Избыточный ток в контактах на основе диборида магния

© С.Л. Сидоров, В.Ю. Таренков, А.И. Дьяченко, Т.А. Хачатурова

Донецкий физико-технический институт им. А.А. Галкина Национальной академии наук Украины, 83114 Донецк, Украина E-mail: Sid-Ser-L@rambler.ru

(Поступила в Редакцию 15 мая 2006 г.)

Исследована связь избыточного тока I_{exc} в контактах In/MgB₂, Pb/MgB₂ с величиной энергетических щелей Δ_{σ} , Δ_{π} диборида магния. Показано, что даже в "грязном" пределе электроны из σ - и π -зон MgB₂ не "перемешиваются", т.е. значительное время остаются в пределах своих зон. Поэтому измерения I_{exc} для контактов, приготовленных в разных кристаллографических направлениях MgB₂, позволили определить значения энергетических щелей $\Delta_{\pi} \approx 3$ meV и $\Delta_{\sigma} = 7.5$ meV.

Работа поддержана программой ИНТАС (проект № 2001-0617), а также российско-украинской программой "Нанофизика и наноэлектроника".

PACS: 74.50.+r, 74.70.Ad, 72.10.-d

Обнаружение в 2001 г. сверхпроводящего состояния в дибориде магния MgB₂ с неожиданно высокой критической температурой $T_c = 39 \,\mathrm{K}$ не только позволило экспериментально доказать существование нового явления — двущелевой сверхпроводимости [1], но и способствовало дальнейшему развитию методов контактной спектроскопии данных материалов. В первую очередь это относится к исследованию спектра квазичастичных возбуждений при энергиях, сравнимых с величиной энергетической щели Д. Присутствие двух щелей (меньшая щель $\Delta_{\pi} \cong 2 - 3 \text{ meV}$ образуется на трехмерной *п*-части поверхности Ферми, а бо́льшая $\Delta_{\sigma} \cong 7 \,\mathrm{meV}$ — на σ -трубках, направленных вдоль оси cMgB₂) представляет собой значительную трудность при интерпретации вольт-амперных характеристик I(V) и их производных по напряжению V [2]. Поэтому, несмотря на обилие контактных имерений Д, в настоящее время наибольшее доверие вызывают "более прямые" исследования параметра Δ методом ARPES [3].

В настоящей работе информация о щелевых характеристиках диборида магния получена с помощью измерения избыточного тока $I_{\rm exc} \sim \Delta$ в контактах, образованных MgB₂ с нормальным и сверхпроводящим инжекторами (см. также [4]). Полученные результаты подтверждают уникальный характер процесса переноса заряда в сверхпроводящем и нормальном состояниях MgB₂ [5]: рассеяние электронов между σ - и π -зонами пренебрежимо мало, поэтому андреевское отражение реализуется для σ - и π -зон независимо.

Как известно [6], избыточный ток возникает в контактах по крайней мере с одной сверхпроводящей обкладкой

$$I_{\text{exc}} = \lim_{eV \gg \Delta} [I_{\mathcal{S}}(V) - I_{\mathcal{N}}(V)].$$
(1)

В общем случае зависимость тока от напряжения в нормальном I_N и сверхпроводящем I_S состояниях для аксиально-симметричной задачи определяется со-

отношением [6]

$$I_{N}(V) = \frac{1}{eR} \int d\Omega \cos\theta$$

$$\times \int_{-\infty}^{\infty} d\varepsilon [f(\varepsilon - eV) - f(\varepsilon)] [1 - |R_{N}^{ee}(\varepsilon, \theta)|^{2}], \qquad (2)$$

$$I_{S}(V) = \frac{1}{eR} \int d\Omega \cos\theta$$

$$\times \int_{-\infty}^{\infty} d\varepsilon [f(\varepsilon - eV) - f(\varepsilon)] [1 - |R_{S}^{ee}(\varepsilon, \theta)|^{2} + |R_{S}^{eh}(\varepsilon, \theta)|^{2}].$$

Здесь $f(\varepsilon)$ — распределение Ферми-Дирака, θ — пространственный угол. Для N/S-гетероструктуры амплитуда вероятности рассеяния электрона назад в сверхпроводящем состоянии, согласно работе [7], равна

$$R_S^{ee} = r^e + \frac{t^e r^{eh} r^h r^{he} t^e}{1 - r^{eh} r^h r^{he} r^e},$$

а в нормальном $R_N^{ee} = r^e$. Амплитуда вероятности рассеяния электрона в дырку существует только при наличии сверхпроводящего электрода и равна

$$R_{S}^{eh} = \frac{t^{e}r^{eh}t^{h}}{1 - r^{eh}r^{h}r^{he}r^{e}},$$
$$r^{eh(he)} = \frac{\varepsilon - \operatorname{sign}(\varepsilon)\sqrt{\varepsilon^{2} - \Delta^{2}}}{\Delta}$$

Амплитуды вероятности прохождения (отражения) электрона (дырки) через плоский интерфейс, разделяющий нормальный и сверхпроводящий электроды, $t^{e,h}(r^{e,h})$ могут быть получены в аналитическом виде с единственным безразмерным подгоночным параметром Z в рамках приближения [6], описывающего интерфейс

Рис. 1. Рассчитанные методом [7] вольт-амперные характеристики трехмерного идеального (D = 1) контакта, образованного нормальным инжектором со сверхпроводником, при различных температурах. Тонкая сплошная линия соответствует нормальному состоянию. На вставке показана зависимость избыточного тока от прозрачности D границы раздела между двумя металлами.

в виде короткодействующего потенциального барьера U(x) (x — нормаль к плоскости интерфейса). Тогда имеем [7] $Z = k_F \int U(x) dx / \varepsilon_F$ (k_F и ε_F — фермиевский волновой вектор и энергия Ферми),

$$t^{e,h} = \mp \frac{i\cos\theta}{Z\mp i\cos\theta}, \quad r^{e,h} = -\frac{Z}{Z\mp i\cos\theta}.$$
 (4)

Существование избыточного тока (см. рассчитанные на основе формул (1)-(4) кривые I(V) на рис. 1) является естественным следствием процессов андреевского отражения электрона в дырку, описываемых величиной R_{s}^{eh} и связанных с одновременным прохождением двух квазичастиц через интерфейс. Последнее обстоятельство означает, что их вклад резко убывает по мере уменьшения прозрачности интерфейса и, значит, имеет заметную величину только в контактах с высокой прозрачностью границы раздела между двумя электродами $D = 1/(1 + Z^2)$. Зависимость I_{exc} от прозрачности Dпредставлена на вставке к рис. 1, которая представляет собой трехмерное обобщение рис. 8 работы [6]. Используя равенство $f(-\varepsilon) = 1 - f(\varepsilon)$ и симметрию коэффициентов R, находим, что I_{exc} (1) зависит от температуры Tтолько через зависимость энергетической щели $\Delta(T)$, которая определяет величины r^{eh} и r^{he}. Поскольку последние являются функциями отношения Δ/ε , замена переменной ε в (2) и (3) на ε/Δ приводит к универсальному результату: избыточный ток I_{exc} в контактах на основе сверхпроводника с *s*-волновой симметрией параметра порядка пропорционален величине энергетической щели $\Delta (I_{\text{exc}} \sim \Delta)$. Поэтому измерения I_{exc} являются удобным методом определения величины Δ и ее зависимости от внешних факторов.

Этот результат легко обобщить на случай двухзонного сверхпроводника MgB₂. Дело в том, что, согласно [5], в MgB₂ при рассеянии на дефектах структуры и примесях перескоки электронов между σ - и π -частями поверхности Ферми должны быть очень редкими. Поэтому при андреевском отражении от такого сверхпроводника часть электронов будет взаимодействовать только с π зоной MgB₂, тогда как остальные электроны — только с σ -зоной. В результате избыточные токи от разных зон просто суммируются

$$I_{\rm exc} = I_{\rm exc}^{\sigma} + I_{\rm exc}^{\pi} = \frac{4}{3} \left(\Delta_{\sigma} G^{\sigma} + \Delta_{\pi} G^{\pi} \right), \tag{5}$$

где $\Delta_{\sigma}, \Delta_{\pi}$ — энергетические щели для σ - и π -участков поверхности Ферми, G^{σ}, G^{π} — парциальные проводимости точечного контакта [8]. В двухзонном приближении для "чистого" предела

$$G^{\sigma} = \frac{e^2}{2\hbar} A \langle N | v_x | \rangle_{\sigma}, \quad G^{\pi} = \frac{e^2}{2\hbar} A \langle N | v_x | \rangle_{\pi}, \qquad (6)$$

где A — площадь контакта, v_x — проекция скорости электрона на ось x, нормальную к поверхности контакта, $N(\mathbf{k})$ — плотность состояний электронов на соответствующем участке поверхности Ферми. Согласно (5), (6), избыточный ток можно выразить через сопротивление R_N контакта в нормальном состоянии и усредненную энергетическую щель Δ_{eff}

$$I_{\text{exc}} = \frac{4}{3} \frac{\Delta_{\text{eff}}}{eR_N}, \quad R_N^{-1} = G^{\sigma} + G^{\pi},$$
$$\Delta_{\text{eff}} = \frac{\Delta_{\sigma}q + \Delta_{\pi}}{q+1}, \quad q = \frac{G^{\sigma}}{G^{\pi}}, \tag{7}$$

где q — относительный вклад в проводимость контакта от σ - и π -зон. В пределе "чистого" контакта $(l \gg d; l - длина$ свободного пробега электрона, d — диаметр контакта), согласно (6), параметр $q = rac{\langle N(v_x)
angle_\sigma}{\langle N|v_x|
angle_\sigma}$. В пределе $l \leq d$, когда применимо приближение $R_N^N \approx \rho/d$ (ρ — удельное сопротивление MgB₂), $q = \frac{\Gamma_{\pi} \Omega_{\sigma}^2}{\Gamma_{\sigma} \Omega_{\pi}^2}$, где $\Gamma_{\pi,\sigma}$ — скорости рассеяния электронов в π - и σ -зонах, $\Omega_{\pi,\sigma}$ — соответствующие плазменные частоты. Согласно расчетам зонной структуры [9], для контактов, ось х которых направлена параллельно плоскости *ab* MgB₂, плазменные частоты $\Omega_{\pi}^{ab} = 5.89 \text{ eV}$, $\Omega_{\sigma}^{ab} = 4.14 \,\mathrm{eV}$, а для контактов, направленных вдоль оси *c*, $\Omega_{\pi}^{c} = 6.85 \,\text{eV}, \, \Omega_{\sigma}^{c} = 0.68 \,\text{eV}.$ Выберем для оценок усредненные по σ -, π -зонам параметры энергетических щелей MgB₂: $\Delta_{\sigma} = 7.1$ meV, $\Delta_{\pi} = 2.4$ meV [1,10]. Используя эти параметры для контакта в аb-направлении в случае "чистого" предела ($\Gamma_{\sigma} = \Gamma_{\pi} = 4 \text{ meV}$ [5]), получаем параметр $q \approx 1/2$, а в типично "грязном" случае $(\Gamma_{\sigma} = 4 \,\mathrm{meV}, \,\Gamma_{\pi} = 2.4 \,\mathrm{meV}) \,\, q \approx 300.$ Поэтому при реализации "чистого" контакта в аb-направлении следует ожидать $\Delta_{\text{eff}}^{ab} \approx 4 \,\text{meV}$ ("чистый" предел) и $\Delta_{\text{eff}}^{ab} \approx 7 \,\text{meV}$ ("грязный" предел), а для контактов вдоль оси с

Рис. 2. Вольт-амперные характеристики и проводимости dI/dV(V) контактов Pb/MgB₂ (*a*) и In/MgB₂ (*b*). Температура эксперимента T = 4.2 K. $\Delta_1 = \Delta_{Pb} + \Delta_{\pi}$, $\Delta_2 = \Delta_{Pb} + \Delta_{\sigma}$.

 $\Delta_{\rm eff}^c = 2.45 \,{\rm meV}$ ("чистый" предел) и $\Delta_{\rm eff}^c = 6.4 \,{\rm meV}$ ("грязный" предел). Как видно, максимальный избыточный ток $I_{\rm exc} = (4/3)\Delta_{\rm eff}/eR_N$ должен наблюдаться для "грязных" контактов, ось которых параллельна плоскости $ab \,{\rm MgB}_2$, а наименьший избыточный ток — для контактов, направленных по оси c.

Экспериментально исследовались пластинки MgB2 размером $10 \times 0.5 \times 0.1 \, \text{mm}$, полученные сжатием чистого (99.99%) порошка MgB₂ под давлением порядка 20-30 kbar. Критическая температура $T_c \approx 39 \,\mathrm{K}$ пластинки определялась по температурной зависимости R(T). Металлические контакты размером $d \sim 100 \text{ \AA}$ с сопротивлением $R_N \sim 10 \,\Omega$ создавались по методике "втирания" инжектора (Pb, In) в поверхность микрокристаллов MgB₂ (аналогичная методика использовалась в работе [11]). Качество и характер проводимости таких контактов контролировались по вольт-амперным характеристикам, измеренным по стандартной четырехзондовой методике. Отбирались контакты с металлическим ходом проводимости dI/dV (проводимость должна убывать с ростом V; рис. 2). В сверхпроводящем состоянии диборида магния такие контакты проявляли особенности, характерные для андреевского отражения на чистой границе сверхпроводник-нормальный металл. Проводимость контактов возрастала при $V \leq \Delta$ и при V = 0примерно в 2 раза превышала проводимость контакта при $V \gg \Delta$. Кроме того, найденный по зависимости dI/dV параметр энергетической щели Δ обращался в нуль при температуре сверхпроводящего перехода всей пластины MgB₂ (рис. 3). Эти факторы свидетельствуют о высокой степени однородности контактов, отобранных для проведения спектроскопических измерений. Также на рис. 3 представлены результаты измерений температурной зависимости большой энергетической щели Δ_{σ} и избыточного тока $I_{\rm exc}$. Полученные данные хорошо согласуются с температурной зависимостью энергетической щели в модели Бардина–Купера–Шриффера, представленной на этом же рисунке сплошной линией.

Избыточный ток I_{exc} наблюдался для всех исследуемых контактов, однако его величина $I_{\rm exc} \sim \Delta_{\rm eff}$ (7) флуктуировала, что естественно объясняется присутствием в исследуемом материале двух энергетических щелей $\Delta_{\sigma}, \Delta_{\pi}$ для σ - и π -зон MgB₂. Как показано выше, параметр q зависит от направления оси контакта к кристаллографическим осям MgB₂ и степени загрязненности поверхности контакта. На рис. 2, а приведена типичная вольт-амперная характеристика контакта Pb/MgB2 с энергетической щелью $\Delta_{Pb} = 1.3 \text{ meV};$ при 4.2 К значение избыточного тока $I_{\rm exc} = 1.6 \, {\rm mA}$. Как следует из работы [6], для контактов сверхпроводник-сверхпроводник избыточный ток пропорционален сумме энергетических щелей сверхпроводников: $I_{\text{exc}} = (4/3)(\Delta_{\text{Pb}} + \Delta_{\text{eff}})/eR_N$. Отсюда при $R_N = 3.64 \,\Omega$ получаем $\Delta_{
m Pb} + \Delta_{
m eff} pprox 4.4 \,{
m meV}$, поэтому для данного контакта энергетическая щель диборида магния $\Delta_{\rm eff} = 3.1 \, {\rm meV}$. Согласно (7), такой щели соответствует q pprox 0.16, причем $\Delta_{
m eff} = \Delta_{\pi}$, т. е. в этом контакте реализовался "чистый" предел (нет сильного рассеяния заряда вблизи поверхности контакта и на его границе; параметр D = 1), причем андреевское отражение происходит преимущественно в направлении оси с MgB₂.

Рис. 3. Температурные зависимости сопротивления R пластины MgB₂ ($T_c = 39$ K) и параметров Δ_{σ} , Δ_{BCS} и I_{exc} контакта In/MgB₂, представленного на рис. 2, *b*.

Наибольшее значение энергетической щели при 4.2 К было получено для контакта In/MgB₂. В нормальном состоянии индиевого электрода при сопротивлении контакта $R_N = 16.7 \,\Omega$ (рис. 3) избыточный ток $I_{\rm exc} = 0.602 \,\mathrm{mA}$, что, согласно (7), соответствует $\Delta_{\rm eff} = 7.5 \,\mathrm{meV}$ и значению $q \gg 1$. Таким образом, в данном случае ось контакта параллельна плоскости *ab* MgB₂, когда наблюдается максимальная для диборида магния энергетическая щель $\Delta_{\rm eff} = \Delta_{ab}$ и реализуется "грязный" предел.

Сравнивая полученные результаты $\Delta_{\sigma} \approx 7.5 \text{ meV}$ и $\Delta_{\pi} \approx 3 \text{ meV}$ с литературными данными [1,10], приходим к выводу, что для типичных контактов, направленных по оси *c*, в "чистом" пределе основной вклад в электронный транспорт определяется меньшей щелью $\Delta_{\pi} \cong 3 \text{ meV}$. Но в редких случаях (даже в "грязном" пределе) доминируют электроны, отвечающие σ -участкам поверхности Ферми MgB₂, которые соответствуют большей щели $\Delta_{\sigma} \approx 7.5 \text{ meV}$.

В заключение отметим, что в наших образцах температурное поведение избыточного тока не соответствует изменению наблюдаемой энергетической щели (рис. 3). Такая же тенденция наблюдалась ранее в работе [10], но в нашем случае "контактная" критическая температура T_c^* (где $\Delta(T_c^*) = 0$) совпадает с T_c объема MgB₂ (рис. 3), что не позволяет объяснить эффект неоднородностью поверхности контакта. Вполне возможно, что отклонение зависимости $I_{\text{exc}}(T)$ от $\Delta_{\text{eff}}(T)$ связано с тем, что, как было показано в работе [12], в случае рассеяния на примесях максимум в плотности электронных состояний зоны, соответствующей большей щели (положение которого в идеальном материале отвечает значению Δ_{eff}), не имеет ясного физического смысла. Его изменение с температурой, которое и определяет соответствующую зависимость $I_{\text{exc}}(T)$, не совпадает с расчетами $\Delta_{\sigma}(T)$ и, согласно рис. 3 из работы [12], качественно согласуется с данными наших измерений, приведенных на рис. 3. Однако для подтверждения этого вывода необходимо проведение дополнительных исследований.

В заключение отметим, что приведенные в настоящей работе результаты измерения избыточного тока I_{exc} полностью подтверждают существующие представления об энергетическом спектре MgB₂, в частности s-волновое спаривание электронных состояний и наличие двух энергетических щелей $\Delta_{\sigma} = 7.5 \text{ meV}$ и $\Delta_{\pi} = 3.1 \text{ meV}$. Эти результаты хорошо согласуются с данными, полученными другими методами [1,10], и убедительно подтверждают возможность реализации в MgB2 уникальной ситуации [5], когда в подавляющем большинстве случаев рассеяние на примесях реализуется только в σ- и π-зонах. Другими словами, электроны из π-зоны при рассеянии не переходят в электроны из σ -зоны, и наоборот. В результате σ - и π -каналы прохождения электронов вносят аддитивный вклад не только в сверхпроводящем, но и в нормальном состоянии контакта.

Авторы признательны М.А. Белоголовскому за обсуждение полученных результатов и ценные замечания.

Список литературы

- [1] C. Buzea, T. Yamashita. Supercond. Sci. Technol. 14, R 115 (2001).
- [2] H. Schmidt, J.F. Zasadzinski, K.E. Gray, D.G. Hinks. Physica C 385, 221 (2003).
- [3] S. Tsuda, T. Yokoya, Y. Takano, H. Kito, A. Matsushita, F. Yin, J. Itoh, H. Harima, S. Shin. Phys. Rev. Lett. **91**, 127 001 (2003).
- [4] F. Laube, G. Goll, M. Eschrig, M. Fogelström, R. Werner. Phys. Rev. B 69, 014 516 (2004).
- [5] I.I. Mazin, O.K. Andersen, O. Jepsen, O.V. Dolgov, J. Kortus, A.A. Golubov, A.B. Kuz'menko, D. van der Marel. Phys. Rev. Lett. 89, 107 002 (2002).
- [6] G.E. Blonder, M. Tinkham, T.M. Klapwijk. Phys. Rev. B 25, 4515 (1982).
- [7] M.A. Belogolovskii, M. Grajcar, P. Kus, A. Plecenik, Š. Benacka, P. Seidel. Phys. Rev. B 59, 9617 (1999).
- [8] I.I. Mazin. Europhys. Lett. 55, 404 (2001).
- [9] O.V. Dolgov, R.S. Gonnelli, G.A. Ummarino, A.A. Golubov, S.V. Shulga, J. Kortus. Phys. Rev. B 68, 132 503 (2003).
- [10] И.К. Янсон, Ю.Г. Найдюк. ФНТ 30, 355 (2004).
- [11] А.И. Дьяченко, В.А. Дьяченко, В.Ю. Таренков, В.Н. Криворучко. ФТТ 48, 407 (2006).
- [12] M. Belogolovskii, A. Plecenik, M. Grajcar. Phys. Rev. B 72, 052 508 (2005).