Замедление релаксации по уровням энергии размерного квантования в квантовых точках CdSe/ZnS с ростом числа возбужденных носителей

© В.С. Днепровский, И.И. Добындэ*, Е.А. Жуков, А.Н. Санталов

Московский государственный университет им. М.В. Ломоносова, 119992 Москва, Россия * Институт прикладной физики Академии наук Молдавии, МД-2028 Кишинев, Молдавия

E-mail: zhukov@qwires.phys.msu.su

(Поступила в Редакцию 22 июня 2006 г.)

Рассмотрены особенности спектров дифференциального пропускания квантовых точек CdSe/ZnS при резонансном возбуждении электронов в первое возбужденное состояние 1P(e): уменьшение пропускания на частоте возбуждающего излучения, просветление во время действия возбуждающего импульса на частотах, соответствующих основному энергетическому переходу $1S_{3/2}(h) - 1S(e)$ и переходам между возбужденными состояниями дырок и основным электронным уровнем 1S(e), и замедление этого процесса с ростом энергии возбуждающего импульса. Эти особенности удается объяснить отсутствием "фононного бутылочного горла" для электронов из-за передачи энергии от горячих электронов к быстро релаксирующим дыркам; релаксацией через промежуточные уровни энергии размерного квантования дырок; замедлением релаксации с ростом числа возбужденных носителей в квантовой точке.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проекты № 05-02-17604 и 06-02-90869).

PACS: 78.67.Ho, 78.90.+t

1. Введение

В последние годы большое внимание уделяется изучению процессов релаксации (остывания) возбужденных носителей по уровням энергии размерного квантования в полупроводниковых квантовых точках (КТ). Это обусловлено прежде всего применением КТ в качестве активной среды лазеров. Дискретный спектр энергии КТ позволяет увеличить коэффициент усиления и снизить порог генерации лазеров на основе КТ, уменьшить влияние температуры на параметры лазеров. Эффективность работы полупроводниковых лазеров на основе КТ связана с релаксацией возбужденных электронов и дырок по уровням энергии размерного квантования, так как процесс перехода носителей в основное энергетическое состояние сопровождается безызлучательной рекомбинацией носителей и излучательной рекомбинацией с возбужденных уровней энергии.

Основной канал быстрой субпикосекундной внутризонной релаксации в объемных полярных полупроводниках связан с рассеянием энергии горячих носителей при взаимодействии с оптическими *LO*-фононами [1]. В полупроводниковых КТ малого радиуса расстояния между уровнями энергии размерного квантования электронов могут значительно превышать энергии оптических фононов, и релаксация с доминирующим участием фононов может быть существенно подавлена. Это явление, названное "фононным бутылочным горлом", позволило авторам работ [2–4] объяснить медленную релаксацию по уровням энергии размерного квантования в некоторых полупроводниковых КТ. Однако в работах [5–7] сообщалось о быстрой (за времена менее 1 ps) релаксации носителей в основное состояние. Столь быстрая релаксация в КТ была объяснена в [8] эффективной передачей избыточной энергии горячих электронов дырками (процесс Оже-типа), которые быстро релаксируют в основное состояние, так как в полупроводниках, у которых эффективная масса дырок больше, чем у электронов, зазор между дискретными уровнями дырок значительно меньше, чем для электронов. Некоторое замедление релаксации дырок по уровням энергии размерного квантования в КТ со значительным размерным квантованием (в КТ малого радиуса), обнаруженное в [9] для финальной части релаксации, объяснено большим зазором между энергией основного состояния дырок и "квазиконтинуумом" вышележащих состояний.

Цель настоящей работы — изучить особенности релаксации носителей в КТ CdSe/ZnS при увеличении уровня возбуждения (при условии заполнения уровней энергии размерного квантования КТ фотовозбужденными носителями).

2. Детали эксперимента

Для изучения особенностей процесса релаксации носителей по уровням энергии размерного квантования были подобраны образцы КТ CdSe/ZnS, размер которых позволил осуществить возбуждение электронов преимущественно в первое возбужденное состояние 1P(e) при резонансном поглощении ультракоротких импульсов излучения второй гармоники неодимового лазера на фосфатном стекле (2.353 eV), работающего в режиме синхронизации мод. Коллоидные КТ CdSe/ZnS были получены методом металлоорганического синтеза и осаждались на стеклянную подложку. Подбор образцов с КТ подходящего радиуса осуществлялся следующим образом: по измеренным спектрам пропускания и люминесценции определялась энергия основного оптического перехода $1S_{3/2}(h)-1S(e)$; полученное значение сопоставлялось с результатами расчета зависимости энергий квантовых переходов от радиуса КТ, приведенными в [10] и позволяющими определить радиус КТ, дисперсию размеров КТ, энергию переходов $1P_{1/2}^{l}(h)-1P(e)$ и $1P_{3/2}(h)-1P(e)$.

На рис. 1 приведены спектры пропускания и люминесценции образца КТ CdSe/ZnS. Энергия максимума и определяемая дисперсией размеров КТ полуширина неоднородно уширенного спектра поглощения позволили определить радиус КТ ($a = 3.4 \pm 0.4$ nm). Максимум спектра люминесценции сдвинут относительно максимума поглощения основного перехода КТ в область меньших энергий. В КТ малого размера из-за доминирующего электронно-дырочного обменного взаимодействия, пропорционального a^{-3} , и кристаллического поля возникает расщепление основного дырочного уровня энергии $1S_{3/2}(h)$ [11,12] и образуются так называемые темные экситоны, пассивные в оптическом поглощении и проявляющиеся в спектрах люминесценции. Дырочное состояние с большей энергией связано с основным электронным состоянием 1S(e) дипольным взаимодействием, что вызывает интенсивное поглощение. Оптически запрещенное состояние с меньшей энергией ответственно за фотолюминесценцию.

Оптические переходы в КТ CdSe/ZnS с радиусом 3.4 ± 0.4 nm, которые могут участвовать в поглощении импульсов излучения второй гармоники пикосекундного лазера, указаны стрелками на рис. 2. Как видно из этого рисунка, для большинства КТ доминируют переходы $1P_{1/2}^{l}(h)-1P(e)$ и $1P_{3/2}(h)-1P(e)$. Для небольшого числа КТ (для КТ, размеры которых соответствуют краям

Рис. 1. Спектры пропускания и люминесценции квантовых точек CdSe/ZnS (300 K), спектр ослабленного возбуждающего излучения второй гармоники излучения неодимового лазера на фосфатном стекле, работающего в режиме пассивной синхронизации мод.

Рис. 2. Зависимость энергии размерного квантования от радиуса для квантовых точек CdSe, полученная при использовании результатов работы [10]. Стрелками обозначены оптические переходы, возбуждаемые фотонами второй гармоники (2.353 eV) пикосекундного лазера. Толщина стрелки пропорциональна силе осциллятора перехода.

распределения) возможно лишь слабое поглощение с возбуждением электронов в основное 1S(e)-состояние за счет переходов с меньшей силой осциллятора. При этом возбуждаются горячие дырки.

В схеме накачки и зондирования для возбуждения образца КТ использовался одиночный импульс второй гармоники неодимового лазера на фосфатном стекле, работающего в режиме пассивной синхронизации мод. Измеренная длительность импульса лазера составляет около 7 ps, полуширина спектра менее 1 nm. Центральная часть возбужденной области образца зондировалась пикосекундным импульсом белого света (пикосекундным континуумом), полученным при фокусировании части излучения лазера в кювете с тяжелой водой. Оптическая линия задержки позволяла менять время запаздывания зондирующего импульса относительно возбуждающего. Измерение спектров пропускания образца КТ во время и после его возбуждения пикосекундным импульсом осуществлялось с помощью многоканального оптического анализатора OVA-284 с накоплением сигнала от 50 импульсов и селекцией энергии возбуждающего импульса с точностью ±5%. Спектральное разрешение регистрирующей системы составило 2 nm.

Метод накачки и зондирования позволял в различные моменты времени (в процессе и после возбуждения

образца КТ CdSe/ZnS) измерять спектры дифференциального пропускания

$$DT(\lambda) \equiv [T(\lambda) - T_0(\lambda)]/T_0(\lambda),$$

где $T(\lambda)$ и $T_0(\lambda)$ — спектры пропускания возбужденного и невозбужденного образцов.

3. Экспериментальные результаты и их обсуждение

Спектры дифференциального пропускания КТ CdSe/ZnS радиусом 3.4 ± 0.4 nm, полученные с в различные моменты времени (в процессе и после возбуждения) при использовании оптической линии задержки и при различной интенсивности возбуждающего импульса, представлены на рис. 3 и 4. Как видно из рис. 3, при отсутствии задержки между импульсами накачки и зондирования ($\Delta t = 0$, полное перекрытие импульсов) возникают области просветления (увеличивается пропускание) не только на частотах, на которых осуществляется резонансное возбуждение переходов $1P_{1/2}^{l}(h)-1P(e)$ и $1P_{3/2}(h)-1P(e)$, но и на частоте основного нижнего оптического перехода $1S_{3/2}(h) - 1S(e)$ и на промежуточных частотах, соответствующих оптическим переходам между возбужденными состояниями дырок и основным электронным уровнем энергии 1S(e). При задержке зондирующего

Рис. 3. Спектры дифференциального пропускания квантовых точек CdSe/ZnS, полученные во время и после возбуждения ультракоротким импульсом второй гармоники неодимового лазера (энергия фотона возбуждающего излучения отмечена стрелкой). Плотность потока возбуждающего излучения $3 \cdot 10^{16}$ cm⁻² · s⁻¹. Задержка между возбуждающим и зондирующим импульсами $\Delta t = 0$ (1), 3 (2) и 10 ps (3). Спектры нормированы на максимальное значение дифференциального пропускания. Полосами показаны энергии квантовых переходов с учетом дисперсии размеров квантовых точек. Вертикальный размер полос пропорционален силам осцилляторов оптических переходов.

Рис. 4. Спектры дифференциального пропускания квантовых точек CdSe/ZnS, полученные во время и после возбуждения ультракоротким импульсом второй гармоники неодимового лазера. Плотность потока возбуждающего излучения увеличена до $9 \cdot 10^{16}$ cm⁻² · s⁻¹. Задержка между возбуждающим и зондирующим импульсами $\Delta t = 0$ (*I*) и 3 ps (*2*). Спектры нормированы на максимальное значение дифференциального пропускания.

импульса $\Delta T = 3$ рs (импульсы накачки и зондирования частично перекрываются) спектр дифференциального пропускания существенно изменяется. В этом случае доминирует просветление на частоте основного оптического перехода $1S_{3/2}(h)-1S(e)$, резко уменьшается пропускание на частоте возбуждающего излучения, растет пропускание на промежуточных частотах. При больших оптических задержках ($\Delta t \ge 10$ ps) остается только одна область просветления, соответствующая основному нижнему оптическому переходу.

Увеличение интенсивности возбуждающего импульса приводит к значительным изменениям в спектрах дифференциального пропускания (рис. 4). При оптической задержке $\Delta t = 3$ рѕ пропускание на частоте резонансного возбуждения уменьшается гораздо слабее, чем для случая с меньшей интенсивностью возбуждающего импульса (рис. 3). При этом пропускание на частоте основного оптического перехода и на промежуточных частотах увеличивается, но не так эффективно, как на рис. 3.

Просветление на частотах возбуждающего излучения, основного оптического энергетического перехода $1S_{3/2}(h)-1S(e)$ и на промежуточных частотах можно объяснить явлением заполнения состояний — заполнением уровней энергии КТ фотовозбужденными носителями. По нашим оценкам для случая, представленного на рис. 3, число возбужденных электронно-дырочных пар в одной КТ (≥ 5) достаточно для насыщения шестикратно вырожденного электронного состояния 1P(e). Резкое уменьшение пропускания на частоте возбуждающего излучения, доминириование низшей полосы просветления $1S_{3/2}(h)-1S(e)$ и рост просветления на про-

Рис. 5. Спектры люминесценции квантовых точек CdSe/ZnS при различных уровнях возбуждения ультракороткими импульсами второй гармоники неодимового лазера: $2 \cdot 10^{16}$ (1), $4 \cdot 10^{16}$ (2) и 10^{17} cm⁻² · s⁻¹ (3). На вставке приведена зависимость интенсивности люминесценции на длине волны 639 nm от уровня возбуждения.

межуточных частотах при $\Delta t = 3 \text{ ps}$ (рис. 3) позволяют сделать вывод о быстрой релаксации энергии носителей (об отстутсвии "фононного бутылочного горла" для релаксации электронов), несмотря на то что разность энергий электронных уровней 1P(e) и 1S(e) (более 200 meV) значительно превосходит энергию LO-фонона (26 meV). Как показано в [8], в КТ избыточная энергия электронов может эффективно передаваться быстро релаксирующим дыркам, имеющим более плотный спектр энергетических уровней. С быстрой релаксацией дырок может быть связано появление полосы просветления на частоте основного оптического перехода $1S_{3/2}(h) - 1S(e)$ и на промежуточной частоте (рис. 3) при отсутствии задержки между возбуждающим и зондирующим импульсами $(\Delta t = 0, \text{ оба импульса полностью перекрываются}). При$ этом следует отметить, что просветление на частоте основного низшего оптического перехода в использованных образцах КТ CdSe/ZnS может возникать также при резонансном возбуждении электрвонов в 1S(e)-состоянии и релаксации горячих дырок в небольшом числе КТ, принадлежащих (рис. 2) краям их распределения по размерам.

Обнаруженные существенные изменения спектров дифференциального пропускания КТ CdSe/ZnS при увеличении интенсивности возбуждающего импульса в 3 раза (рис. 4) по сравнению со случаем, приведенным на рис. 3, по-видимому, связаны с замедлением релаксации носителей по уровням энергии размерного квантования с ростом числа электронно-дырочных пар, возбужденных в КТ. Замедление релаксации может быть связано с заполнением промежуточных уровней энергии дырок, замедляющим остывание горячих дырок.

Замедление релаксации носителей в КТ при больших уровнях возбуждения, по-видимому, позволяет объяснить относительно медленную релаксацию по уровням энергии размерного квантования КТ CdSe в стеклянной матрице, обнаруженную в первых экспериментальных работах [13–15] по наблюдению усиления, стимулированного излучения и лазерной генерации в КТ. Переход от спонтанного к стимулированному излучению — сужение спектра люминесценции (рис. 5) и резкое увеличение интенсивности люминесценции с ростом уровня возбуждения (вставка на рис. 5) — обнаружен нами и в КТ CdSe/ZnS.

4. Заключение

Результаты представленных экспериментов позволяют сделать вывод о быстрой "бесфононной" релаксации энергии горячих электронов в КТ CdSe/ZnS за счет эффективной передачи энергии (внутренний процесс электронно-дырочного взаимодействия Оже-типа) быстро релаксирующим дыркам. Наблюдаемое замедление релаксации носителей в КТ по уровням энергии размерного квантования при больших концентрациях возбужденных электронно-дырочных пар, по-видимому, связано с заполнением промежуточных дырочных уровней энергии и насыщением основного оптического перехода $1S_{3/2}(h)-1S(e)$.

Авторы благодарят В.И. Климова (LANL, USA) за предоставление образцов.

Список литературы

- [1] В.Ф. Гантмахер, И.Б. Левинсон. Рассеяние носителей тока в металлах и полупроводниках. Наука, М. (1984).
- [2] H. Benisty, C. Sotomayor-Torres, C. Weisbuch. Phys. Rev. B 44, 10 945 (1991).
- [3] U. Bockelmann, G. Bastard. Phys. Rev. B 42, 8947 (1990).
- [4] T. Kitamura, R. Ohtsubo, M. Murayama, T. Kuroda, K. Yamaguchi, A. Tackeuchi. Phys. Stat. Sol. (c) 4, 1165 (2003).
- [5] U. Woggon, H. Giessen, F. Gindele, O. Wind, B. Fluegel, N. Peyghambarian. Phys. Rev. B 54, 17681 (1996).
- [6] K. Shum, W.B. Wang, R. Alfano, K. Jones. Phys. Rev. Lett. 68, 3904 (1992).
- [7] V.I. Klimov. J. Phys. Chem. B 104, 6112 (2000).
- [8] Al.L. Efros, V.A. Kharchenko, M. Rosen. Solid State Commun. 93, 281 (1995).
- [9] S. Xu, A.A. Mikhailovsky, J.A. Hollingsworth, V.I. Klimov. Phys. Rev. B 65, 045 319 (2002).
- [10] A.I. Ekimov, F. Hache, M.C. Schanne-Klein, D. Ricard, C. Flytzanis, I.A. Kudryavtsev, T.V. Yazeva, A.V. Rodina, Al.L. Efros. J. Opt. Soc. Am. B 10, 100 (1993).
- [11] Al.L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, M. Bawendi. Phys. Rev. B 54, 4843 (1996).
- [12] M. Nirval, D.J. Norris, M. Kuno, M.G. Bawendi, Al.L. Efros, M. Rosen. Phys. Rev. Lett. 75, 3728 (1995).
- [13] Ю.В. Вандышев, В.С. Днепровский, В.И. Климов. ЖЭТФ 101, 270 (1992).
- [14] Ю.В. Вандышев, В.С. Днепровский, В.И. Климов, Д.К. Окороков. Письма в ЖЭТФ 54, 441 (1991).
- [15] V.S. Dneprovskii, V.I. Klimov, D.K. Okorokov, Yu.V. Vandyshev. Solid State Commun. 81, 227 (1992).