры блоков в латеральном направлении принимались равными 100 µm, что соответствует характерным размерам зерен. Вероятность рассеяния на границах блоков полагалась равной единице. В глубь образца размер блоков полагался равным 1 µm. Эта величина соответствует среднему расстоянию между плоскостями двойникования, полученному из изображений СЭМ с учетом присутствия зерен как с высокой, так и с низкой плотностью двойников. Вероятность рассеяния фононов на плоскостях двойникования была модельным параметром. Константы, характеризующие интенсивность процесса распада фононов, были приняты такими, какими они были определены нами для монокристаллического ZnSe [6]. Предполагалось, что рассеяние фононов на природных изотопах преобладает над рассеянием на примесях, поскольку цинк имеет пять, а селен — шесть стабильных изотопов, причем содержание основного изотопа менее 50%, а содержание примесей в нашем образце составляет менее $10^{16} \, \mathrm{cm}^{-3}$.

На рис. 10 сплошными линиями показаны отклики, рассчитанные для разной вероятности рассеяния фононов на плоскостях двойникования, а кружками — экспериментальный отклик. Видно, что наилучшее согласие достигается при вероятности рассеяния фононов на двойниковых границах в 3%. В то же время следует отметить, что сделанная оценка имеет в большей степени качественное значение из-за сильно неоднородного внутреннего строения образца, т.е. наличия в образце зерен разного размера и формы, а также разного расстояния между плоскостями двойникования внутри зерен.

5. Заключение

При измерении ФЛ в крупнозернистом ZnSe сделан вывод о том, что Z-линия (зеленая) при E = 2.75 eVсвязана с протяженными дефектами внутри отдельного зерна; протяженными дефектами в исследованном материале являются микродвойники с хаотически расположенной ориентацией плоскостей. Поскольку длины свободного пробега фононов в данном образце составляли $30-70\,\mu\text{m}$ (в отличие от $400\,\mu\text{m}$ для монокристаллического ZnSe), можно сделать вывод о том, что именно двойниковые плоскости являются существенной причиной рассеяния акустических фононов доминирующих частот при гелиевых температурах.

Авторы благодарят Н.Н. Сентюрину за химическую обработку образцов.

Список литературы

- [1] Патент РФ № 2143014 от 20.12.2000 г.
- [2] P.J. Dean. Phys. Stat. Sol. (a) 81, 625 (1984).
- [3] P.J. Dean, D.C. Herbert. Phys. Rev. B 23, 4888 (1981).

- [4] K. Shahzad, D.J. Olego, D.A. Cammac. Phys. Rev. B 39, 13016 (1989).
- [5] В.С. Багаев, Т.И. Галкина, А.И. Шарков, А.Ю. Клоков, В.П. Мартовицкий, В.В. Зайцев, Ю.В. Клевков. ФТТ 45, 1941 (2003).
- [6] А.И. Шарков, Т.И. Галкина, В.С. Кривобок, А.Ю. Клоков, П.В. Шапкин, В.С. Багаев. ФТТ 48, 1666 (2006).
- [7] A.I. Sharkov, T.I. Galkina, A.Yu. Klokov, R.A. Khmelnitskii, V.A. Dravin, A.A. Gippius, V.G. Ralchenko, A.V. Karabutov. Diamond. Related Mater. 9, 1100 (2000).
- [8] А.И. Шарков, Т.И. Галкина, А.Ю. Клоков, Ю.В. Клевков. ФТТ 45, 156 (2003).
- [9] В.С. Багаев, Т.И. Галкина, А.Ю. Клоков, Ю.В. Клевков, В.С. Кривобок, В.П. Мартовицкий, Н.Н. Сентюрина, А.И. Шарков. ФТТ 47, 1032 (2005).
- [10] М.М. Бонч-Осмоловский, Т.И. Галкина, А.Ю. Клоков, А.И. Шарков, Д.В. Казаковцев. ФТТ 38, 1051 (1996).