Влияние разогрева электронной подсистемы на термическую устойчивость фуллеренов C₆₀, C₂₀ и кластерной молекулы (C₂₀)₂

© И.В. Давыдов

Московский инженерно-физический институт (Государственный университет), 115409 Москва, Россия

E-mail: div69@yandex.ru

(Поступила в Редакцию 28 июня 2006 г. В окончательной редакции 22 ноября 2006 г.)

Теоретически изучено влияние разогрева электронной подсистемы на термическую устойчивость фуллеренов C_{60} и C_{20} , а также кластерной молекулы $(C_{20})_2$. Показано, что возбуждение электронов на верхние энергетические уровни в соответствии с функцией распределения Ферми–Дирака не приводит к существенному изменению величины энергии активации распада E_a фуллерена C_{20} . Устойчивость фуллерена C_{60} и кластерной молекулы $(C_{20})_2$ также принципиально не изменяется. В то же время учет поправок, связанных с конечными размерами теплового резервуара, приводит к значению E_a , которое лучше согласуется с результатами расчета высоты потенциального барьера, препятствующего распаду кластера.

Работа выполнена в рамках гранта CRDF "НОЦ фундаментальных исследований материи в экстремальных состояниях".

PACS: 36.40.Qv, 61.48.+c, 71.15.Pd

1. Введение

С момента открытия [1] фуллерен C_{60} привлекает к себе огромный интерес исследователей благодаря своей уникальной устойчивости, очень высокой симметрии и другим свойствам, которые могут иметь важное практическое значение. Открытие в 2000 г. фуллерена C_{20} [2] — наименьшего возможного фуллерена — еще больше стимулировало интерес к фуллеренам в целом [3]. Хотя экспериментальные и теоретические исследования фуллеренов ведутся очень интенсивно, некоторые их свойства и характеристики, в частности процесс формирования, до сих пор остаются не совсем понятными [3–6].

Многие теоретические работы по изучению свойств фуллеренов основаны на использовании метода молекулярной динамики [7-10]. При этом для поиска конфигурации, соответствующей основному состоянию кластера, можно считать, что электроны заселяют нижние энергетические уровни, т.е. полагать электронную температуру T_{el} равной нулю. Такой подход применим также и при относительно низких температурах Т ионной подсистемы при моделировании динамики кластеров с большой величиной щели HOMO-LUMO (Δ) между энергией верхней заполненной электронной орбитали и энергией нижней незаполненной орбитали. Но при высоких Т (несколько тысяч градусов) электронные возбуждения могут стать существенными как из-за высокой электронной температуры, так и из-за изменения величины Δ вследствие искажения формы кластера за счет теплового движения составляющих его атомов. В этом случае для расчета энергии электронной подсистемы необходимо использовать распределение Ферми-Дирака электронов по энергетическим уровням.

В литературе имеются противоречивые данные относительно влияния величины Tel на устойчивость фуллеренов. Например, в работе [7] утверждается, что учет конечной электронной температуры приводит к качественным изменениям в устойчивости фуллеренов, а именно: при $T_{\rm el} = 0$ фуллерен C₆₀ долго остается устойчивым при температуре 10000 K, а при $T_{\rm el} = T$ быстро распадается уже при 5000 К. С другой стороны, в работе [8] принципиальных отличий между этими двумя случаями не наблюдалось и температура фрагментации фуллерена С₆₀, определяемая как температура, выше которой происходит распад метастабильной конфигурации, составила 5500 и 4800 К при $T_{\rm el} = 0$ и $T_{\rm el} = T$ соответственно, т.е. температуры фрагментации отличались менее чем на 15%. С целью внести ясность в этот вопрос в настоящей работе динамика фуллеренов С₆₀, С₂₀, а также "кластерной молекулы" (С20)2 исследована при высоких температурах методом сильной связи с учетом возбуждения электронов на верхние уровни. Полученные результаты сопоставлены с данными моделирования при T_{el} = 0. Показано, что учет разогрева электронной подсистемы не вносит существенных отличий в результаты молекулярной динамики.

В работе учтены также поправки к закону Аррениуса для скорости распада кластера, которые обусловлены конечными размерами теплового резервуара в случае теплоизолированных кластеров.

2. Методы расчета

Моделирование динамики кластеров проводилось с использованием потенциала сильной связи [11]. Этот многочастичный потенциал учитывает четыре валентных электрона каждого атома углерода и при достаточно высокой точности не является таким требовательным к вычислительным ресурсам, как *ab initio* методы. Этот потенциал часто использовался при моделировании различных углеродных структур (см., например, [8–10,12–16]).

Полная потенциальная энергия кластера E_{pot} при $T_{\text{el}} = 0$ записывается в следующем виде:

$$E_{\text{pot}}(\{\mathbf{r}_i\}) = 2\sum_n \langle \psi_n | H_{TB}(\{\mathbf{r}_i\}) | \psi_n \rangle + E_{\text{rep}}(\{\mathbf{r}_i\}), \quad (1)$$

где \mathbf{r}_i — координаты атомов, ψ_n — собственные состояния гамильтониана сильной связи H_{TB} , а суммирование проводится по заполненным молекулярным орбиталям, т. е. (с учетом спина) по нижним 2N орбиталям, где N — число атомов в кластере. Первое слагаемое — электронная составляющая E_{pot} , а второе — классическая энергия отталкивания атомов на близких расстояниях. Различные энергетические и структурные характеристики кластеров C₆₀ и C₂₀, полученные этим методом, хорошо согласуются с экспериментальными данными и результатами расчетов с использованием *ab initio* методов (подробнее см. [15,16]).

Для расчета величины E_{pot} при $T_{\text{el}} \neq 0$ необходимо учитывать возбуждение электронов на верхние молекулярные орбитали. При этом

$$E_{\text{pot}}(\{\mathbf{r}_i\}) = 2\sum_n \langle \psi_n | H_{TB}(\{\mathbf{r}_i\}) | \psi_n \rangle f(\varepsilon_n) + E_{\text{rep}}(\{\mathbf{r}_i\}),$$
(2)

где суммирование происходит по всем молекулярным орбиталям, $f(\varepsilon_n)$ — функция распределения Ферми– Дирака, ε_n — собственные значения гамильтониана H_{TB} , а μ — химический потенциал, который определяется на каждом шаге молекулярной динамики исходя из условия сохранения полного числа электронов $2 \sum f(\varepsilon_n) = N_{\rm el} = 4N$.

Для расчета сил \mathbf{F}_i , действующих на атомы при $T_{\rm el} \neq 0$, используется обобщенная на случай конечных температур формула Гельмана–Фейнмана [8,17]:

$$\mathbf{F}_{i} = -2\sum_{n} \langle \psi_{n} | \nabla_{i} H_{TB} | \psi_{n} \rangle f(\varepsilon_{n}) - 2\sum_{n} \varepsilon_{n} \frac{\partial f(\varepsilon_{n})}{\partial(\varepsilon_{n} - \mu)} \nabla(\varepsilon_{n} - \mu).$$
(3)

В работе [18] было отмечено, что вычисление второго слагаемого в (3) представляет собой очень сложную задачу. Однако впоследствии было показано [17], что это слагаемое можно опустить; в этом случае будет сохраняться не полная внутренняя энергия системы E (сумма потенциальной $E_{\rm pot}$ и кинетической $E_{\rm kin}$ энергий), а так называемая свободная энергия Мермина $\Omega = E - T_{\rm el}S$ [19], где S — электронная энтропия,

$$S = -2k_B \sum_{n} [f(\varepsilon_n) \ln(\varepsilon_n) + (1 - f(\varepsilon_n) \ln[1 - f(\varepsilon_n)])].$$
(4)

В нашей работе полагаем электронную температуру $T_{\rm el}$ равной температуре ионной подсистемы T, которая определялась по формуле

$$\frac{1}{2}k_BT(3N-6) = \langle E_{\rm kin} \rangle, \qquad (5)$$

где N — число атомов в кластере, а $\langle E_{kin} \rangle$ — средняя за некоторый период времени кинетическая энергия. Такая постановка задачи отвечает ситуации, когда система не находится в состоянии теплового равновесия с окружением и ее полная энергия E = const [20] (например, при возбуждении кластеров в газовой фазе лазерными импульсами). Таким образом, переход кластера в метастабильное состояние с бо́льшим или меньшим значением потенциальной энергии сопровождается соответствующим изменением величины кинетической энергии и, как следствие, температуры. Моделирование проводилось с шагом по времени $t_0 = 2.72 \cdot 10^{-16}$ s. Оно начиналось с полностью отрелаксированной атомной конфигурации, далее каждому атому сообщались некоторые случайные смещения и скорости, после чего рассчитывались действующие на атомы силы и численно решались уравнения движения Ньютона.

3. Фуллерен С₆₀

Мы начали анализ с наиболее изученного фуллерена C_{60} . В работе [7] авторы, используя теорию функционала плотности в приближении локальной плотности, обнаружили, что учет конечной величины T_{el} существенно влияет на устойчивость фуллерена C_{60} . Так, при $T_{el} = 0$ фуллерен C_{60} оставался устойчивым при $T = 10\,000$ К в течение времени моделирования (порядка нескольких ps), а при $T_{el} = T$ распадался при T = 5000 К уже через 300 fs.

Мы выполнили моделирование "жизни" фуллерена C_{60} при различных начальных температурах T_{ini} ионной подсистемы методом молекулярной динамики как при $T_{el} = T$, так и при $T_{el} = 0$. Тем самым мы непосредственно определили времена жизни τ фуллерена C_{60} до перехода в другую конфигурацию (распада) при различных T_{ini} . Некоторые наиболее характерные значения τ , полученные нами, представлены в таблице, из которой видно, что существенных различий в устойчивости фуллерена C_{60} при $T_{el} = T$ и $T_{el} = 0$, обнаруженных в [7], нет.

Значения начальной температуры $T_{\rm ini}$ и времени жизни τ фуллерена C₆₀ до перехода в другую конфигурацию (распада) при $T_{\rm el} = 0$ и $T_{\rm el} = T$.

T _{ini} , K	au , ps	
	$T_{ m el}=0$	$T_{\rm el}=T$
4700	22	32
5000	23	24
5300	7	3

Рис. 1. Зависимость величины щели НОМО–LUMO Δ от времени для фуллерена С₆₀.

Наши результаты качественно согласуются с данными работы [8], авторы которой моделировали эволюцию фуллерена C_{60} методом молекулярной динамики при $T_{\rm el} = T$ и пришли к выводу, что при T = 5300 К кластер C_{60} распадается через $\tau = 9.8$ рs, а при T = 5200 К распад не происходит за время $\tau = 50$ рs. Полученные нами результаты также хорошо согласуются и с данными работы [21], в которой был использован тот же потенциал сильной связи и полагалось $T_{\rm el} = 0$. Здесь необходимо отметить, что распад кластера носит вероятностный характер, поэтому о зависимости τ от T можно говорить лишь при наборе достаточной статистики [15].

Для того чтобы оценить необходимость учета электронных возбуждений при моделировании динамики фуллерена С₆₀, принимая во внимание значительную величину щели $\Delta = 1.6 \, \text{eV}$ в идеальном фуллерене, мы построили зависимость Δ от времени для фуллерена С₆₀, деформированного за счет тепловых колебаний в процессе молекулярной динамики при начальной температуре $T_{\rm ini} = 4550 \, {\rm K}$ (здесь и далее значения Δ получены усреднением по 1000 шагам молекулярной динамики). График этой зависимости представлен на рис. 1. Из графика видно, что значение Δ меняется в этом интервале очень существенно и порой достигает 0.35 eV. Среднее значение Δ за этот период составило 0.5 eV. Такое значительное уменьшение Δ безусловно свидетельствует в пользу необходимости учета электронных возбуждений для расчета энергии кластера при высоких температурах. Тот факт, что устойчивость фуллерена C_{60} оказывается примерно одинаковой при $T_{el} = T$ и $T_{\rm el} = 0$, указывает на отсутствие непосредственной связи устойчивости с величиной Δ. Отметим, что средняя по времени величина Δ монотонно возрастает при понижении температуры.

4. Фуллерен C₂₀

Ранее в работе [15] нами проводилось численное моделирование термической фрагментации фуллерена C_{20} . При этом был подробно изучен случай $T_{el} = 0$. В настоящей работе мы детально исследовали фрагментацию фуллерена C_{20} при $T_{el} = T$, расширили температурный и временной диапазоны моделирования, а также учли поправки, связанные с малым размером кластера C_{20} , что позволило уточнить значение энергии активации E_a , входящую в формулу Аррениуса для скорости фрагментации:

$$k(T) = A \exp(-E_a/k_B T), \tag{6}$$

где A — частотный фактор с размерностью s⁻¹ [5]. Время жизни кластера можно определить как [12]

$$\tau(T) = \frac{1}{k(T)}.$$
(7)

Таким образом, непосредственно определив зависимость времени жизни кластера от начальной температуры, по формуле (6) найдем энергию активации и частотный фактор. Принимая во внимание малое число атомов в кластере, а также отсутствие теплообмена с окружающей средой, будем использовать выражение для скорости фрагментации, учитывающее поправки, обусловленные конечными размерами теплового резервуара (finite heat-bath corrections) [22,23]

$$k(T) = A \cdot \exp\left[-\frac{E_a}{k_B T \left(1 - \frac{E_a}{2CT}\right)}\right],\tag{8}$$

где *С* — микроканоническая теплоемкость кластера, которую мы полагали равной

$$C = (3N - 6)k_B, \tag{9}$$

где N = 20 — число атомов в кластере.

На рис. 2 представлена расчетная зависимость величины $\ln \tau$ от $(T^*_{\rm ini})^{-1}$, где $T^*_{\rm ini} = [T_{\rm ini}(1 - \frac{E_1}{2CT_{\rm ini}})].$

Распад кластера по своей природе является вероятностным процессом, поэтому зависимость времени жизни кластера от его начальной температуры определяется неоднозначно. Однако из рис. 2 видно, что в первом приближении мы можем описать результаты моделирования формулой (8) с A = const(T). Соответственно зависимость величины $\ln \tau$ от $(T^*_{ini})^{-1}$ аппроксимируется прямой линией. Наклон этой прямой и точка ее пересечения с осью ординат определяют энергию активации Еа и частотный фактор А, которые при учете конечных размеров системы, а также эффекта возбуждения электронов на верхние уровни составили $E_a = (6.4 \pm 0.4) \text{ eV}$ и $A = (1.1 \pm 0.1) \cdot 10^{21} \, \mathrm{s}^{-1}$. Отметим, что эта величина E_a лучше согласуется с ранее найденной нами [15] величиной минимального потенциального барьера $U = 5.0 \, \text{eV}$, препятствующего распаду фуллерена С20, чем значение $E_a = (8 \pm 1) \, \text{eV}$ [15], рассчитанное при $T_{\text{el}} = 0$ без учета поправок, обусловленных конечными размерами теплового резервуара. Тем не менее она ниже значения U = 11.6 eV, полученного в [24] методом функционала плотности. Заметим, что частотный фактор *A* гораздо больше типичных значений $A \sim 10^{15} \text{ s}^{-1}$ для большинства кластеров средних размеров, но имеет тот же порядок величины, что и в фуллерене C₆₀ [5].

Детальный анализ различных этапов фрагментации фуллерена С₂₀ проводился нами ранее [15]. Здесь мы

Рис. 2. Зависимость логарифма времени жизни τ фуллерена C_{20} от $(T_{\text{ini}}^*)^{-1}$. $T_{\text{ini}}^* = \left[T_{\text{ini}}\left(1 - \frac{E_a}{2CT_{\text{ini}}}\right)\right]$, $t_0 = 2.72 \cdot 10^{-16}$ s. Точки — результаты моделирования, прямая линия — аппроксимация методом наименыших квадратов.

Рис. 3. Зависимость температуры T фуллерена C_{20} от времени t при начальной температуре $T_{ini} = 2930$ К. Значения T получены усреднением по 10000 шагом молекулярной динамики.

Рис. 4. Зависимость величины щели НОМО-LUMO Δ от времени для фуллерена С₂₀.

приводим типичную зависимость температуры T клетки C_{20} от времени t при $T_{ini} = 2930$ K, (рис. 3). Резкое падение T при $t \approx 6$ пs соответствует распаду кластера. График зависимости величины щели Δ от времени для деформированного фуллерена C_{20} при начальной температуре $T_{ini} = 3020$ K представлен на рис. 4. Средняя величина Δ за этот период составила 0.35 eV (для идеальной клетки C_{20} величина $\Delta = 0.43$ eV). Таким образом, как и для фуллерена C_{60} , уменьшение Δ не приводит к существенному изменению термической устойчивости клетки C_{20} .

5. Кластерная молекула (С₂₀)₂

Большой интерес представляет возможность формирования твердой фазы на основе фуллерена C_{20} по аналогии с фуллеритом на основе кластеров C_{60} [3]. Первым шагом на пути понимания процессов формирования фуллерита C_{20} является исследование взаимодействия между двумя клетками C_{20} .

Мы исследовали различные возможные изомеры кластерных молекул, состоящих из двух фуллеренов C_{20} . Как и в работах [25–27], было обнаружено несколько метастабильных изомеров. Энергии связи атомов в кластерной молекуле вычислялись по формуле $E_b = E(C_{at}) - [E(C_{20})_2]/N$, где N = 40 — число атомов в системе, $E[(C_{20})_2]$ — энергия кластерной молекулы, а $E(C_{at})$ — энергия одиночного атома углерода. Конфигурация с максимальной энергией связи $E_b = 6.20 \text{ eV}/atom$, т.е. наиболее устойчивый изомер, представлена на рис. 5.

Нами была исследована динамика димера $(C_{20})_2$ при $T_{\rm el} = T$ и различных начальных температурах $T_{\rm ini}$, а также процессы его перехода в другие конфигурации. Как и в работе [27], выполненной при $T_{\rm el} = 0$, мы

Рис. 5. Изомер кластерной молекулы $(C_{20})_2$, состоящей из двух фуллеренов C_{20} и обладающий максимальной энергией связи.

Рис. 6. Кластер C_{40} , в который переходит кластерная молекула $(C_{20})_2$ в результате слияния двух фуллеренов C_{20} .

Рис. 7. Зависимость величины щели НОМО–LUMO Δ от времени для кластерной молекулы (C_{20})₂.

обнаружили два пути перехода кластерной молекулы в другие состояния — распад и слияние. В первом случае мы наблюдали распад одного из двух входящих в состав димера фуллеренов C_{20} , который переходил в различные квазиодномерные и квазидвумерные конфигурации, тогда как другой фуллерен C_{20} при этом в целом сохранял свою сфероподобную форму. Во втором случае имела место трансформация димера в новый кластер C_{40} — конфигурацию, в которой кластеры C_{20} полностью или частично теряют свою индивидуальность. При этом появляются атомы, которые уже нельзя считать принадлежащими одному из двух кластеров C_{20} , а одна или несколько межкластерных связей становятся внутрикластерными, но уже для кластера C_{40} . На рис. 6 изображен кластер C_{40} , который чаще всего образуется после слияния. Следует отметить, что мы ни разу не наблюдали распад кластерной молекулы $(C_{20})_2$ на два отдельных фуллерена C_{20} . Времена жизни кластерной молекулы τ (T_{ini}), найденные нами в случае $T_{el} = T$, оказались близки по величине к значениям, полученным в работе [27] при условии $T_{el} = 0$.

Как и в предыдущих случаях, мы построили график зависимости Δ от времени для кластерной молекулы, деформированной в процессе ее эволюции при начальной температуре $T_{\text{ini}} = 2350 \text{ K}$ (рис. 7). Средняя величина Δ за этот период составила 0.2 eV, тогда как $\Delta = 0.65 \text{ eV}$ для недеформированной кластерной молекулы.

6. Заключение

Основным результатом данной работы является вывод о слабом влиянии эффекта разогрева электронной подсистемы на термическую устойчивость фуллеренов и кластерных молекул на их основе. Учет возбуждения электронов на верхние энергетические уровни ведет к изменению энергии активации распада кластера на $\sim 20\%$, т.е. он не приводит к резкому уменьшению термической устойчивости — в отличие от утверждения авторов работы [7]. Поскольку деформация кластера при высокой температуре T = 2500-5000 К приводит к уменьшению щели НОМО–LUMO Δ до величины менее или порядка тепловой энергии k_BT , можно также сделать заключение об отсутствии непосредственной связи между величиной Δ и устойчивостью кластера относительно перехода в другую атомную конфигурацию.

Интересным представляется также факт гораздо меньшей чувствительности величины Δ кластера C_{20} к деформации по сравнению с фуллереном C_{60} и кластерной молекулой (C_{20})₂.

Список литературы

- H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. Nature 318, 162 (1985).
- [2] H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Worth, L.T. Scott, M. Gelmont, D. Olevano, B. von Issendorff. Nature 407, 60 (2000).
- [3] А.В. Елецкий, Б.М. Смирнов. УФН 165, 977 (1995).
- [4] A.D. Boese, G.E. Scuseria. Chem. Phys. Lett. 294, 233 (1998).
- [5] C. Lifshitz. Int. J. Mass Spectrom. 198, 1 (2000).
- [6] S. Matt, O. Echt, P. Scheirer, T.D. Mark. Chem. Phys. Lett. 348, 194 (2001).
- [7] K. Ohno, Y. Maruyama, Y. Kawazoe. Phys. Rev. B 53, 4078 (1996).
- [8] B.L. Zhang, C.Z. Wang, C.T. Chan, K.M. Ho. Phys. Rev. B 48, 11 381 (1993).
- [9] C.Z. Wang, C.T. Chan, K.M. Ho. Phys. Rev. B 46, 9761 (1992).

- [10] X.Z. Ke, Z.Y. Zhu, F.S. Zhang, F. Wang, Z.X. Wang. Chem. Phys. Lett. **313**, 40 (1999).
- [11] C.H. Xu, C.Z. Wang, C.T. Chan, K.M. Ho. J. Phys.: Cond. Matter 4, 6047 (1992).
- [12] L.A. Openov, V.F. Elesin. Письма в ЖЭТФ 68, 695 (1998).
- [13] V.F. Elesin, A.I. Podlivaev, L.A. Openov. Phys. Low-Dim. Struct. 11/12, 91 (2000).
- [14] Н.Н. Дегтяренко, В.Ф. Елесин, Н.Е. Львов, Л.А. Опенов, А.И. Подливаев. ФТТ 45, 954 (2003).
- [15] И.В. Давыдов, А.И. Подливаев, Л.А. Опенов. ФТТ 47, 751 (2005).
- [16] А.И. Подливаев, Л.А. Опенов. Письма в ЖЭТФ 81, 656 (2005).
- [17] R.M. Wentzcovitch, J.L. Martins, P.B. Allen. Phys. Rev. B 45, 11 372 (1992).
- [18] M. Pedersen, K. Jackson. Phys. Rev. B 43, 7312 (1991).
- [19] N.D. Mermin. Phys. Rev. A 137, 1441 (1965).
- [20] C. Xu, G.E. Scuseria. Phys. Rev. Lett. 72, 669 (1994).
- [21] Л.А. Опенов, А.И. Подливаев. Письма в ЖЭТФ 84, 73 (2006).
- [22] C.E. Klots. Z. Phys. D 20, 105 (1991).
- [23] J.V. Andersen, E. Bonderup, K. Hansen, J. Chem. Phys. 114, 6518 (2001).
- [24] S. Maeda, K. Ohno. J. Chem. Phys. 124, 174 306 (2006).
- [25] C.H. Choi, H.-I. Lee. Chem. Phys. Lett. 359, 446 (2002).
- [26] Z. Chen, T. Heine, H. Jiao, A. Hirsch, W. Thiel, P.v.R. Schleyer. Chem. Eur. J. 10, 963 (2004).
- [27] А.И. Подливаев, Л.А. Опенов. ФТТ 48, 2104 (2006).