Механизм переноса тока в гетеропереходах nCdS/pCdTe

© С.А. Музафарова, Ш.А. Мирсагатов, Ж. Жанабергенов*

Физико-технический институт, Научно-производственное объединение «Физика-Солнце» Академии наук Узбекистана, 700084 Ташкент, Узбекистан

* Нукусский государственный педагогический институт, 700042 Нукус, Узбекистан

E-mail: samusu@rambler.ru

(Поступила в Редакцию 8 июня 2006 г. В окончательной редакции 18 сентября 2006 г.)

Исследованы вольт-фарадные и вольт-амперные характеристики гетеросистемы pCdTe/nCdS. Данные вольт-амперных и вольт-фарадных характеристик показывают, что твердый раствор $CdTe_{1-x}S_x$ на гетерогранице pCdTe/nCdS является неоднородным не только по проводимости, но и по составу. По данным вольт-фарадных характеристик оценены толщины твердых растворов. Показано, что при плотностях тока $10^{-8} - 10^{-5} \text{ A} \cdot \text{cm}^{-2}$ вольт-амперная характеристика в гетеросистеме pCdTe/nCdS описывается термоэлектронной эмиссией, а в диапазоне $10^{-4} - 10^{-2} \text{ A} \cdot \text{cm}^{-2}$ ток в гетероструктуре ограничивается рекомбинацией в электронейтральной части высокоомного твердого раствора $CdTe_{1-x}S_x$. Определены время жизни и длина диффузии неосновных носителей тока в твердом растворе $CdTe_{1-x}S_x$, а также скорость поверхностной рекомбинации на границе раздела CdS и твердого раствора $CdTe_{1-x}S_x$. Показано, что гетероструктура pCdTe/nCdS работает как p-i-n-структура, где p-слоем является CdTe, *i*-слоем — CdTe_{1-x}S_x, *n*-слоем — CdS.

Работа выполнена по теме гранта № 12-06 Фонда поддержки фундаментальных исследований АНРУз.

PACS: 72.10.-d, 73.61.Ga, 73.40.Rw

1. Введение

Известно, что при изготовлении гетеропереходов на гетерогранице часто формируется высокоомный і-слой вследствие взаимной диффузии атомов одного полупроводника в другой. Такой слой впервые наблюдался на гетеропереходах Cu₂S/CdS [1,2]. В настоящее время промежуточный высокоомный *i*-слой получен для многих других типов гетеропереходов: в тонкопленочном элементе на основе CdS [3], изготовленном напылением слоя Cu; в гетеропереходе nZnSe/pGaAs [4], на контакте Al-CuInSe₂ [5] и др. Однако до сих пор имеется разногласие относительно природы и состава этого слоя. Одни считают, что высокоомный слой возникает вследствие дефектов и взаимной диффузии атомов из одного полупроводника в другой, другие полагают, что высокоомный слой представляет собой твердый раствор (ТР). Аналогичное противоречие имеет место и в представлениях о гетеропереходах pCdTe/nCdS.

Недавно [6,7] методом сканирующей электронной микроскопии (NSOM) было показано, что высокоомный *i*-слой на гетерогранице *p*CdTe/*n*CdS состоит из TP CdTe_{1-x}S_x сложного состава, возникающего вследствие взаимной диффузии атомов S в CdTe и атомов Te в CdS. Исследованием элементного состава *i*-слоя на гетерогранице *p*CdTe/*n*CdS методом микрозондового анализа [8] показано, что на гетерогранице содержание атомов S и Te резко изменяется и происходит проникновение атомов S в CdTe и атомов Te в CdS на глубину ~ 1 μ m. В работах [9,10] фотоэлектрическим методом определены ширины запрещенной зоны *E*_g, со-

став *x* и постоянные решетки a(x) TP, синтезированных на гетерогранице nCdS/pCdTe при различных технологических режимах. При этом было показано, что фазовый состав и толщина TP-слоя промежуточного CdTe_{1-x}S_x сильно зависят от технологического режима формирования гетероструктуры nCdS/pCdTe (в основном от подбора температуры подложки и продолжительности технологического процесса).

В то же время оставались до конца неустановленными концентрация и тип проводимости ТР $CdTe_{1-x}S_x$. Была неясной роль поверхностных состояний (ПС) на границе раздела CdS и TP, а также глубоких уровней в кристаллитах TP в кинетических процессах и процессах переноса тока. В эти и другие вопросы можно внести определенную ясность путем изучения вольт-фарадной и вольтамперной характеристик nCdS/pCdTe-гетероструктуры. В данной работе приводятся результаты исследований по выявлению роли высокоомного TP-слоя CdTe_{1-x}S_x в механизме переноса тока в nCdS/pCdTe-гетеросистеме.

2. Эксперимент

Для проведения исследования были изготовлены nCdS/pCdTe гетеропереходы по технологии, описанной в [8]. На поверхность крупноблочных пленок pCdTe в квазизамкнутом объеме в вакууме 10^{-5} Torr наносится слой CdS термическим испарением в течение 20 min. При этом температура источника поддерживается 910°C, а температура подложки 180°C. Верхний контакт, со стороны которого осуществляется освещение, изготовлен из индия, напыленного в вакууме ~ 10^{-5} Тогт в виде гребенки. Крупноблочные пленки *p*CdTe синтезировались на молибденовых подложках методом сублимации в потоке водорода. Тыльным контактом для гетероструктуры служил молибден. Базовым материалом для гетероструктуры служили пленки *p*CdTe. Сопротивление пленок равно $\rho \approx 10^2 - 10^3 \Omega \cdot \text{сm}$, а толщина *d* составляла $\approx 70 \,\mu\text{m}$. Пленки состоят из блоков микрокристаллов со столбчатой структурой зерен, ориентированных по направлению роста и разориентированных по азимуту. Размеры зерен находятся в пределах от 100 до 150 μ m, так что зерна охватывают всю толщину пленки.

C(V)-характеристики регистрировались в широком диапазоне частот f (1 kHz–10 MHz) при комнатной температуре. Вольт-амперные характеристики регистрировались в прямом и обратном направлениях в широких пределах изменения тока и напряжения в зависимости от температуры (273–423 K).

Исследованием показано, что C(V)-характеристики в области частот $f \leq 10 \,\mathrm{kHz}$ и $f \geq 100 \,\mathrm{kHz}$ имеют разные особенности и значения емкости. Поэтому исследование C(V)-характеристик было сосредоточено в области частот тестового сигнала $f \sim 10 \,\mathrm{kHz}$ и $f = 465 \,\mathrm{kHz}$.

3. Результаты и их обсуждение

На рис. 1 приводится C(V)-характеристика типичного образца pCdTe/nCdS структуры при частотах f = 10 и 465 kHz. Как видно из рис. 1 (кривая I), C(V)-характеристика при f = 10 kHz является типичной, подобной MOS-структуре, с полупроводниковой базой p-типа. C(V)-характеристика при f = 465 kHz ведет себя как MOS-структура с полупроводниковой базой n-типа [11]. C(V)-характеристика в области обеднения, построенная в координатах $C^{-2}-V$, описывается несколькими прямыми линиями как при f = 10 kHz (рис. 2, a), так и при f = 465 kHz (рис. 2, b), что свидетельствует о неоднородном распределении заряженных локальных центров по толщине высокоомного твердого рас-

Рис. 1. Вольт-фарадная характеристика структуры pCdTe/nCdS при f = 10 (1) и 465 kHz (2).

Рис. 2. Зависимость $C^{-2}(V)$ для типичного образца структуры *n*CdS/*p*CdTe при частотах f = 10 (*a*) и 465 kHz (*b*).

твора CdTe_{1-x}S_x. Вычисленная концентрация локальных центров из наклона прямых $C^{-2}-V$ зависимости лежит в пределах $10^{13}-10^{14}$ cm⁻³ (f = 10 kHz), а при f = 465 kHz она равна $10^{12}-4 \cdot 10^{12}$ cm⁻³. Значения концентрации заряженных локальных центров являются эффективными, поскольку база структуры TP CdTe_{1-x}S_x является компенсированным материалом. В исследуемой гетероструктуре роль диэлектрика (окисла) играют наиболее высокоомные TP, а значения их емкости соответствуют значениям емкости на плато C(V)-характеристики. Толщина TP, оцененная из области C(V)-характеристики, полученной при f = 10 kHz,

оказалась равной $d = 2 \cdot 10^{-3} \mu m$, а при f = 465 kHz $d = 0.54 \mu m$. Отсюда следует, что на гетерогранице структуры n CdS/p CdTe имеются по крайней мере два состава ТР CdTe_{1-x}S_x (с *n*- и *p*-типом проводимости), толщина которых равна 0.54 и $2 \cdot 10^{-3} \mu m$ соответственно. Согласно работам [9,10], образцы, изготовленные при аналогичных технологических условиях, имеют на гетерогранице промежуточный слой который в основном состоит из ТР CdTe_{1-x}S_x с составами $x_1 = 0.68$ и $x_2 = 0.21$.

В работе [8] было показано, что теллурид кадмия и сульфид кадмия в определенном интервале температур и концентраций образуют область твердых растворов с ограниченной растворимостью. Вследствие этого можно ожидать снижения плотности дефектов на границе раздела с образованием *i*-слоя — ТР CdTe_{1-x}S_x. Это обусловлено тем, что выбранный технологический режим позволяет в процессе изготовления гетероперехода получать на границе раздела тонкий слой ТР $CdTe_{1-x}S_x$, который значительно снижает количество поверхностных состояний. Снимок с торца гетероструктуры nCdS/pCdTe на электронном микроскопе МИМ-8 и микрозондовый анализ на установке "Комека" элементного состава *i*-слоя показывают, что толщина ТР CdTe_{1-x}S_x на гетерогранице для исследуемых образцов составляет $d \approx 1\,\mu\text{m}$. На рис. 3 показаны микрофотографии поперечного скола с торца (a) и границы (b) гетероперехода nCdS/pCdTe. Различие значений толщины TP CdTe_{1-x}S_x, определенное по вольт-емкостным характеристикам и прямыми экспериментальными методами, объясняется следующим образом. Оценка толщины ТР CdTe_{1-x}S_x по емкостным измерениям проводилась по формуле $d = \varepsilon S/C$, где ε — диэлектрическая проницаемость ТР $CdTe_{1-x}S_x$, S — площадь верхнего металлического электрода. При оценке взято значение $\varepsilon \approx 9.5$, так как у сульфида кадмия и теллурида кадмия она равна 9-10 и 9.6 [12] соответственно.

При этом допущены определенные ошибки при измерении *S* и определении значения ε для TP. В оценке толщины промежуточного *i*-слоя TP CdTe_{1-x}S_x по емкостным характеристикам участвуют более высокоомная часть или более высокоомный состав твердого раствора. Сравнительная низкоомная часть TP, которая участвует в формировании объемного заряда, не учитывается. Следовательно, можно считать, что толщины TP, определенные по емкостным измерениям и экспериментальными методами, практически совпадают. Поэтому в дальнейших расчетах примем значение толщины TP $d = 1 \mu m$.

Оцененная величина $d = 2 \cdot 10^{-3} \mu m$, по-видимому, соответствует толщине ТР CdTe_{1-x}S_x с x = 0.21, которая имеет низкое значение фоточувствительности из-за малой толщины [10]. ТР с составом $x \approx 0.68$ соответствует толщина $\approx 0.54 \mu m$.

Как видно из рис. 1 (кривая 2), плато в зависимости C от V сохраняется до $V \approx -0.2$ V. Это показывает, что в термодинамическом равновесии на границе раздела диэлектрик-полупроводник имеется обогащенный

Рис. 3. Микрофотография поперечного скола с торца (a) и границы толщиной 1 μ m (b) гетероперехода nCdS/pCdTe.

п-слой. Допуская, что образование этого обогащенного слоя на границе раздела диэлектрик-полупроводник обусловлено исключительно поверхностными состояниями [13], из условия электронейтральности оценим плотность поверхностных состояний N_{SD} донорного типа при помощи следующего аналитического выражения:

$$eN_{\rm SD} = en_0d_n,$$

где $d_n \approx 10^{-6}$ cm — толщина обогащенного слоя, сравнимая с толщиной слоя объемного заряда (это верхний предел), $n_0 \approx 5 \cdot 10^{12}$ cm⁻³, $N_{\rm SD} \approx 5 \cdot 10^6$ cm².

На основе этой оценки, а также согласно [14] можно утверждать, что формируемый твердый раствор на гетерогранице pCdTe/nCdS является сильным компенсированным высокоомным материалом, поскольку компенсация в поликристаллах осуществляется одновременно и синхронно в межзеренных границах и объеме зерен (кристаллитах). Таким образом, можно утверждать, что исследуемая гетероструктура является p-i-n- структурой, где *p*-слой состоит из теллурида кадмия, *n*-слой — из CdS, а *i*-слой представляет собой TP CdTe_{1-x}S_x.

В таких структурах емкость уменьшается при подаче напряжения отрицательной полярности и тестового сигнала f = 465 kHz на верхний электрод, т.е. проявляется обедненная область на C(V)-характеристике (здесь роль полупроводника играет, вероятно, TP с высоким содержанием серы). Это происходит тогда, когда работа вы-

a

Рис. 4. Прямая вольт-амперная характеристика pCdTe/nCdS структуры при различных температурах. *T*, K: 1 - 273, 2 - 298, 3 - 323, 4 - 348, 5 - 373, 6 - 398.

хода на границе раздела у полупроводника $(CdTe_{1-x}S_x)$ меньше, чем работа выхода у CdS в исследуемой структуре.

Для выяснения процесса переноса тока в данной структуре была исследована вольт-амперная характеристика в зависимости от температуры (рис. 4). Вольтамперная характеристика в прямом направлении в интервале температур 273–398 К состоит из двух экспоненциальных участков

$$I = I_{01} \exp\left(\frac{qV}{C_1 k_{\rm B} T}\right), \quad I = I_{02} \exp\left(\frac{qV}{C_2 k_{\rm B} T}\right). \tag{1}$$

На основе этих экспериментальных данных определены значения I_{01}, I_{02}, C_1, C_2 при различных температурах, которые приведены в табл. 1.

Вольт-амперные характеристики такой структуры при разных температурах не являются параллельными друг другу. Следовательно, базируясь на этом результате, можно заключить, что транспорт тока через высокоомный TP CdTe_{1-x}S_x нельзя связать ни с туннельным механизмом [15], ни с туннельно-избыточными токами [16]. Вероятно, здесь перенос тока на первом участке вольт-амперной характеристики определяется термоэлектронной эмиссией [11]. Это позволяет считать, что полный ток представляет собой разность между током из CdS в TP CdTe_{1-x}S_x и противоположным ему током из CdTe_{1-x}S_x в CdS, причем CdS и CdTe_{1-x}S_x характеризуются своими квазиуровнями Ферми. Ясно, что в этом случае ток не зависит от формы барьера, а определяется лишь его высотой. Плотность полного тока в этом случае описывается следующим аналитическим выражением [11]:

 $I = I_{\rm ST} \left[\exp\left(\frac{qV}{k_{\rm B}T}\right) - 1 \right],$

(2)

где

$$I_{\rm ST} = A^* I^2 \exp\left(-\frac{q\varphi_{\rm Hb}}{k_{\rm B}T}\right),$$

 $q\phi_{\rm Hb}$ — высота барьера при термодинамическом равновесии, $A^* = 120 \, {\rm A} \cdot {\rm cm}^{-2} \cdot {\rm K}^{-2}$.

Высота потенциального барьера $q\varphi_{\rm Hb} \approx 0.54 \, {\rm eV}$ вычислена по величине предэкспоненциального множителя I_{01} при комнатной температуре. Она хорошо соответствует величине $eV_{\rm Hb} = 0.56 \, {\rm eV}$, которая была определена из вольт-емкостной зависимости $C^{-2}-V$ при $V \rightarrow 0$. Из табл. 1 следует, что показатель экспоненты C_1 в интервале температур $273-398 \, {\rm K}$ изменяется от 2.1 до 1.75, что примерно в 2 раза больше показателя экспоненты тока термоэлектронной эмиссии. Такое поведение C_1 , вероятно, объясняется наличием значительного балластного сопротивления в исследуемой структуре, в которое вносят вклад сопротивление TP CdTe_{1-x}S_x и сопротивление слоя pCdTe, толщина которого составляет $\approx 70 \, \mu$ m.

При термодинамическом равновесии число термоэлектронов, прошедших через потенциальный барьер ($e\varphi_{\rm Hb} \approx 0.54 \, {\rm eV}$), составляет $\approx 9.5 \cdot 10^8 \, {\rm cm}^{-3}$ при $n_0 \approx 10^{18} \, {\rm cm}^{-3}$ (CdS), что значительно меньше, чем концентрация электронов $n_0 \approx 10^{12} - 4 \cdot 10^{12} \, {\rm cm}^{-3}$ в ТР.

При наложении отрицательного напряжени смещения на индиевый электрод число термоэлектронов, прошедших через барьер в ТР, увеличивается, поскольку барьер со стороны CdS уменьшается, а со стороны CdTe_{1-x}S_x повышается на величину приложенного напряжения. При этом концентрацию термоэлектронов составляет $n_T \approx 4.4 \cdot 10^{10}$ cm⁻³ при значениях $C_1 = 2$, V = 0.2 V и $n_T \approx 2 \cdot 10^{12}$ cm⁻³ при значениях $C_1 = 2$, V = 0.4 V. Отсюда следует, что концентрации равновесных электронов ТР только после подачи V > 0.4 V, а на вольт-амперной характеристике при этом появляется излом, и она описывается аналогичной зависимостью, но другим механизмом тока. Поскольку на первом участке

Таблица 1. Температурная зависимость показателя экспонент C_1 , C_2 и множителей I_{01} , I_{02} вольт-амперной характеристики структуры nCdS/pCdTe

Τ, Κ	C_1	$I_{01}, \text{A/cm}^2$	C_2	$I_{02}, \text{A/cm}^2$
273	2.1	$1.8\cdot 10^{-9}$	8.5	$4\cdot 10^{-5}$
298	2	$1.6\cdot10^{-8}$	8.1	$3 \cdot 10^{-4}$
323	1.98	$5.7 \cdot 10^{-8}$	7.2	$8.3\cdot10^{-4}$
348	1.9	$4\cdot 10^{-7}$	7	10^{-3}
373	1.8	$5.6 \cdot 10^{-7}$	7	$2.3 \cdot 10^{-3}$
398	1.75	10^{-6}	6.8	$3.6 \cdot 10^{-3}$

Таблица 2. Температурная зависимость подвижности μ_p , длины диффузии неосновных носителей тока L_p , времени жизни неосновных носителей тока τ_p , удельного сопротивления базы ρ структуры nCdS/pCdTe

· · · · · · · · · · · · · · · · · · ·							
	Τ, Κ	$\mu_p, \mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s}$	$d, \mu m$	d/L_p	$L_p, \mu m$	$\tau_p, 10^{-8} \mathrm{s}$	ρ , $10^8 \Omega \cdot \mathrm{cm}$
	273	0.2	1	2.20	0.45	42	6.7
	298	2.0		2.14	0.47	4.3	4.9
	323	4.0		2.03	0.49	2.2	3.7
	348	6.6		2.00	0.50	1.3	5.8
	373	8.0		2.00	0.50	0.97	5.8
	398	9.2		2.00	0.50	0.79	5.8

вольт-амперной характеристики граница раздела между CdS и CdTe_{1-x}S_x действует как сток для термоэлектронов, ток через структуру можно описать выражением с использованием скорости эффективной поверхностной рекомбинации ϑ_R

$$I = q n_T \vartheta_R, \tag{3}$$

где *n_T* — концентрация термоэлектронов, прошедших через барьер.

Проведенная оценка ϑ_R при значениях токов $I_{02} = 3 \cdot 10^{-4} \,\mathrm{A/cm^2}$ $I_{01} = 1.6 \cdot 10^{-8} \,\mathrm{A/cm^2},$ И $I = 10^{-6} \text{ A/cm}^2$ (табл. 1) при помощи формулы (3) дает величины ϑ_R , равные 100, 110 и 330 сm/s соответственно. Результаты оценки показывают, что граница раздела между CdS и TP CdTe $_{1-x}S_x$ имеет малую плотность поверхностных состояний донорного типа, которая возрастает незначительно с повышением температуры. С дальнейшим ростом напряжения увеличивается поток термоэлектронов, прошедших через барьер, а также повышается концентрация дырок, инжектированных из p-n-перехода, поскольку переход между $nCdTe_{1-x}S_x$ и pCdTe включен в прямом направлении. В результате этого повышается вероятность рекомбинации термоэлектронов и дырок в квазинейтральной части ТР. При этом вольт-амперная характеристика описывается следующим аналитическим выражением [17]:

$$I = I_{02} \exp\left(\frac{eV}{Ck_{\rm B}T}\right),\tag{4}$$

где

$$I_{02} = \frac{k_{\rm B}T}{2q} \frac{b}{\rho L(b+1)} \frac{\operatorname{ch} \frac{d}{L}}{\operatorname{th} \frac{2d}{2L}},\tag{5}$$

$$C_2 = 2 \frac{1+b \operatorname{ch} \frac{b}{L}}{1+b},\tag{6}$$

 $b = \mu_n/\mu_p \approx 10$ [17], толщина слоя твердого раствора CdTe_{1-x}S_x $d \sim 1 \mu m$, L_p — длина диффузии неосновных носителей — дырок, ρ — удельное сопротивление базы CdTe_{1-x}S_x.

С использованием экспериментальных значений C_2 при различных температурах (табл. 1) при помощи формулы (6) было вычислено отношение d/L_p в интервале температур 273–398 К. Подставляя в отношение d/L_p значение $d = 1 \,\mu$ m, получаем длину диффузии неосновных носителей тока — дырок — L_p при различных температурах (табл. 2).

Значение τ_p при различных температурах вычислено по известной формуле $L_p = \sqrt{\frac{k_{\rm B}T}{q}} \mu_p \tau_p$ (табл. 2). При этом использованы данные µ_p для пленки pCdTe, которые определены путем измерения эффекта Холла и удельной проводимости в области температур 273–500 К. Здесь предполагалось, что значение μ_p для пленок pCdTe и TP CdTe_{1-x}S_x одного порядка. А по значению предэкспоненциального множителя I₀₂ определено удельное сопротивление (ho_{base}) базового слоя на основе формулы (5) при различных температурах, которое приводится в табл. 2. Анализ данных табл. 2 показывает, что вычисленные значения L_p , τ_p и ρ_{base} находятся в разумных пределах для соединений A_2B_6 [18] и наглядно отражают свойства твердого раствора сильную компенсированность. При этом L_p при изменении температуры от 273 до 398 К меняется от 0.45 до $0.5\,\mu\text{m}$, увеличиваясь всего на $0.05\,\mu\text{m}$. ρ_{base} сначала уменьшается от значения $6.7 \cdot 10^8$ до $3.7 \cdot 10^8 \Omega \cdot cm$ (323 К), затем с ростом температуры увеличивается и достигает значения $5.8 \cdot 10^8 \,\Omega \cdot \mathrm{cm}$ при $T = 348 \,\mathrm{K}$ и остается постоянным до $T = 398 \,\mathrm{K}$. В то же время τ_p уменьшается более чем на два порядка (от 4.2 · 10-7 до 7.9 · 10⁻⁹ s) при возрастании температуры от 273 до 398 К. Такое поведение τ_p обусловлено сильным возрастанием значения μ_p с повышением температуры. Эти величины для L_p , τ_p и ρ_{base} являются эффективными, но в то же время они отражают динамику изменения свойств ТР CdTe $_{1-x}$ S_x с изменением температуры. Увеличение длины диффузии неосновных носителей тока L_p при повышении температуры от 273 до 323 К, а также уменьшение значения ho_{base} при повышении температуры до 323 К, а затем возрастание его величины с дальнейшим ростом температуры, вероятно, объясняются изменением степени компенсации глубоких локальных центров как в зернах, так и на границе раздела между CdS и TP [12]. Согласно [19,20], в сильно компенсированных полупроводниковых материалах изменение степени компенсации за счет перезарядки глубоких локальных центров как в базе структуры, так и на границе раздела между полупроводником и диэлектриком (окись) непосредственно сказывается на изменении рекомбинационных параметров.

4. Выводы

Таким образом, полученные данные по вольт-фарадным и вольт-амперным характеристикам показывают, что формируемый ТР $CdTe_{1-x}S_x$ на гетерогранице pCdTe/nCdS является сильно компенсированным материалом, неоднородным не только по удельному сопротивлению, но и по составу. В переносе тока в гетеросистеме pCdTe/nCdS твердый раствор CdTe_{1-x}S_x играет определяющую роль, являясь базой p-i-n-структуры. В литературе [21,22] известные механизмы переноса тока для гетеросистемы nCdS/pCdTe отличаются от рассмотренного нами механизма переноса тока. Это отличие прежде всего объясняется тем, что в работах [21,22] не учитывается наличие промежуточного высокоомного *i*-слоя на гетерогранице nCdS/pCdTe, а механизм переноса тока в гетеросистеме объясняется генерационно-рекомбинационными процессами в слое объемного заряда, расположенном в приповерхностном слое теллурида кадмия.

Технологические режимы и последовательности технологических процессов, а также геометрические размеры слоев CdS и CdTe, примененных для формирования гетеросистемы nCdS/pCdTe в [21,22], существенно отличаются от технологических параметров и режимов для получения исследуемых гетеросистем, которые описаны выше. Для окончательной ясности в этом вопросе необходимо проведение целенаправленного исследования, где нужно будет выяснить, когда и при каких технологических условиях и режимах формируется промежуточный *i*-слой на гетерогранице nCdS/pCdTe.

Список литературы

- L.R. Shiozawa, G.A. Sillivan, F. Augustine. Contract N AF 33(615) 5224. Clevite corp., Cleveland, Ohio (1967).
- [2] Т.М. Разыков. Гелиотехника 2, 23 (1981).
- [3] K. Yasuba, K. Hhitoshi, A. Hideshi, I. Toshio. Jpn. J. Appl. Phys. 29, 1733 (1990).
- [4] П.В. Гаугаш, В.А. Касьян, В.И. Корольков, Н.Р. Рахимов. ФТП 9, 1879 (1975).
- [5] C.L. Chan, I. Shin. J. Appl. Phys. 68, 156 (1990).
- [6] M.K. Herndon, A. Gupta, V.I. Kaydanov, R.T. Collins. Appl. Phys. Lett. 75, 3503 (1999).
- [7] K. Ohata, J. Sarate, T. Tanaka. Jap. J. Appl. Phys. 12, 1641 (1973).
- [8] Ж. Жанабергенов, Ш.А. Мирсагатов, С.Ж. Каражанов. Неорган. материалы 41, 915 (2005).
- [9] Ш.А. Мирсагатов, С.А. Музафарова. В кн.: Материалы конф. "Физика в Узбекистане". Ташкент (2005). С. 97.
- [10] Ш.А. Мирсагатов, С.А. Музафарова, Б.У. Айтбаев. В кн.: Материалы Респ. конф. "Рост, свойства и применение кристаллов". Нукус (2005). С. 55.
- [11] С. Зи. Физика полупроводниковых приборов. Т. 2. Мир, М. (1984). 455 с.
- [12] А. Милнс, Д. Фойхт. Гетеропереходы и переходы металлполупроводник. Мир, М. (1975). 432 с.
- [13] П.Т. Орешкин. Физика полупроводников и диэлектриков. Высш. шк., М. (1977). 447 с.
- [14] Х.Х. Исмаилов, Ж. Жанабергенов, Ш.А. Мирсагатов. ФТП 40, 185 (2006).

- [15] Solar energy conversion / Ed. B.O. Setaphin. Springer-Verlag, Berlin etc. (1979).
- [16] В.В. Евстропов, Ю.В. Жиляев, М. Джумабаев, Н. Назаров. ФТП **31**, 152 (1997).
- [17] В.И. Стафеев. ЖТФ 28, 1631 (1958).
- [18] K. Zanio. In: Semiconductors and Semimetals. Vol. 13, Academic Press, N.Y. (1978). P. 236.
- [19] S. Zh. Karazhanov. Appl. Phys. Lett. 89, 3707 (2001).
- [20] S. Zh. Karazhanov. Appl. Phys. Lett. 76, 2689 (2000).
- [21] А. Косяченко, Х. Mathew, В.В. Мотущук, В.М. Склярчук. ФТП 39, 5690 (2005).
- [22] Г.С. Хрипунов. ФТП **39**, 1266 (2005).