Дифракционный механизм зеркального отражения света от фотонных кристаллов

© А.Н. Поддубный

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: poddubny@coherent.ioffe.ru

(Поступила в Редакцию 17 мая 2006 г.)

Теоретически исследуются спектры зеркального отражения и дифракции света, а также экситон-поляритонная зонная структура резонансного двумерного фотонного кристалла, образованного полупроводниковыми цилиндрами, помещенными в диэлектрическую матрицу. Показано, что зеркальное отражение света от фотонного кристалла может значительно возрасти за счет дифракции в фотонном кристалле и отражения от его внутренней границы с вакуумом.

Работа поддержана Министерством науки и образования РФ, РФФИ (грант № 05-02-16372) и Фондом некоммерческих программ "Династия"-МЦФФМ.

PACS: 71.35.-y, 71.36.+c, 42.70.Qs

1. Введение

Фотонные кристаллы, т.е. структуры в которых диэлектрическая проницаемость периодически изменяется в пространстве с периодом, допускающим брэгговскую дифракцию света, были выделены в отдельный класс материалов в работах [1,2] и активно изучаются в настоящее время. Простейшей реализацией фотонного кристалла является периодическая структура, состоящая из двух материалов A и B с различными диэлектрическими проницаемостями ε_A и ε_B . Особый интерес представляют резонансные фотонные кристаллы, в которых диэлектрическая проницаемость одного из композиционных материалов зависит от частоты и имеет полюс на некоторой резонансной частоте.

В зависимости от числа направлений, в которых периодична диэлектрическая проницаемость, выделяют одномерные, двумерные и трехмерные фотонные кристаллы. В работе [3] исследовались зонная структура и оптические спектры резонансного двумерного фотонного кристалла с учетом частотной зависимости диэлектрической проницаемости в рамках локальной материальной связи $\mathbf{D} = \varepsilon_A(\omega)\mathbf{E}$ между электрической индукцией и электрическим полем. В работе [4] изучены спектры отражения от одномерной решетки прямоугольных параллелепипедов с учетом экситонного резонанса. Спектры оптического отражения от резонансного трехмерного фотонного кристалла с учетом только одного уровня размерного квантования механического экситона в шарике А в пренебрежении диэлектрическим контрастом анализировались в работе [5].

Целью настоящей работы является исследование зеркального отражения и дифракции света для двумерного фотонного кристалла. Расчет производится с учетом пространственной дисперсии диэлектрической проницаемости материала A и диэлектрического контраста, определяемого различием между ε_B и фоновой диэлектрической проницаемостью материала цилиндров. Также рассчитывается дисперсия экситонных поляритонов и результаты работы [6] обобщаются на случай двумерных фотонных кристаллов. В разделе 3 исследуются спектры оптического отражения в случае малых дифракционных эффектов. В разделе 4 рассматривается дифракционных эффектов. В разделе 4 рассматривается дифракционные эффекты могут приводить к значительному увеличению зеркального отражения света.

2. Постановка задачи и метод расчета

В данной работе рассчитываются оптические спектры для двумерного фотонного кристалла, схематически показанного на рис. 1, а. Фотонный кристалл образован цилиндрами радиуса R, параллельными оси г и расположенными в узлах двумерной квадратной решетки с постоянной решетки а. Цилиндры помещены в диэлектрическую матрицу из материала В. Так же как и в работе [6], в диэлектрической проницаемости материала цилиндров ε_A учитывается как временная, так и пространственная дисперсия; материал А характеризуется фоновой диэлектрической проницаемостью ε_a , резонансной частотой ω_0 и продольно-поперечным расщеплением ω_{LT} триплетного 1*s*-экситона. Для простоты рассматривается геометрия распространения экситонных поляритонов в плоскости xy, перпендикулярно осям цилиндров. Введем энергию возбуждения экситона на нижний уровень размерного квантования в цилиндрах А

$$\hbar\omega_{1,0} = \hbar\omega_0 + \frac{\hbar^2}{2MR^2}\,\varphi_{1,0}^2,\tag{1}$$

где $\varphi_{1,0} \approx 2.4$ — первый нуль функции Бесселя $J_0(\varphi)$.

Спектры оптического отражения и дифракция света рассчитываются для структуры, состоящей из *N* слоев цилиндров, лежащих в плоскости *yz*. Слои считаются

347

бесконечными в направлении у. Слева структура ограничена материалом с диэлектрической проницаемостью ε_L , справа — полубесконечной средой из материала В. Левая граница фотонного кристалла расположена в плоскости x = 0, а центры цилиндров крайнего левого слоя — в плоскости x = a/2.

В рассматриваемой геометрии выделяются две независимые поляризации электромагнитной волны: *TE* и *TM*, при которых вдоль оси *z* направлены соответственно электрическое поле **E** и магнитное поле **H**. В дальнейшем рассматривается только *TE*-поляризация. Для указания компонент векторов **v**, лежащих в плоскости *xy*, будем использовать двухкомпонентное обозначение (v_x, v_y) . В частности, волновой вектор **q** первичной волны, распространяющейся в среде *L*, обозначается (q_x, q_y) . Далее рассматривается случай нормального падения, т. е. $q_y = 0$. Электрическое поле в области x < 0может быть разложено в ряд по плоским волнам

$$E_z(\mathbf{\rho}) \propto e^{iq_x x} + \sum_{h=-\infty}^{\infty} r_h e^{-i\gamma_h x + ib_h y},$$
 (2)

где $\rho = (x, y), b_h = gh, g = 2\pi/a$ и $\gamma_h = \sqrt{(\omega/c)^2 \varepsilon_L - b_h^2},$ $\gamma_0 \equiv q_x$, причем Re $\gamma_h \ge 0$. Величина $R_0 = |r_0|^2$ определяет интенсивность зеркально отраженного света, величины $R_h = |r_h|^2$ с $h \ne 0$ определяют интенсивность света, дифрагированного в направлении вектора $(-\gamma_h, b_h)$. Распространяющимся в области x < 0 волнам отвечают значения h, при которых Im $\gamma_h = 0$. В настоящей работе рассматривались случаи, когда среда L — вакуум $(\varepsilon_L = 1)$ или продолжение материала B ($\varepsilon_L = \varepsilon_B$). Величины R_h и γ_h при этих значениях ε_L будем помечать дополнительными индексами V и B соответственно.

Для расчета зависимостей $R_h(\omega)$ использовался двумерный послойный метод Корринги–Кона–Ростокера (ККР, layer KKR method) [7]. Особенностью этого метода является то, что взаимодействие света с каждым слоем цилиндров описывается в базисе цилиндрических волн, а для описания распространения электромагнитного поля между соседними слоями цилиндров используется базис плоских волн. Для нахождения дисперсии экситонных поляритонов $\omega(\mathbf{k})$ использовался двумерный объемный метод KKP (bulk KKR method) [8].

Волновое уравнение для электрического поля в области 0 < x < Nd может быть записано в виде

$$\left[\Delta + \left(\frac{\omega}{c}\right)^{2} \varepsilon_{M}\right] E_{z}(\boldsymbol{\rho}) = \left(\frac{\omega}{c}\right)^{2} [\varepsilon_{M} - \varepsilon(\boldsymbol{\rho})] E_{z}(\boldsymbol{\rho}) - 4\pi \left(\frac{\omega}{c}\right)^{2} P_{\text{exc}}(\boldsymbol{\rho}), \quad (3)$$

где введена средняя фоновая диэлектрическая проницаемость

$$\varepsilon_M = \varepsilon_B(1-f) + \varepsilon_a f, \quad f = \pi R^2/a^2.$$

Для экситонной поляризации использовалось материальное уравнение в виде

$$\left[-\hbar/(2M)\Delta+\omega_0-\omega\right]P_{\rm exc}(\boldsymbol{\rho})=\varepsilon_a\omega_{LT}E_z(\boldsymbol{\rho})/(4\pi).$$
 (4)

Рис. 1. *а*) Схематическое изображение рассматриваемой структуры, указаны постоянная квадратной решетки *а* и радиус цилиндров *R. b*) Дисперсия света в однородной среде в схеме приведенных зон двумерной квадратной решетки. Зонная структура показана в направлении $\Gamma - X$ зоны Бриллюэна.

Решениями уравнения (3) при нулевой правой части являются плоские волны, распространяющиеся в однородной среде с диэлектрической проницаемостью ε_M , а слагаемые в правой части приводят к дифракции этих волн. При нормальном падении света $k_y = k_z = 0$, и внутри структуры возбуждаются блоховские волны с волновым вектором **k** в направлении $\Gamma - X$ двумерной зоны Бриллюэна. На рис. 1, в представлена фотонная зонная структура в направлении Г-Х в однородной среде с диэлектрической проницаемостью ε_M , т.е. при $\varepsilon_A = \varepsilon_B = \varepsilon_M$. Учет диэлектрического контраста $\varepsilon_a \neq \varepsilon_B$, а также экситонного вклада в диэлектрическую проницаемость приводит к образованию запрещенных зон (или стоп-зон). Резонансные свойства фотонного кристалла проявляются в том случае, если частота $\omega_{1,0}$ лежит вблизи частоты, при которой происходит пересечение ветвей дисперсионной кривой фотонов в однородной

Рис. 2. Экситон-поляритонная зонная структура (*a*) и спектры оптического отражения света (*b*). Штриховые кривые соответствуют нерезонансному фотонному кристаллу с $\omega_{LT} = 0$, штрихпунктирные — расчет в пределе $M \to 0$, сплошные кривые и горизонтальные штрихи на части *a* — расчет при конечной массе экситона $M = 0.5m_0$, где m_0 — масса электрона в вакууме. Значения остальных параметров указаны в тексте.

среде. В разделе 3 рассмотрен случай, когда $\omega_{1,0}$ равняется частоте $\omega_R = \pi c / (a \sqrt{\varepsilon_M})$, а в разделе 4 — случай, когда $\omega_{1,0}$ равняется $\omega_D = 5\pi c / (2a \sqrt{\varepsilon_M})$ (положения частот ω_R и ω_D указаны на рис. 1, *b*).

3. Оптическое отражение от фотонного кристалла

На рис. 2 представлена зонная структура фотонного кристалла вблизи точки Х и спектры оптического отражения $R_0^V(\omega)$. Для случая конечной эффективной массы экситона на рис. 2, а показаны две нижние ветви дисперсионной кривой и горизонтальными штрихами отмечены значения частот, при которых вышележащие ветви пересекают ось Х. Расчет проводился при следующих параметрах: $\hbar\omega_{1,0} = 2 \,\text{eV}, \, \hbar\omega_{LT} = 1 \,\mu\text{eV}, \, R = 0.35 a,$ $ω_R = ω_{1,0}, ε_a = 11, ε_B = 10, N = 32$. В спектрах отражения учитывалось нерадиационное затухание экситона $\hbar\Gamma = 100\,\mu\text{eV}$, для чего достаточно заменить в уравнении (4) ω_0 на $\omega_0 - i\Gamma$. При изменении эффективной массы М менялась и резонансная частота ω_0 так, чтобы значение $\omega_{1,0}$ в (1) оставалось постоянным. Полученные дисперсионные кривые для экситонных поляритонов в двумерной квадратной решетке аналогичны рассчитанным для ГЦК-решетки [6]. Расчет показывает, что спектральное положение нижних ветвей поляритонной дисперсии монотонно зависит от эффективной массы и определяется взаимодействием света с несколькими первыми уровнями размерного квантования механического экситона.

Интерференция световых волн, отраженных от внешней границы вакуум-фотонный кристалл, и волн, отраженных от цилиндров, приводит к тому, что спектральное положение максимума в спектрах $R_0(\omega)$ смещается от середины стоп-зоны к ее нижнему краю. Вдали от области экситонного резонанса $R_0(\omega)$ близок к коэффициенту отражения от полубесконечного материала *B*

$$R_{vb} = \left(\frac{\gamma_0^V - \gamma_0^B}{\gamma_0^V + \gamma_0^B}\right)^2 \approx 0.27.$$

В области $\omega > \omega_{1,0}$ в спектре, рассчитанном при $M = 0.5m_0$, присутствуют резкие максимумы на частотах, близких к собственным частотам экситонных поляритонов ω при $k_x = \pi/a$ (указаны штрихами на рис. 2, *a*).

Внутри фотонного кристалла, но вне цилиндров электромагнитное поле может быть разложено в ряд по плоским волнам $\propto e^{\pm i\gamma_h^B x + ib_h y}$. При использованных параметрах все величины γ_h^V и γ_h^B с $h \neq 0$ являются чисто мнимыми. Это означает, что влияние дифракционных эффектов мало, поскольку волны с $h \neq 0$ экспоненциально затухают между слоями цилиндров. Следовательно, неоднородность системы в направлении у проявляется слабо. В пределе $M \to 0$, что эквивалентно учету только

Рис. 3. Экситон-поляритонная зонная структура (*a*) и спектры оптического отражения света $R_0^V(\omega)$ (*b*). Штриховые кривые соответствуют нерезонансному фотонному кристаллу с $\omega_{LT} = 0$, сплошные кривые и горизонтальные штрихи на части *a* — расчет при конечной массе экситона $M = 0.5m_0$. Расчет выполнялся при $\omega_D = \omega_{1,0}$ и тех же значениях остальных параметров, что и для рис. 2.

одного уровня размерного квантования механического экситона в цилиндрах A [6], оптические свойства двумерного фотонного кристалла близки к оптическим свойствам резонансной квазибрэгговской структуры с квантовыми ямами [9]. Спектр отражения практически не зависит от поляризации падающей волны, поскольку для структуры, однородной в плоскости y_z , при нормальном падении света TE- и TM-поляризации эквивалентны.

Дифракционный механизм зеркального отражения света

В этом разделе рассматриваются дифракция света на фотонном кристалле и влияние дифракционных эффектов на зеркальное отражение. В схеме расширенных зон ветвям дисперсионной кривой 3 и 4 на рис. 1, b соответствуют волновые векторы $\mathbf{Q}_{3}^{\pm 1} = (k_x - g, \pm g)$ и $\mathbf{Q}_4 = (k_x + g, 0)$. Ветви описываются уравнениями $\omega_{3,4}(k_x) = c Q_{3,4}(k_x)/\sqrt{\varepsilon_M}$ и пересекаются в точке с $\omega = \omega_D$ и $k_x = g/4$. Исследуется случай, когда частота экситонного резонанса $\omega_{1,0}$ равняется частоте ω_D . В этом случае брэгговская дифракция внутри кристалла происходит на векторы обратной решетки

$$\mathbf{b}_{\pm 1} = \mathbf{Q}_3^{\pm 1} - \mathbf{Q}_4 = (-2g, \pm g).$$

На рис. 3 представлены зонная структура и спектры оптического отражения света $R_0^V(\omega)$. На рис. 3, *а* аналогично рис. 2, *а* горизонтальными штрихами указаны

положения высокоэнергетических ветвей поляритонной дисперсии $\omega(g/4)$ при $M = 0.5m_0$. Видно, что диэлектрический контраст и экситонный резонанс приводят к расщеплению спектра, показанного на рис. 1, b. Коэффициент отражения R_1^V максимален в середине запрещенных зон, а вдали от них стремится к значению R_{vb} . Падающая на систему волна не взаимодействует с решениями, соответствующими ветвям 3 и 3' дисперсионной кривой. Анализ показывает, что этим ветвям отвечают нечетные относительно оси у блоховские решения, которые не возбуждаются при нормальном падении света на кристалл. Отметим, что, как и при расчете рис. 2, все величины γ_h^V с $h \neq 0$ являются чисто мнимыми, и наклонное распространение света в вакууме невозможно. Однако значения γ_0^B и $\gamma_{\pm 1}^B$ вещественны, что означает возможность проявления дифракционных эффектов внутри кристалла.

Проанализируем дифракцию света на фотонном кристалле качественно. При нормальном падении на кристалл электромагнитной волны в область x > 0 проходит волна с волновым вектором $\mathbf{q}_0 = (\sqrt{\varepsilon_M}\omega/c, 0)$. Введем $\mathbf{q}' = -\mathbf{q}_0$ — волновой вектор зеркально отраженной волны при 0 < x < Nd. Для удобства изложения далее будем рассматривать рассеяние на частоте $\omega = \omega_D$, при которой $q_0 = 5g/4$. Разность волновых векторов падающего и отраженного света $\mathbf{q}'_0 - \mathbf{q}_0 = (-5g/2, 0)$ не равна вектору двумерной обратной решетки; следовательно, не выполняется брэгговское условие. При этом, как следует

Рис. 4. Спектры отражения и дифракции света от резонансного фотонного кристалла. Сплошная, штриховая и пунктирная кривые — зависимости $R_0^V(\omega)$, $R_1^B(\omega)$ и $R_0^B(\omega)$ соответственно. Штрихпунктирная кривая — расчет $R_0^V(\omega)$ в пренебрежении зависимостью поля внутри структуры от координаты *у*. Значения параметров те же, что и при расчете рис. 3.

из рис. 2, *b*, в спектре отраженного света $R_0^V(\omega)$ наблюдается дифракционный максимум. Значение коэффициента отражения в вакуум существенно превосходит значение коэффициента отражения в материал *B*, показанного пунктирной кривой на рис. 4. Далее предлагается объяснение этого эффекта.

На частоте ω_D возможна брэгговская дифракция падающей на структуру волны, и волновые векторы дифрагированных волн равняются $\mathbf{q}_{\pm 1} = \mathbf{q}_0 \pm \mathbf{b}_{\pm 1}$. При использованных в расчете параметрах эти волны распространяются под углом примерно 53° к оси x. В случае $\varepsilon_L = \varepsilon_B$, поскольку ε_M близка к ε_B , дифрагированные волны почти не преломляются при пересечении плоскости x = 0 и их волновые векторы вне кристалла равняются $(-\gamma_1^B, \pm g)$. Таким образом, в зависимости $R_1^B(\omega) = R_{-1}^B(\omega)$ наблюдается дифракционный максимум, что подтверждается результатами численного расчета (штриховая кривая на рис. 4). При отражении в вакуум ($\varepsilon_L = 1$) распространение дифрагированных волн вне кристалла невозможно; следовательно происходит их полное внутреннее отражение на его границе. Волновые векторы отраженных волн \mathbf{q}_{+1}^{R} равняются $(-\gamma_1^M + 2g, \pm g)$. Поскольку выполняется равенство $\mathbf{q}_{\pm 1}^{R} + \mathbf{b}_{\mp} = \mathbf{q}_{0}^{\prime}$, отраженные волны дифрагируют повторно и образуется результирующая волна с волновым вектором $\mathbf{q}'_0 = -\mathbf{q}_0$. Эта волна распространяется в направлении, противоположном оси x, и не преломляется на границе кристалла. Следовательно, в случае $\varepsilon_L = 1$ вместо дифракции света происходит зеркальное отражение, что подтверждается близостью положений максимумов зависимостей $R_0^V(\omega)$ и $R_1^B(\omega)$.

Несмотря на то что векторы падающего и отраженного света параллельны оси *x*, неодномерность задачи

является существенной. Штрихпунктирная кривая на рис. 4 показывает результаты расчета спектра $R_0^V(\omega)$ в пренебрежении зависимостью поля внутри кристалла от координаты *у*. Для этого в разложении поля по плоским волнам между слоями цилиндров учитывались только волны с волновыми векторами ($\pm \gamma_0^B$, 0). Видно, что дифракционный максимум в спектре отсутствует.

Таким образом, дано качественное объяснение увеличению коэффициента зеркального отражения света при отражении в вакуум по сравнению с отражением в материал *B*. Выполнен численный расчет спектров отражения и дифракции в пределе $M \rightarrow 0$ методом плоских волн с учетом векторов обратной решетки $(\pm g, 0)$ и $\mathbf{b}_{\pm 1}$. Результаты расчета зависимостей $R_0^V(\omega)$ и $R_1^B(\omega)$ методом ККР описаны с удовлетворительной точностью, однако для описания зависимости $R_1^B(\omega)$ необходимо учитывать дополнительные плоские волны. Это связано с тем, что, поскольку $|\varepsilon_M - \varepsilon_B| \ll \varepsilon_B, \varepsilon_M$, коэффициент отражения дифрагированных волн с $\mathbf{b}_{\pm 1}$ на границе структуры мал и вклад в коэффициент зеркального отражения от этих волн становится сравнимым с вкладом от остальных плоских волн.

При промежуточных значениях ε_L , таких что $\varepsilon_L < \varepsilon_B$, но Іт $\gamma_1^L = 0$, дифракционные максимумы присутствуют как в спектрах $R_1(\omega)$, так и в спектрах $R_0(\omega)$, т.е. наблюдаются и дифракция, и зеркальное отражение. Величина $R_0(\omega)$ возрастает с увеличением разности ε_B и ε_L .

5. Заключение

В настоящей работе исследованы зонная структура и спектры отражения и дифракции света для двумерного резонансного фотонного кристалла, состоящего из цилиндров *A*, расположенных в узлах квадратной решетки и помещенных в матрицу *B*. Расчет выполнен с учетом как временной, так и пространственной дисперсии диэлектрической проницаемости ε_A и диэлектрического контраста $\varepsilon_a \neq \varepsilon_B$. Результаты работы [6] обобщены на случай двумерного фотонного кристалла. При $\omega_{1,0} = \omega_R$ спектры отражения качественно близки к спектрам отражения от одномерных фотонных кристаллов — резонансных квазибрэгговских структур с квантовыми ямами.

При $\omega_{1,0} = \omega_D$ дифракционные эффекты являются существенными. Показано, что дифракция света внутри фотонного кристалла и отражение от его внутренней границы могут приводить к значительному увеличению коэффициента зеркального отражения света. Этот механизм эффективен при большом различии диэлектрических проницаемостей ε_L и ε_B .

Автор благодарен Е.Л. Ивченко за постановку и полезное обсуждение задачи.

Список литературы

- [1] E. Yablonovitch. Phys. Rev. Lett. 58, 2059 (1987).
- [2] S. John. Phys. Rev. Lett. 58, 2486 (1987).
- [3] K.C. Huang, E. Lidorikis, X. Jiang, J.D. Joannopoulos, K.A. Nelson, P. Bienstman, S. Fan. Phys. Rev. B 69, 195111 (2004).
- [4] L. Pilozzi, A. D'Andrea, H. Fenniche. Phys. Rev. B 64, 235319 (2001).
- [5] E.L. Ivchenko, Y. Fu, M. Willander. ΦΤΤ 42, 1707 (2000).
- [6] Е.Л. Ивченко, А.Н. Поддубный. ФТТ 48, 540 (2006).
- [7] Kazuo Ohtaka, Tsuyoshi Ueta, Katsuki Amemiya. Phys. Rev. B 57, 2550 (1997).
- [8] K.M. Leung, Y. Qiu. Phys. Rev. B 48, 7767 (1993).
- [9] Е.Л. Ивченко, В.П. Кочерешко, А.В. Платонов, Д.Р. Яковлев, А. Вааг, В. Оссау, Г. Ландвер. ФТТ **39**, 2072 (1997).