Влияние одноосных давлений на инфракрасные спектры кристаллов (NH₄)₂SO₄

© В.И. Стадник, Н.А. Романюк, Н.Р. Тузяк

Львовский национальный университет им. И. Франко, 79005 Львов, Украина

E-mail: vasylstadnyk@ukr.net

(Поступила в Редакцию 31 июля 2006 г.)

Впервые исследованы инфракрасные спектры отражения механически свободного и зажатого одноосными давлениями кристалла $(NH_4)_2SO_4$ в спектральной области 800-1700 cm⁻¹ вдоль трех кристаллофизических направлений. С помощью дисперсионных соотношений Крамерса–Кронига получены дисперсионные и барические зависимости оптических постоянных: показателя преломления *n*, действительной ε_1 и мнимой ε_2 частей диэлектрической проницаемости, а также частот продольных ω_{LO} и поперечных ω_{TO} колебаний, константа затухания γ и сила осциллятора *f* механически свободного и зажатого кристалла $(NH_4)_2SO_4$.

PACS: 78.30.Am, 78.20.Hp

1. Введение

Кристаллы сульфата аммония (CA), (NH₄)₂SO₄, при комнатной температуре являются неполярными и принадлежат к пространственной группе симметрии *Pnma* орторомбической сингонии. Ниже $T_C = 223$ K они претерпевают фазовый переход (ФП) без изменения числа формульных единиц в элементарной ячейке (Z = 4) и становятся сегнетоэлектриками с пространственной группой симметрии *Pna*2₁ [1,2]. ФП сопровождается значительным скачком деформации, а спонтанная поляризация P_S и ниже T_C уменьшается по величине и изменяет знак в районе 85 K [3,4]. Это свидетельствует о наличии нескольких температурно-зависимых вкладов в P_S от разных подрешеток и компенсации этих вкладов в районе 85 K [4,5].

Детальные структурные исследования пара- и сегнетоэлектрической фаз кристалла СА дали возможность обнаружить в структуре упорядочивающиеся элементы [6]. В качестве возможных неупорядоченных элементов рассматривались группы NH₄ (1) NH₄ (2) и SO₄. Соответственно были рассчитаны и сопоставлены разные модели структуры в параэлектрической фазе. Авторы пришли к выводу, что SO₄-тетраэдры в парафазе не имюет двух положений равновесия и движутся в одноминимумном потенциале с достаточно большой амплитудой.

Данные радиоспектроскопических исследований свидетельствуют о том, что ионы аммония находятся, кроме того, в состоянии интенсивной реориентации, и структурно-неэквивалентные ионы деформированы как в пара-, так и в сегнетоэлектрической фазе [7], а ФП относится к переходам типа порядок-беспорядок.

Предварительные исследования ИК-спектров отражения кристаллов СА позволили установить [8,9], что в диапазоне внутренних колебаний ионов (400–4000 cm⁻¹) существуют три четкие полосы, частоты которых возрастают при понижении температу-

ры до *T_C*. Однако исследования влияния внешних полей на ИК-спектры кристаллов СА не проводились.

Ранее исследовалось влияние одноосного давления на спектральные и температурные зависимости показателей преломления ряда изоморфных кристаллов СА, которые позволили установить значительную барическую чувствительность электронной подсистемы этих кристаллов, что проявлялось в сильном смещении по энергетическому спектру положений эффективных полос ультрафиолетового и инфракрасного осцилляторов [10].

Поэтому интересным является исследование воздействия одноосных давлений на ИК-спектры с целью выяснения их избирательного влияния на динамику и пространственную ориентацию отдельных структурных элементов кристаллов СА.

2. Методика эксперимента

Исследования влияния одноосных давлений на ИК-спектры кристаллов СА проводились с помощью спектрофотометра UR-20, причем были использованы специальные приспособления для приложения одноосного давления. Прибор UR-20 является призмовым автоматизированным спектрофотометром, который дает возможность проводить измерения в диапазоне 400–5000 cm⁻¹ (25–2 µm).

Кристаллы СА выращивались из водного раствора методом понижения температуры. Ориентация образцов проводилась по виду коноскопических фигур с помощью поляризационного микроскопа.

3. Результаты и обсуждение

На рис. 1 представлены ИК-спектры отражения кристалла $(NH_4)_2SO_4$ при комнатной температуре в спектральном диапазоне 800-1700 сm⁻¹ для трех поляриза-

Таблица 1. Барическое изменение положения полос отражения (cm⁻¹) кристалла (NH₄)₂SO₄ при комнатной температуре ($\sigma_m \sim 100$ bar)

Направление поля Е		<i>v</i> ₃	ν_4		
и давления σ	$\sigma = 0$	$\sigma = \sigma_m$	$\sigma = 0$	$\sigma=\sigma_m$	
X	1164	1159	1461	1456	
Y	1160	1164	1446	1449	
Ζ	1155	1158	1445	1449	

ций света. В данном диапазоне спектра отражения обнаружены две четкие полосы, обладающие значительной дисперсией (табл. 1).

Диапазон спектра 10–400 сm⁻¹ отвечает решеточным колебаниям NH₄⁺ [11], которые ответственны за сегнетоэлектрическое состояние исследуемого кристалла, а диапазон спектра 400–4000 сm⁻¹ отвечает внутренним колебаниям ионов NH₄⁺ и SO₄²⁻. Установлено, что в данном диапзоне частот в спектрах отражения в кристалле СА для трех поляризаций света существуют две четкие полосы с максимумами при 1155–1164 сm⁻¹ (полоса II, наиболее интенсивная) и при 1445–1461 сm⁻¹ (полоса III).

Согласно теории групп, свободный радикал тетраэдрической структуры имеет симметрию T_d и девять внутренних мод: одиночную продольную (v_1) , двойную поперечную (v_2) , тройную продольную (v_3) и тройную поперечную (v_4) , среди которых только v_3 и v_4 являются активными в ИК-области [12]. Моды v_1 и v_2 в кристалле расщепляются на невырожденные моды и становятся также активными в ИК-спектрах поглощения. При этом моды $v_2 = 968-986$ cm⁻¹ и $v_3 = 1155-1164$ cm⁻¹ соответствуют колебаниям тетраэдра SO₄, а мода $v_4 = 1445-1461$ cm⁻¹ — колебаниям тетраэдра NH₄.

Установлено, что под влиянием одноосного давления вдоль кристаллографических направлений наблюдается значительное изменение ИК-спектров отражения кристалла $(NH_4)_2SO_4$ (рис. 1), причем имеет место изменение как интенсивности, так и положения максимумов основных пиков отражения. Так, для поляризации света $E \parallel X$ и одноосного давления σ_x интенсивность полосы II возрастает приблизительно на 10%, а положение ее максимума смещается в сторону меньших энергий на $\partial v_3 \sim 5 \,\mathrm{cm}^{-1}$ для $\sigma_x = 100 \,\mathrm{bar}$, при этом $\partial \lambda_3 / \partial \sigma \sim 4 \cdot 10^{-4} \, \mu$ m/bar. Для полосы III обнаружены похожие барические зависимости: увеличение интенсивности полосы отражения на 5% и смещение пика отражения в сторону меньших энергий на $\partial \nu_4 \sim 4 \, {
m cm}^{-1} \, (\partial \lambda_4 / \partial \sigma \sim 3 \cdot 10^{-4} \, \mu {
m m/bar})$. Для поляризации света $E \parallel Y$ при одноосном давлении σ_v интенсивность полосы II также увеличивается приблизительно на 12%, тогда как положение ее максимума смещается в сторону бо́льших энергий на $\partial v_3 \sim 4 \, \mathrm{cm}^{-1}$ для $\sigma_x = 100$ bar, при этом $\partial \lambda_3 / \partial \sigma \sim 3 \cdot 10^{-4} \,\mu$ m/bar. Интенсивность полосы III увеличивается, а положение ее пика смещается в сторону бо́льших энергий на $\partial \nu_4 \sim 3 \,\mathrm{cm^{-1}}$. Для поляризации света $E \parallel Z$ при воздействии давления в данном направлении интенсивности полос II и III увеличиваются наиболее сильно (~ 15 и 11%), при этом полосы смещаются в коротковолновую область спектра на $\partial \nu_3 \sim 3 \,\mathrm{cm^{-1}}$ и $\partial \nu_4 \sim 4 \,\mathrm{cm^{-1}}$ соответственно.

С помощью дисперсионных соотношений Крамерса– Кронига из спектров отражения получены барические изменения спектральных зависимостей оптических постоянных: показателя преломления *n*, действительной ε_1 и мнимой ε_2 частей диэлектрической проницаемости кристалла СА вдоль трех кристаллофизических осей (рис. 2–4). Обнаружено резкое увеличение показателя преломления в области полос поглощения, а именно: $\partial n/\partial \lambda \sim 5.441$ (полоса II) и $1.362 \,\mu m^{-1}$ (полоса III). Изменение показателя преломления вдали от полосы поглощения соответствует нормальной дисперсии $\partial n/\partial \lambda < 0$. Сравнение величины нормальной дисперсии в данных областях с дисперсией в видимой части спектра свидетельствует об их приблизительном равенстве.

Рис. 1. Спектральная зависимость коэффициента отражения R_i кристалла $(NH_4)_2SO_4$ при комнатной температуре для разных поляризаций и направлений приложения давления $\sigma_m = 100$ bar. $a - E \parallel X, b - E \parallel Y, c - E \parallel Z$. Сплошные линии — механически свободный, штриховые линии — зажатый образец.

Рис. 2. Спектральная зависимость показателя преломления n_i кристалла $(NH_4)_2SO_4$ при комнатной температуре для разных поляризаций и направлений приложения давления $\sigma_m = 100$ bar. $a - E \parallel X, b - E \parallel Y, c - E \parallel Z$. Сплошные линии — механически свободный, штриховые — зажатый образец.

Так, например, $\partial n/\partial \lambda \sim 0.017 \,\mu m^{-1}$ в спектральной области 1100—1200 сm⁻¹, тогда как $\partial n/\partial \lambda \sim 0.013 \,\mu m^{-1}$ в видимой части спектра (последнее значение получено в результате измерения показателя преломления интерференционным методом Обреимова).

Как видно из рис. 2, в направлениях X и Y показатель преломления существенно увеличивается $(\delta n \sim 0.5-0.8)$, тогда как в направлении Z он уменьшается. Характер изменения показателей преломления в ИК-области воссоздает характер поведения *n* в видимой части спектра. Ранее [12] для большинства кристаллов типа A_2BX_4 (LiKSO₄, LiBrSO₄, RbNH₄SO₄, (NH₄)₂BeF₄) установлено барическое увеличение показателей преломления $\delta n \sim 10^{-2}-10^{-3}$, что обусловлено в первую очередь увеличением плотности частиц кристалла. Если исходить из известной формулы Лорентц–Лоренца

$$\frac{n^2 - 1}{n^2 + 2} = \frac{4}{3}\pi N\alpha \tag{1}$$

(n -показатель преломления, $\alpha -$ электронная поляризуемость, N -число частиц в единице объема), видно,

что увеличение показателя преломления, обусловленное одноосным давлением, ведет к увеличению α_i кристалла. Из графика видно также незначительное барическое смещение пиков, что соответствует барическому смещению максимумов полос в ИК-спектрах отражения.

Исходя из рассчитанных дисперсионных кривых действительной ε_1 (рис. 3) и мнимой ε_2 (рис. 4) частей диэлектрической проницаемости были определены частоты продольных колебаний ω_{LO} (как минимумы функции ε_1) и частоты поперечных колебаний ω_{TO} (как максимумы функции ε_2) для механически свободных и одноосно зажатых кристаллов (табл. 2).

Константа затухания γ определялась как полуширина соответствующего максимума кривой ε_2 , а сила осциллятора — как величина

$$f \sim n^2 (\omega_{LO} - \omega_{TO}), \qquad (2)$$

где *n* — показатель преломления с высокочастотной стороны от соответствующей полосы.

Как видно из табл. 2, одноосные давления σ_x и σ_y ведут к уменьшению частот продольных и поперечных колебаний в обеих полосах отражения, тогда как

Рис. 3. Спектральная зависимость действительной части комплексной диэлектрической проницаемости ε_1 кристалла $(NH_4)_2SO_4$ при комнатной температуре для разных поляризаций и направлений приложения давления $\sigma_m = 100$ bar. $a - E \parallel X, b - E \parallel Y, c - E \parallel Z$. Сплошные линии — механически свободный, штриховые — зажатый образец.

Направление	ω_{LO}		ω_{TO}		γ		f	
	$\sigma=0$	$\sigma = \sigma_m$	$\sigma=0$	$\sigma=\sigma_m$	$\sigma=0$	$\sigma=\sigma_m$	$\sigma=0$	$\sigma=\sigma_m$
$E \parallel X$	1176	1167	1154	1147	40	33	198	165
	1483	1474	1453	1448	68	61	50	41
$E \parallel Y$	1178	1177	1162	1160	23	21	144	134
	1497	1494	1460	1463	76	72	78	49
$E \parallel Z$	1153	1157	1128	1132	34	29	131	130
	1473	1475	1438	1440	72	69	70	67

Таблица 2. Частоты продольных ω_{LO} и поперечных ω_{TO} (cm⁻¹) колебаний, константа затухания γ и сила осциллятора f механически свободного и зажатого ($\sigma_m = 100$ bar) кристалла (NH₄)₂SO₄

давления σ_z смещают эти частоты в сторону более высоких энергий. Кроме того, одноосные давления вдоль трех кристаллографических направлений уменьшают константу затухания и силу осциллятора полосы III и увеличивают силу осциллятора полосы II.

Проанализируем полученные результаты исходя из структуры данного кристалла. Структура параэлектрической фазы, стабильной при комнатной температуре, является разупорядоченной по отношению к ориента-

Рис. 4. Спектральная зависимость мнимой части комплексной диэлектрической проницаемости ε_2 кристалла (NH₄)₂SO₄ при комнатной температуре для разных поляризаций и направлений приложения давления $\sigma_m = 100$ bar. $a - E \parallel X, b - E \parallel Y, c - E \parallel Z$. Сплошные линии — механически свободный, штриховые — зажатый образец.

ции тетраэдрических (Т) групп, которые совершают либрационные колебания большой амплитуды вокруг псевдогексагональной оси с и оси b. Базовая ячейка кристалла (NH₄)₂SO₄ содержит два псевдогексагональных каркаса с тетраэдрами SO4 и NH4. В каркасе каждый SO₄-тетраэдр развернут против часовой стрелки вокруг оси c, а NH₄-тетраэдр — по часовой стрелке. Такой каркас для данного кристалла принимают за положительный. Тогда для параэлектрической фазы характерным является беспорядок, т.е. повороты "±" в каждом шаре. При приближении к точке ФП при $T = 223 \, {\rm K}$ со стороны высоких температур наблюдались четко выраженные пики диффузного рентгеновского рассеяния. Их положение и форма свидетельствовали о наличии корреляции в ориентациях Т-групп вдоль псевдогексагональной оси. Сделан вывод [2], что в фазе II наиболее вероятна модуляция за счет поворотов Т-групп или может иметь место статистическое распределение размеров микрообластей с разным соотношением углов поворота в соседних промежутках.

Понятно, что приложение одноосных давлений вдоль осей a и b будет тормозить повороты T-групп вокруг оси c, потому что эти давления будут зажимать элементарную ячейку. Это также проявляется в уменьшении частот продольных и поперечных колебаний при воздействии указанных давлений. Наблюдаемое барическое уменьшение сил осциллятора соответствующих полос свидетельствует об уменьшении либрационных колебаний большой амплитуды как тетраэдров SO₄, так и NH₄.

Ввиду того что несколько бо́льшие барические изменения (как по интенсивности, так и по частоте) обнаружены для полосы II, которая ответственна за колебания тетраэдра SO₄, можно предположить, что эти колебания являются определяющими для физических свойств данного кристалла. Хотя нельзя преуменьшать роль колебаний тетраэдров NH₄-групп. Данные результаты согласуются с выводами авторов [11] о том, что тетраэдры SO₄, находящиеся в парафазе, не имеют двух положений равновесия и движутся в одноминимумном потенциале с достаточно большой амплитудой ($\sim 70^{\circ}$), поскольку *R*-фактор для модели с двумя положениями SO₄-групп не уменьшался относительно модели с одним положением, а искажения SO₄-групп были значительными. Не наблюдалось понижения *R*-фактора и в модели с двумя положениями для атома водорода.

Тетраэдрические SO₄-группы коллективным образом изменяют свою ориентацию, положение и величины искажений в точке ФП, что обусловливает частичное упорядочение аммонийных групп. Последние сохраняют возможность реориентации ниже температуры ФП. Упорядочение NH₄-ионов является вторичным процессом.

4. Заключение

Таким образом, впервые исследованы ИК-спектры отражения механически свободного и зажатого одноосными давлениями кристалла СА в спектральной области 800-1700 cm⁻¹ вдоль трех кристаллофизических направлений. С помощью дисперсионных соотношений Крамерса-Кронига получены дисперсионные и барические зависимости оптических постоянных: показателя преломления n, действительной ε_1 и мнимой ε_2 частей диэлектрической проницаемости, а также рассчитаны параметры, характеризующие ИК-дисперсию: частоты продольных ω_{LO} и поперечных ω_{TO} колебаний, константа затухания у и сила осциллятора f механически свободного и зажатого одноосными давлениями кристалла $(NH_4)_2SO_4$. Обнаружено значительное барическое изменение главных полос отражения как по интенсивности, так и по частоте, что объясняется влиянием одноосных давлений на структуру кристалла, а именно на тетраэдрические остовы NH₄ и SO₄.

Список литературы

- [1] S. Ahmed, A.M. Shamah. Phys. Stat. Sol. (a) 99, 131 (1987).
- [2] К.С. Александров, Б.В. Безносиков. Структурные фазовые переходы в кристаллах (семейство сульфата калия). Наука, Новосибирск (1993). 286 с.
- [3] H.G. Unruh, U. Rüdiger. J. de Phys. 33, (Suppl. C-2), C77 (1972).
- [4] H.G. Unruh. Solid State Commun. 8, 1951 (1970).
- [5] H.G. Unruh, E. Sailer, H. Hussinger. et al. Solid State Commun. 25, 871 (1978).
- [6] K. Hasebe. J. Phys. Soc. Jap. 50, 1266 (1981).
- [7] D.E. O'Reilly, T. Tsang. J. Chem. Phys. 46, 1291 (1967).
- [8] Sook-Li Kwun, Soon Gul Lee, Sang Youl Kim. Jap. J. Appl. Phys. 24 (Suppl. 24-2), 528 (1985).
- [9] Г.Н. Жижин, Т.П. Мясников, В.Н. Роговой. ФТТ 17, 1270 (1975).
- [10] В.И. Стадник, М.О. Романюк, Л.Т. Карплюк. УФЖ 49, 808 (2004).
- [11] K. Hasebe, S. Tanisaki. J. Phys. Soc. Jap. 42, 568 (1977).
- [12] M.O. Romanjuk, V.Y. Stadnyk. Cond. Matter Phys. 2, 711 (1999).