ЭПР центров трехвалентного железа в кристалле SrF_2 : Fe

© Е.Р. Житейцев, В.А. Уланов, М.М. Зарипов

Казанский физико-технический институт им. Е.К. Завойского Российской академии наук,

420029 Казань, Россия

E-mail: evg@kfti.knc.ru

(Поступила в Редакцию 11 сентября 2006 г.)

В кристаллах SrF₂ : Fe(0.2 at.%) методом ЭПР обнаружены парамагнитные центры трех типов. Из них два типа центров наблюдаются в кристаллах, не подвергнутых какой-либо обработке, а третий вид центров появляется в кристаллах только после их облучения рентгеновскими лучами. Спектры ЭПР одного вида центров в необлученном кристалле и центров, появляющихся после облучения, описываются ромбическими спиновыми гамильтонианами со значениями эффективного спинового момента $S_{\text{eff}} = 5/2$. В обоих случаях центры наблюдаются как при 4.2 K, так и при 77 K. Главные оси их спиновых гамильтонианов направлены вдоль осей (001), (110) и (110), но параметры тонкой структуры их спектров ЭПР существенно различаются. Согласно результатам анализа суперсверхтонкой структуры (ССТС) спектров ЭПР, радиационный центр образовался путем замещения катиона Sr²⁺ ионом Fe²⁺, который под воздействием рентгеновского облучения перешел в состояние Fe³⁺(⁶A_{1g}) и сместился в нецентральное положение вдоль оси C_2 своего координационного куба. Отсутствие ССТС в спектрах ЭПР ромбических центров в необлученном кристалле вероятная модель. Спектры ЭПР центров третьего типа наблюдались только при 4.2 K. Данных об их структуре не получено.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 04-02-16616).

PACS: 76.30.Fc, 61.72.Ji

1. Введение

Спектроскопические исследования методом ЭПР примесных *d*-ионов с незаполненной электронной оболочкой, внедренных в кристаллы структурного ряда флюорита, способны дать новую информацию о физических свойствах примесных дефектов в кристаллах. Дело в том, что кристаллы группы флюорита имеют кубическую кристаллическую решетку (группа симметрии O_h^5), в которой каждый из катионов находится в центре координационного куба, образованного восемью анионами [1]. В свою очередь каждый из анионов находится в центре координационного тетраэдра из четырех катионов. Поскольку катионные примеси внедряются в ионные кристаллы в позиции базовых катионов, при легировании флюоритоподобных кристаллов образуются кубические примесные комплексы типа $[MeX]^{n-}(O_{k})$. Высокая симметрия действующего на примесный ион кристаллического поля может явиться причиной янтеллеровского и псевдо-ян-теллеровского искажения кубической ядерной конфигурации примесного комплекса $[MeX]^{n-}(O_h)$. Поскольку в кристаллах SrF₂ и BaF₂ объем координационного куба для большинства *d*-ионов оказывается слишком большим, в примесном комплексе $[MeX]^{n-}(O_h)$ может реализоваться эффект электрической дипольной неустойчивости [2]. В таком случае возможно сильное смещение примесного иона из центра координационного куба на периферию, в результате чего этот ион окажется в "неестественных" условиях, связанных с низкой симметрией действующего на него кристаллического поля.

С другой стороны, ионы железа как примеси в активированном ими кристалле могут быть интересны тем, что их электронная структура очень чувствительна к кристаллическим полям, действующим на них в кристаллематрице (см., например, [3,4]). В зависимости от величины и симметрии кристаллического поля эти ионы могут оказаться в кристалле-матрице как в высокоспиновом, так и в низкоспиновом состоянии. Оказывается, что между этими состояниями возможны переходы [3]. Изменение состояния примесного иона железа возможно, например, в процессе структурного фазового перехода в кристалле [3] под воздействием деформации кристалла внешними силами или вследствие эффекта или псевдоэффекта Яна-Теллера. Очевидно, что новые экспериментальные сведения о том, как могут зависеть свойства парамагнитных центров такого типа от изменения размеров координационного куба примесного иона, являются важными при выяснении механизмов переходов этого иона из высокоспинового в низкоспиновое состояние и обратно. Говоря об актуальности данного исследования, необходимо отметить, что до появления в печати наших работ [5,6] число публикаций по центрам железа в кристаллах структурной группы флюорита было незначительным (см., например, [7]), а опубликованный в них материал не являлся исчерпывающим. Но недавно нами были опубликованы результаты изучения методом ЭПР кристаллов BaF₂ : Fe [5,6]. В этих работах сообщается о нескольких видах парамагнитных центров

805

железа в исследованных кристаллах. Одну группу центров представляли обменно-связанные пары примесных ионов железа, обладающие терагональной симметрией магнитных свойств [5]. В необлученных образцах эти пары представляли собой связанные обменом ионы Fe⁺ и Fe³⁺. В этих же образцах наблюдались слабые линии ЭПР с угловыми зависимостями тетрагонального типа, которые были приписаны переходам между парой спиновых состояний трех групп магнитно-неэквивалентных центров одиночных ионов Fe²⁺. Было сделано предположение о том, что тетрагональная симметрия магнитных свойств указанных центров обусловлена эффектом Яна-Теллера на основном орбитальном дублете кубического комплекса $[FeF_8]^{-6}$, образовавшемся вследствие замещения ионом Fe²⁺ основного катиона решетки кристалламатрицы. После облучения валентное состояние одного из ионов железа примесной пары (Fe⁺-Fe³⁺) изменялось и возникала примесная пара ($Fe^{2+}-Fe^{3+}$). Одновременно с этим в кристалле появлялись парамагнитные центры с ромбической симметрией магнитных свойств и с эффективным спиновым моментом $S_{\text{eff}} = 5/2$ [6]. Главные оси спинового гамильтониана ромбических центров оказались направленными вдоль осей (001), (110) и (110). По данным изучения угловых зависимостей в суперсверхтонкой структуре спектров ЭПР этих центров была установлена их молекулярная структура, в которой положение примесного иона Fe³⁺ оказалось нецентральным. Было сделано предположение, что ион Fe³⁺ сместился из центра своего координационного куба в нецентральную позицию ромбического типа вследствие электрической дипольной неустойчивости образованного им комплекса $[FeF_8]^{5-}(O_h)$.

Исследования поведения примесных ионов железа в кристаллах структурной группы флюорита продолжены в настоящей работе. Они также выполнены методом ЭПР. В качестве кристалла-матрицы использован кристалл SrF₂, имеющий меньшую величину постоянной решетки a_0 . В качестве основного рассматривался вопрос о том, как скажется уменьшение размеров координационного куба на свойства образующихся при легировании примесных центров железа.

2. Эксперимент и его результаты

Кристаллы SrF₂: Fe были выращены методом Чохральского из графитового тигля в атмосфере гелия, содержащего примесь фтора. Примесь вводилась в расплав в виде мелкодисперсного порошка металлического железа. Градиент температуры в области фронта кристаллизации составлял 25 deg/mm. Средняя скорость движения фронта кристаллизации — 12 mm/h.

Исследования выращенных образцов выполнены методом ЭПР на спектрометре E-12 (Varian) в Q-диапазоне при температурах 4.2 и 77 К. Было установлено, что в выращенных (но не облученных) образцах кристаллов SrF₂ : Fe с концентрацией примесного железа 0.2 at.% при температуре 4.2К наблюдаются спектры ЭПР двух типов центров. Угловые зависимости положений центра тяжести линий ЭПР одного вида центров указывают на моноклинную симметрию их молекулярной структуры. При $T = 77 \,\mathrm{K}$ спектры ЭПР этих центров не наблюдаются. По данным ЭПР плоскость симметрии их молекулярной структуры совпадает с одной из плоскостей (110) кристалла-матрицы. Угол между экстремумом угловой зависимости положений линий ЭПР этого вида центров и кристаллографическим направлением {110} приблизительно равен 8°. Спектр ЭПР содержит суперсверхтонкую структуру, но поскольку линии спектров двенадцати групп магнитно-неэквивалентных центров наблюдаются в относительно небольшом диапазоне углов вблизи направления {110}, не удалось получить подробные сведения о молекулярной структуре обнаруженных центров моноклинной симметрии. Было лишь установлено, что спин этих центров — целочисленный.

Спектры ЭПР второго вида центров наблюдаются в необлученных кристаллах SrF_2 : Fe как при T = 4.2 K, так и при 77 K. Судя по количеству линий в тонкой структуре спектров ЭПР, эти центры обладают эффективным спиновым моментом $S_{eff} = 5/2$. Симметрия их молекулярной структуры — ромбическая $(D_{2h}$ или $C_{2v})$.

После рентгеновского облучения кристаллов при T = 300 K в кристаллах появляется еще один вид ромбических центров с $S_{\text{eff}} = 5/2$. Их спектры также наблюдаются при температурах T = 4.2 и 77 K, но параметры тонкой структуры этих последних центров сильно отличаются от параметров ромбических центров, обнаруженных в необлученных кристаллах.

Более подробные материалы экспериментального изучения, относящиеся к двум типам ромбических центров с $S_{\rm eff} = 5/2$, приведены далее.

2.1. Тонкая структура спектров ЭПР. Угловые зависимости положений линий тонкой структуры спектра ЭПР ромбических центров в необлученном кристалле представлены на рис. 1. На этом рисунке точками обозначены экспериментальные значения резонансных магнитных полей, а сплошными линиями показаны теоретические значения этих полей, рассчитанные на основе спинового гамильтониана (СГ)

$$H_{S} = \beta e \left(g_{x} B_{0x} S_{x} + g_{y} B_{0y} S_{y} + g_{z} B_{0z} S_{z} \right) + B_{2}^{0} O_{2}^{0} + B_{2}^{2} O_{2}^{2} + B_{4}^{0} O_{4}^{0} + B_{4}^{2} O_{4}^{2} + B_{4}^{4} O_{4}^{4}, \quad (1)$$

где S = 5/2, β_e — магнетон Бора; B_{0i} $(i \to x, y, z)$ — проекции вектора индукции внешнего постоянного магнитного поля на оси системы координат, связанной с рассматриваемым парамагнитным центром (локальной системы координат); g_i $(i \to x, y, z)$ — параметры электронного зеемановского взаимодействия (ненулевые компоненты *g*-тензора); O_n^m — спиновые операторы Стивенса; B_n^m — параметры, определяющие расщепление

806

Рис. 1. Угловые зависимости положений резонансных линий тонкой структуры спектров ЭПР шести групп магнитнонеэквивалентных центров трехвалентного железа в необлученном кристалле SrF₂ : Fe (*T* = 4.2 K, *v*_{EPR} = 36.7 GHz).

основных электронных спиновых уровней энергии исследуемого центра в нулевом магнитном поле. Представленным на рис. 1 графикам соответствуют следующие значения указанных параметров:

$$g_x = 2.000 \pm 0.002, \quad g_y = 2.000 \pm 0.002,$$
$$g_z = 2.005 \pm 0.002,$$
$$B_2^0 = 2205 \pm 50, \quad B_2^2 = 1420 \pm 50,$$
$$B_4^0 = 4.9 \pm 0.2, \quad B_4^2 = -24.1 \pm 0.5,$$
$$B_4^4 = -24 \pm 0.5$$

(параметры B_n^m приведены в MHz). При построении графиков в качестве осей лабораторной системы координат выбраны $X \parallel \langle 001 \rangle$, $Y \parallel \langle 110 \rangle$ и $Z \parallel \langle 110 \rangle$. Вращение вектора \mathbf{B}_0 осуществлялось в плоскости *XOZ* от оси *Z* к *X*. Угол $\theta = 0^{\circ}$ соответствует ориентации **B**₀ || $Z || \langle 110 \rangle$. В объеме исследуемого кристалла находится шесть групп магнитно-неэквивалентных центров рассматриваемого типа, каждой из которых ставится в соответствие своя локальная система координат. Оси одной из локальных систем координат переводятся в соответствующие оси других пяти локальных систем координат преобразованиями кубической группы симметрии О_h. В указанных локальных системах координат спиновый гамильтониан соответствующего центра представляется в форме, определенной выражением (1). Собственные значения этого спинового гамильтониана определяют спектр спиновых уровней энергии центра и положения резонансных линий спектра ЭПР. Кривые, обозначенные на рис. 1 номерами 1-5, приписаны соответственно переходам $|+5/2\rangle \leftrightarrow |+3/2\rangle, \ |+3/2\rangle \leftrightarrow |+1/2\rangle, \ |+1/2\rangle \leftrightarrow |-1/2\rangle,$ $|-1/2\rangle \leftrightarrow |-3/2\rangle$ и $|-3/2\rangle \leftrightarrow |-5/2\rangle$ между электронными спиновыми состояниями той группы магнитнонеэквивалентных центров (допустим, группы № 1), локальные оси координат которой соответственно параллельны осям лабораторной системы координат ($x_1 \parallel X$, $y_1 \parallel Y, z_1 \parallel Z$). В этом случае при $\theta = 0^\circ$ вектор индукции внешнего магнитного поля параллелен оси z1 $(\mathbf{B}_0 \parallel z_1)$. Точки l' - 5' относятся к соответствующим переходам между состояниями другой группы магнитнонеэквивалентных центров (например, группы № 2). Ось у2 локальной системы координат этой группы при $\theta = 0^{\circ}$ оказывается параллельной вектору **B**₀. В ориентации $\theta = 90^{\circ}$ вектор \mathbf{B}_0 является параллельным как оси x₁, так и оси x₂. В данной ориентации графики, которым принадлежат точки 1-5, сходятся с графиками, содержащими соответствующие точки 1'-5'. Как видно из рис. 1, указанные выше параметры СГ (1) хорошо описывают положение точек на экспериментальных угловых зависимостях. Тот факт, что наблюдаемая тонкая структура спектра ЭПР характерна для спинового момента S = 5/2, указывает на то, что исследуемый примесный центр образован ионом Fe³⁺. Форма полученных угловых зависимостей свидетельствует о ромбической симметрии кристаллического поля в позиции этого иона.

Угловые зависимости положений линий тонкой структуры спектра ЭПР ромбических центров в облученном кристалле (радиационных центров) представлены на рис. 2. Как и на рис. 1, здесь точками обозначены экспериментальные значения резонансных магнитных полей, а сплошными линиями показаны теоретические значения этих полей, рассчитанные на основе СГ (1).

Рис. 2. Угловые зависимости положений резонансных линий тонкой структуры спектров ЭПР шести групп магнитнонеэквивалентных центров трехвалентного железа в облученном кристалле SrF_2 : Fe (T = 4.2 K, $v_{EPR} = 36.7$ GHz).

Представленным на рис. 2 графикам соответствуют следующие значения параметров этого гамильтониана:

$$g_x = 2.003 \pm 0.002, \quad g_y = 2.003 \pm 0.002,$$
$$g_z = 2.005 \pm 0.002,$$
$$B_2^0 = 2488 \pm 50, \quad B_2^2 = -909 \pm 50,$$
$$B_4^0 = -0.9 \pm 0.2, \quad B_4^2 = 3.6 \pm 0.5,$$
$$B_4^4 = -1.4 \pm 0.2 \quad (B_n^m \text{ B MHz}).$$

Выбор направлений осей системы координат представления спинового гамильтониана (1), порядок отсчета угла θ , обозначения электронных переходов и правила построения шести локальных систем координат те же, что были определены выше для ромбических центров в необлученном кристалле. Как видно на рис. 2, указанные выше параметры СГ (1) хорошо описывают положение точек на экспериментальных угловых зависимостях. Отметим, что и здесь наблюдаемая тонкая структура спектра ЭПР характеризуется эффективным спиновым моментом S = 5/2. Поэтому можно говорить о том, что примесный центр, появившийся в исследуемом кристалле после его облучения рентгеновскими лучами, также образован ионом Fe³⁺. Кроме того, отметим, что форма полученных угловых зависимостей на рис. 2 явно свидетельствует о ромбической симметрии кристаллического поля в позиции иона Fe³⁺.

2.2. Суперсверхтонкая структура спектров ЭПР радиационных ромбических центров. В спектрах ЭПР ромбических центров, присутствующих в необлученных кристаллах, не было обнаружено суперсверхтонкой структуры (ССТС). Но ССТС кристалле SrF₂: Fe в процессе его облучения рентгеновскими лучами, в некоторых ориентациях вектора внешнего магнитного поля **B**₀ достаточно хорошо разрешалась. Для примера на рис. З представлена группа резонансных линий ССТС спектра ЭПР, соответствующая резонансным переходам $|+1/2\rangle \leftrightarrow |-1/2\rangle$ ансамбля магнитно-эквивалентных центров № 1, для которых $\theta = 0^0$ (что соответствует ориентации **B**₀ || z_1).

спектра ЭПР ромбических центров, образовавшихся в

Рис. 3. Фрагмент спектра ЭПР облученного образца кристалла SrF_2 : Fe, зарегистрированный в ориентации $\mathbf{B}_0 \parallel Z$ и соответствующий резонансным переходам $\mid +1/2 \rangle \leftrightarrow \mid -1/2 \rangle$ между электронными состояниями центров группы No 1 (T = 4.2 K).

В нижней части рис. З приведена диаграмма положений и относительных интенсивностей линий ССТС на переходе $|+1/2\rangle \leftrightarrow |-1/2\rangle$, полученная из анализа формы линий показанного выше фрагмента спектра и представленная в виде группы вертикальных линий. Из диаграммы видно, что все линии ССТС оказываются разбитыми на три группы, интегральные интенсивности которых приблизительно относятся друг к другу как 1:2:1. В каждой из указанных групп можно обнаружить пять линий с относительными интенсивностями, приблизительно описываемыми соотношениями 1:4:6:4:1. Очевидно, что в исследуемом кристалле лигандами примесного катиона могут быть в основном ионы фтора с ядерным спиновым моментом *I* = 1/2. Поэтому вид ССТС, представленной на рис. 3, свидетельствует о наличии в ближайшем окружении иона Fe³⁺ шести ионов Fe⁻, которые в ориентации $\mathbf{B}_0 \parallel z_1$ оказываются разбитыми на две группы магнитно-эквивалентных лигандов; одна из групп состоит из двух, другая из четырех ионов фтора. Возможно, что на относительно большем расстоянии расположены остальные два иона фтора, которые ранее принадлежали координационному кубу замещенного примесью иона Sr^{2+} . Однако ССТС от этих лигандов оказалась неразрешенной.

Таким образом, проявившееся в спектрах ЭПР радиационных центров суперсверхтонкое взаимодействие (ССТВ) с магнитными моментами шести ближайших к примеси ионов фтора должно быть описано гамильтонианом

$$H_{shfi} = \sum_{i=1}^{6} \left(S \cdot A^{(i)} \cdot I^{(i)} - g_n^F \beta_n B_0 \cdot I^{(i)} \right), \qquad (2)$$

где $A^{(i)}$ — тензор ССТВ с ядром *i*-го лиганда, $I^{(i)}$ — оператор ядерного спинового момента *i*-го лиганда $(I = 1/2), g_n^F$ — ядерный *g*-фактор фтора, β_n — ядерный магнетон. Учитывая то, что в спектрах ЭПР наблюдается ССТВ с двумя группами эквивалентных ядер, мы должны рассматривать два тензора ССТВ: A^I и A^{II} . Верхний индекс I относится к группе лигандов, состоящей из двух ионов фтора, индекс II — к группе из четырех ионов. Анализируя форму ССТС спектров ЭПР по методике, изложенной в работе [6], мы получили следующие величины параметров гамильтониана ССТС (2): $A_{\parallel}^{I} = 75 \pm 5$, $A_{\parallel}^{II} = 54 \pm 5$, $A_{\parallel}^{I} = 51 \pm 5$ и $A_{\parallel}^{II} = 42 \pm 5$ (в MHz).

3. Обсуждение экспериментальных результатов и выводы

Сопоставляя экспериментальные факты, полученные в настоящей работе и в нашей предыдущей работе [6], можно видеть, что параметры тонкой и суперсверхтонкой структуры спектров ЭПР центров в облученных образцах подобны соответствующим параметрам ромбических радиационных центров в кристаллах $BaF_2 : Fe$ [6]. Становится очевидным, что подобными должны быть

Рис. 4. Фрагмент решетки облученного кристалла SrF_2 : Fe^{3+} , включающий координационные многогранники примесного иона Fe^{3+} и соседнего с ним иона Sr^{2+} .

Рис. 5. Фрагмент решетки необлученного кристалла $SrF_2 : Fe^{3+}$, включающий координационные многогранники примесного иона Fe^{3+} и соседнего с ним иона Sr^{2+} (вектора смещений ионов лежат в плоскости *XOZ*).

также и их молекулярные структуры и механизм образования. Здесь (как и в BaF₂: Fe) рентгеновское облучение переводит центры двухвалентных ионов Fe²⁺ в центры Fe³⁺ путем возбуждения одного из валентных электронов. В последующем этот электрон захватывается ловушкой, в качестве которой может, например, служить какая-либо дислокация в кристалле-матрице. Благодаря псевдоэффекту Яна-Теллера примесный ион Fe³⁺ смещается из позиции замещенного им катиона решетки вдоль оси C_2 его координационного куба. Из анализа угловых зависимостей расщеплений в ССТС спектров ЭПР вблизи ориентаций **В**₀ || (111) следует, что величина внецентрового смещения примесного иона относительно невелика (≤ 0.01 nm).

На рис. 4 показан фрагмент кристаллической решетки, представленный координационными многогранниками двух соседних катионов решетки кристалла SrF_2 : Fe. Один из этих катионов — примесный ион Fe^{3+} , а другой — собственный катион решетки кристалламатрицы Sr^{2+} . Указанные два катиона расположены на оси Z, параллельной одной из кристаллографических осей (110). Согласно данным ЭПР, ион Fe^{3+} смещен параллелльно оси Z из позиции замещенного им катиона

решетки, обозначенной крестом. При этом ближайшие к Fe³⁺ ионы сместились в новые равновесные положения. Два иона фтора, ранее располагавшиеся на концах ребра координационного куба, перпендикулярного вектору смещения примеси Fe³⁺, оказываются в эквивалентных позициях по отношению к иону Fe³⁺. При этом расстояния от этих ионов (лигандов первой группы F⁻(I)) до Fe^{3+} оказываются наименьшими. Четыре иона F^- , располагавшихся в плоскости, перпендикулярной вектору смещения примеси, остаются в эквивалентных позициях. Расстояния от них (лигандов второй группы $F^{-}(II)$) до иона Fe³⁺ немного больше, чем расстояния до лигандов первой группы. Оставшиеся два иона фтора (ранее принадлежавшие координационному кубу замещенного Sr^{2+} и обозначенные на рис. 4 как $F^{-}(III)$) в спектрах ЭПР не проявились. Однако кажется маловероятным, что на их месте образовались анионные вакансии, поскольку такой процесс приводит к значительному увеличению энергии решетки кристалла-матрицы. Более предпочтительным кажется предположение о том, что эти два аниона оказались на достаточно больших расстояниях и суперсверхтонкое взаимодействие с ними не могло вызвать в спектрах ЭПР каких-либо заметных расщеплений.

Экспериментальная информация о структуре ромбических центров Fe^{3+} в необлученном кристалле SrF^2 : Fe значительно менее подробная. Однако мы имеем два факта, которые существенно сужают поле предположений. Во-первых, по данным изучения угловых зависимостей в спектре ЭПР, симметрия данного центра ромбическая. Во-вторых, величины параметров тонкой структуры спектров ЭПР этих центров имеют тот же порядок величины, что и параметры радиационного центра, хотя знак параметра B_2^2 у них имеет противоположные значения. При рассмотрении возможных видов молекулярной структуры было принято во внимание, что в данном центре должен быть компенсатор заряда, поскольку ион железа замещает ион стронция не изовалентно. Поскольку центр наблюдается в необлученном кристалле, его состояние и его молекулярная структура являются стабильными. Кристалл выращивался в атмосфере, содержащей фтор, поэтому наиболее вероятным компенсатором может быть междоузельный фтор в ромбической позиции по отношению к примесному иону. Поскольку исходный материал для выращивания кристалла был высокой чистоты (марка осч), другие примесные ионы не могли оказаться компенсаторами заряда. Таким образом, в качестве наиболее вероятной структуры центра рассматривается структура, представленная на рис. 5.

Список литературы

- [1] Crystals with the fluorite structure / Ed. W. Hayes. Clarendon Press, Oxford (1974).
- [2] И.Б. Берсукер. Эффект Яна-Теллера и вибронные взаимодействия в современной химии. Наука, М. (1987).
- [3] T. Kambara, N. Sasaki. J. Phys Soc. Jap. 51, 1694 (1982).

- [4] E. Konig, K. Medeja. Inorganic Chemistry. 6, 48 (1967).
- [5] Е.Р. Житейцев, В.А. Уланов, М.М. Зарипов, Е.П. Жеглов. ФТТ 47, 1212 (2005).
- [6] Е.Р. Житейцев, В.А. Уланов, М.М. Зарипов. ФТТ 48, 1779 (2006).
- [7] W. Gehlhoff, W. Ulrici. Phys. Stat. Sol. (b) 102, 11 (1980).