Диэлектрические свойства кристаллов глицин фосфита в модели фазового перехода с учетом инвариантов высокого порядка

© Е.В. Балашова, В.В. Леманов, Г.А. Панкова*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Институт высокомолекулярных соединений Российской академии наук, 199034 Санкт-Петербург, Россия

E-mail: balashova@mail.ioffe.ru

(Поступила в Редакцию 27 июня 2006 г.)

Исследованы диэлектрические аномалии в области сегнетоэлектрического фазового перехода в номинально чистых кристаллах глицин фосфита (GPI) и в кристаллах GPI с 2 mol.% примеси глицин фосфата (GP). Показано, что присутствие в кристалле GPI–GP внутренней макроскопической поляризации, обусловленной примесью, приводит к размытию диэлектрических аномалий как вдоль, так и перпендикулярно оси спонтанной поляризации. В кристаллах GPI и GPI–GP в сегнетоэлектрической фазе обнаружено необычное изменение обратной диэлектрической проницаемости в направлении Z, перпендикулярном оси спонтанной поляризации Y, которое описывается степенной зависимостью $(T_c - T)^n$ при значении степени *n* больше единицы. Для описания экспериментальных данных предложена термодинаковую симметрию (смещение (η) и порядок–беспорядок (P)), учитывающую инварианты связи типа ηP и $\eta^3 P$, а в случае кристаллов GPI–GP — также встроенную поляризацию. Получено хорошее соответствие между экспериментальными и теоретическими зависимостями. Определены коэффициенты билинейного и нелинейного взаимодействия между параметрами порядка. Показано, что фазовый переход в исследованных кристаллах близок к трикритической точке, а необычное температурное поведение диэлектрической проницаемости объясняется вкладом высоких инвариантов связи.

Работа поддержана Российским фондом фундаментальных исследований (гранты № 04-02-17667, № 05-02-16012), грантом НШ-5169.2006.2 и программой ОФН РАН.

PACS: 77.22.-d, 77.80.-e

(GPI) Кристаллы глицин фосфита NH₃CH₂COO · H₃PO₃ И глицин фосфата (\mathbf{GP}) NH₃CH₂COO · H₃PO₄ представляют собой соединения аминокислоты глицин с фосфористой Н₃РО₃ и фосфорной Н₃РО₄ кислотой соответственно в соотношении 1:1. Симметрия этих кристаллов при комнатной температуре описывается моноклинной точечной группой C_{2h}. При $T_c \cong 225 \,\mathrm{K}$ в GPI происходит фазовый переход в сегнетоэлектрическое состояние, в котором направление спонтанной поляризации P_s ориентировано параллельно оси второго порядка [1]. В отличие от GPI кристаллы GP не обнаруживают фазовых переходов и присутствия пьезоэффекта в области температур 120-294 К [2] и обладают низкими значениями диэлектрической проницаемости $\varepsilon \sim (6-9)$ во всех кристаллографических направлениях.

В кристаллах глицин фосфита с небольшой концентрацией GP (GPI–GP) уже при комнатной температуре был обнаружен пироэлектрический отклик, доказывающий наличие в них макроскопической поляризации P_{int} [2]. Наличие в GPI–GP макроскопической поляризации, обусловленной примесью, подтверждается исследованиями диэлектрических, пьезоэлектрических [2] и акустических свойств кристаллов [3,4].

Анализ температурных изменений различных измеряемых физических параметров кристаллов GPI, проведенный в рамках модели собственного (или псевдособственного) сегнетоэлектрического фазового перехода дает противоречивые результаты. Температурные зависимости двупреломления [5], скорости акустических волн [6] и спектры поляризованного рамановского рассеяния и инфракрасного отражения [7] в области сегнетоэлектрического перехода в кристаллах GPI хорошо описываются в случае фазового перехода, очень близкого к трикритической точке. В то же время соотношение наклонов обратной диэлектрической проницаемости вдоль оси спонтанной поляризации в параэлектрической и сегнетоэлектрической фазах свидетельствует о фазовом переходе второго рода, далеком от трикритической точки [8].

В настоящей работе приведены результаты исследования диэлектрических аномалий в области сегнетоэлектрического фазового перехода в различных кристаллографических направлениях в номинально чистых кристаллах GPI и в кристаллах GPI–GP. Проводится теоретическое описание аномалий на основе термодинамической модели с двумя параметрами порядка η и *P*, имеющими различную физическую природу, но одинаковую симметрию (η — структурный параметр порядка (фононная мода) и *P* — поляризация (мода типа порядок–беспорядок)). Противоречия, возникающие при описании различных свойств кристаллов в модели с одним параметром порядка, в настоящей работе объясняются в модели с двумя параметрами порядка η и *P*, учитывающей связь между ними вида *P* η и *P* η^3 .

Монокристаллы GPI выращены из насыщенных водных растворов, содержащих глицин и неорганическую кислоту Н₃РО₃ в соотношении 1:1. Монокристаллы глицин фосфита с примесью глицин фосфата (GPI-GP) выращивались из насыщенных водных растворов, также содержащих глицин и неорганические кислоты (H₃PO₃ и Н₃РО₄) в соотношении 1:1, при этом соотношение кислот H₃PO₃ и H₃PO₄ в водном растворе составляло 75:25. Кристаллы выращивались методом медленного охлаждения от 25 до 8°C со скоростью 1°C в сутки. Определение химического состава кристаллов проводилось по результатам химического анализа раствора кристаллов GPI-GP в воде. Определение концентрации H₃PO₄ в растворе производилось весовым методом при осаждении осадка в виде двойного фосфата магния аммония. Анализ показал, что мольная концентрация глицин фосфата в кристаллах GPI-GP составляет примерно 2%.

Диэлектрические измерения вдоль кристаллографических осей $Y \parallel b$ и $Z \parallel c^*$ производились в образцах GPI и GPI с 2 mol% GP. Толщина образцов как вдоль оси Y, так и вдоль оси Z составляла от 2 до 3.5 mm. При измерении вдоль оси Z использовались кристаллы с натуральными гранями. Диэлектрическая проницаемость и tg δ измерялись на частотах 100 Hz и 1 kHz с помощью измерителя иммитанса E7-15 и на частоте 1 MHz с помощью измерителя L, C, R E7-12, а в диапазоне частот 100 Hz–100 kHz использовался также *LCR*-meter MИТ9216A.

2. Экспериментальные результаты

На рис. 1 представлены температурные зависимости диэлектрической проницаемости ε_b и обратной диэлектрической проницаемости $1/\varepsilon_b$, измеренные на частоте 1 kHz вдоль оси спонтанной поляризации Y в номинально чистых кристаллах GPI. (Отметим, что в диапазоне частот 1 kHz–1 MHz наблюдалась лишь незначительная дисперсия диэлектрической проницаемости). Видно, что наклон температурной зависимости обратной диэлектрической и сегнетоэлектрической фазе примерно одинаков. Величина константы Кюри–Вейсса в параэлектрической фазе составляет $C_+ \cong 200$ K, а фоновая диэлектрическая проницаемость $\varepsilon_\infty \approx 7$.

На рис. 2 показаны температурные зависимости диэлектрической проницаемости ε_c и обратной диэлектрической проницаемости $1/\varepsilon_c$ на частоте 1 kHz вдоль кристаллографической оси Z, перпендикулярной оси спонтанной поляризации Y, в номинально чистом кристалле GPI. При комнатной температуре значения диэлектрической проницаемости вдоль оси Z ($\varepsilon_c \approx 300$)

Рис. 1. Температурные зависимости диэлектрической проницаемости ε_b (*a*) и обратной диэлектрической проницаемости $1/\varepsilon_b$ (*b*) вдоль оси спонтанной поляризации *Y* в номинально чистом кристалле GPI. Сплошные кривые рассчитывались с помощью выражений (4).

существенно превышают значения диэлектрической проницаемости вдоль оси спонтанной поляризации Y. В параэлектрической фазе диэлектрическая проницаемость вдоль оси Z слабо меняется с понижением температуры. Ниже температуры сегнетоэлектрического фазового перехода диэлектрическая проницаемость ε_c резко уменьшается. Как видно из рис. 2, обратная диэлектрическая проницаемость вдоль оси Z в сегнетоэлектрической фазе меняется нелинейно в зависимости от $(T_c - T)$ со степенью больше единицы. В этом кристаллографическом направлении в диапазоне частот 100 Hz-1 MHz дисперсия диэлектрической проницаемости не наблюда-

Рис. 2. Температурные зависимости диэлектрической проницаемости ε_c (*a*) и обратной диэлектрической проницаемости $1/\varepsilon_c$ (*b*) вдоль кристаллографической оси *Z*, перпендикулярной оси спонтанной поляризации *Y*, в номинально чистом кристалле GPI. Сплошные кривые рассчитывались с помощью выражений (4).

лась, и тангенс диэлектрических потерь не превышал значения 0.001 во всем исследованном температурном интервале.

На рис. З представлены температурные зависимости диэлектрической проницаемости ε_c и обратной диэлектрической проницаемости $1/\varepsilon_c$ на частоте 1 kHz вдоль оси Z в кристаллах GPI с 2 mol.% примеси GP, измеренные после первого охлаждения кристалла ниже температуры сегнетоэлектрического фазового перехода. Видно, что, как и в номинально чистых кристаллах GPI, ε_c имеет в параэлектрической фазе большие значения

 $\varepsilon_c \approx 300$ и резкое нелинейное уменьшение диэлектрической проницаемости ниже температуры сегнетоэлектрического фазового перехода. Температурная зависимость обратной диэлектрической проницаемости $1/\varepsilon_c$ в сегнетоэлектрической фазе характеризуется, так же, как и в номинально чистых кристаллах GPI, степенной зависимостью от $(T_c - T)$ со степенью больше единицы. В отличие от кристаллов GPI в кристаллах GPI с примесью GP наблюдается размытие диэлектрической аномалии ε_c в области фазового перехода.

Рис. 3. Температурные зависимости диэлектрической проницаемости ε_c (*a*) и обратной диэлектрической проницаемости $1/\varepsilon_c$ (*b*) вдоль оси *Z* в кристалле GPI с 2 mol.% примеси GP. Сплошные кривые рассчитывались с помощью выражений (4).

Анализ экспериментальных результатов

Как показано в работе [2], введение GP в GPI приводит к появлению пироэлектрического тока вдоль оси второго порядка Y уже при комнатной температуре, что, очевидно, обусловлено наличием в кристалле макроскопической поляризации $P_{int} \parallel Y$, вызванной примесью GP. В [3,4] на основе исследования акустических аномалий в области сегнетоэлектрического фазового перехода в номинально чистых кристаллах GPI и кристаллах GPI с примесью GP было сделано заключение о том, что причиной размытия акустических аномалий, наблюдающихся в кристаллах GPI с 2 mol.% примеси GP, также является наличие макроскопической поляризации P_{int} , понижающей симметрию кристалла в параэлектрической фазе до 2 (C_2) .

Количественное описание акустических аномалий при сегнетоэлектрическом фазовом переходе как в номинально чистых кристаллах GPI, так и в кристаллах GPI с примесью GP было проведено в [6] и [3,4] в рамках модели сегнетоэлектрического фазового перехода с двумя билинейно связанными параметрами порядка. В случае кристаллов GPI-GP было учтено существование в кристалле макроскопической поляризации P_{int} || Y. Было показано, что хорошее согласие между экспериментальными и теоретическими зависимостями как в номинально чистых кристаллах GPI, так и в кристаллах GPI с примесью GP, наблюдается в случае сегнетоэлектрического фазового перехода, близкого к трикритической точке. Однако температурные зависимости диэлектрической проницаемости как вдоль оси Y, так и вдоль оси Z, показанные на рис. 1-3, не соответствуют ни фазовому переходу второго рода, ни трикритической точке в модели собственного сегнетоэлектрического фазового перехода.

Такое специфическое поведение диэлектрической проницаемости может быть обусловлено более высокой, чем билинейная (ηP), связью параметра порядка η и поляризации P, а именно ($P\eta^3$). При учете такой связи температурная зависимость диэлектрической проницаемости изменяется, в то время как характер температурных изменений параметра порядка η может не меняться. Поэтому учет нелинейной связи не приведет к изменению акустических аномалий в области сегнетоэлектрического фазового перехода.

Если имеется два параметра порядка η и P, обладающих одинаковой симметрией, то термодинамический потенциал может содержать инварианты типа $\eta^m P^n$, где m, n — натуральные числа и сумма m + n является четным числом (при четных m и n параметры η и P могут иметь и различную симметрию). Значению m = n = 1 (m + n = 2) соответствует билинейный инвариант ηP , рассмотренный Леванюком и Струковым [9]. Термин "псевдособственный сегнетоэлектрик" был введен для описания фазовых переходов такого типа на примере кристаллов КDP. При отсутствии каких-либо экспери-

ментальных ограничений (зажатый кристалл или зажатая поляризация) выбор первичного параметра порядка (либо η , либо P) является произвольным.

Значения m = n = 2 (m + n = 4) дают в термодинамическом потенциале биквадратичный инвариант. Этот случай рассматривался в большом числе работ [10–15]. В настоящей работе будем учитывать другие смешанные инварианты высокого порядка типа $\eta^3 P(m + n = 4)$.

Для описания температурных зависимостей диэлектрической проницаемости вдоль оси *Y* и *Z* в кристаллах GPI и GPI с примесью GP воспользуемся следующим термодинамическим потенциалом:

$$F = \frac{1}{2} \alpha \eta^{2} + \frac{1}{4} \beta \eta^{4} + \frac{1}{6} \gamma \eta^{6} + h \eta (P_{y} + P_{int}) + \frac{1}{2\chi_{0y}} P_{y}^{2} + \frac{1}{3} d \left(\frac{1}{\chi_{0y}} P_{y} - E_{y} \right) \eta^{3} + \frac{1}{2\chi_{0z}} P_{z}^{2} + \frac{1}{2} d_{1} P_{y}^{2} P_{z}^{2} - P_{y} E_{y} - P_{z} E_{z}, \qquad (1)$$

где $\alpha = \lambda (T - T_c), \eta$ — параметр порядка, преобразующийся по такому же неприводимому представлению, что и спонтанная поляризация P_y ; P_z — поляризация, наведенная полем $E_z \parallel Z$, приложенным перпендикулярно оси спонтанной поляризации Y; d₁ — коэффициент связи, определяющий биквадратную связь спонтанной поляризации P_v и наведенной поляризации P_z; χ_{0v} и χ_{0z} — фоновые диэлектрические восприимчивости вдоль оси Y и Z соответственно; E_y и E_z — макроскопическое электрическое поле вдоль оси У и Z соответственно. Необходимость учета билинейного инварианта в термодинамическом потенциале обусловлено тем. что параметры порядка *п* и *P* в рассматриваемой модели имеют различную физическую природу (*η* характеризует оптическую фононную моду, Р — моду типа порядок-беспорядок). В потенциале (1) учтено поле, исключающее дополнительный вклад в диэлектрическую проницаемость фоновой поляризации за счет инварианта $P_{\nu}\eta^3$ при приложении внешнего смещающего поля E_v. Кроме того, для кристаллов GPI-GP в потенциале (1) учитывается P_{int} — макроскопическая поляризация вдоль оси У, обусловленная введением примеси GP в GPI (в номинально чистых кристаллах GPI $P_{\text{int}} = 0$).

Потенциал (1) может быть приведен к безразмерному виду как в случае $\beta < 0$, так и в случае $\beta > 0$. В случае $\beta > 0$ термодинамический потенциал (1) в безразмерных единицах принимает вид

$$f = \frac{1}{2}t^{*}q^{2} + \frac{1}{2}q^{4} + \frac{1}{6}q^{6} + R^{2}(p_{y} + p_{int})q$$

+ $\frac{1}{2}R^{2}p_{y}^{2} + \frac{1}{3}\varphi R(p_{y} - e_{y})q^{3} + \frac{1}{2}R^{2}p_{z}^{2}$
+ $\frac{1}{2}R^{4}\varphi_{1}p_{y}^{2}p_{z}^{2} - R^{2}p_{y}e_{y} - R^{2}p_{z}e_{z},$ (2)

где $t^* = (T - T_c)/\Delta T$ — приведенная температура, $\Delta T = = \beta^2/4\lambda\gamma$ определяет близость фазового перехода к

трикритической точке без учета инварианта $P\eta^3$ в потенциале (1), $\varphi_1 = d_1\beta^3\chi_{0y}\chi_{0z}/8\gamma$, $f = F(8\gamma^2/\beta^2)$, $q^2 =$ $= \eta^2(2\gamma/\beta)$, $p_y^2 = P_y^2(2\gamma/\beta\chi_{0y}^2h^2)$, $e_y = E_y(2\gamma)^{0.5}/(\beta^{0.5}h)$, $p_z^2 = P_z^2(2\gamma/(\beta\chi_{0y}\chi_{0z}h^2))$, $e_z = E_z(2\gamma)^{0.5}(\chi_{0z}/\chi_{0y})/(\beta^{0.5}h)$. Из (2) следует, что при $E_z = 0$ ($P_z = 0$), т.е. в отсутствие смещающего поля, перпендикулярного оси спонтанной поляризации Y, свойства потенциала (1) определяются двумя безразмерными, независимыми параметрами

$$R = (C_+/(\varepsilon_{\infty y} - 1)\Delta T)^{0.5}$$
 и $\varphi = d/(\gamma \chi_{0y})^{0.5}$, (3)

где C_+ — константа Кюри-Вейсса в параэлектрической фазе, $\varepsilon_{\infty y}$ — фоновая диэлектрическая проницаемость вдоль оси спонтанной поляризации *Y*. Параметр R > 0 определяет силу билинейной связи параметра порядка с поляризацией, параметр φ определяет силу более высокого по параметру порядка инварианта связи (нелинейное взаимодействие).

Равновесные значения параметра порядка q, p_y и p_z определяются из условий $\partial f/\partial q = 0$, $\partial f/\partial p_y = 0$, $\partial f/\partial p_z = 0$

$$\partial f / \partial q = t^* q + 2q^3 + q^5 + R^2 (p_y + p_{int}) + \varphi R (p_y - e_y) q^2 = 0,$$

$$\partial f / \partial p_y = q + (1/3)(\varphi/R)q^3 + p_y + R^2 \varphi_1 p_y p_z^2 - e_y = 0,$$

$$\partial f / \partial p_z = p_z + R^2 \varphi_1 p_y^2 p_z - e_z = 0.$$
(4)

При отсутствии внешних полей и $p_{int} = 0$ равновесные значения параметра порядка q и поляризации p_y в сегнетоэлектрической фазе ($q \neq 0$, $p_y \neq 0$) выражаются следующим образом:

$$q^{2} = (-1 + (2/3)\varphi R) / (1 - \varphi^{2}/3) \\ \times \left[1 \pm \sqrt{1 - t(1 - \varphi^{2}/3)/(-1 + 2\varphi R/3)^{2}} \right],$$
$$p_{y} = -q - (1/3)(\varphi/R)q^{3}, \tag{5}$$

где $t = t^* - R^2$. Знак перед корнем в выражении (5) выбирается из условия $q^2 > 0$. Как следует из (5), близость фазового перехода к трикритической точке (или температурный гистерезис в случае фазового перехода первого рода) в безразмерных единицах выражается следующим образом:

$$\Delta t = (1 - 2\varphi R/3)^2 / (1 - \varphi^2/3).$$
 (6)

В случае непрерывного фазового перехода параэлектрической $(p_y = 0, q = 0)$ и сегнетоэлектрической $(p_y \neq 0, q \neq 0)$ фазам соответствуют температурные интервалы t > 0 и t < 0, а температура t = 0 является температурой сегнетоэлектрического фазового перехода. В случае фазового перехода первого рода $(p_y = 0, q = 0)$ и $(p_y \neq 0, q \neq 0)$ фазам соответствуют температурные интервалы t > 0 и $t < \Delta t$. В обоих случаях величина Δt должна быть положительной. Это условие накладывает ограничение на величину нелинейного параметра

$$-3 < \varphi < \sqrt{3}. \tag{7}$$

Поскольку фазовый переход в кристаллах GPI и GPI–GP близок к трикритической точке, диэлектрические свойства этих кристаллов, показанные на рис. 1–3, должны описываться при значениях безразмерных независимых параметров R и φ вблизи трикритической точки. Соотношение между параметрами R и φ , обусловловливающее фазовый переход в трикритической точке, может быть получено из выражения (6) при условии $\Delta t = 0$ в случае положительных значений нелинейного параметра ($0 < \varphi < \sqrt{3}$)

$$R = 3/2\varphi. \tag{8}$$

Для фазового перехода второго рода, близкого к трикритической точке, значения двух независимых параметров должны удовлетворять следующим неравенствам: $0 < R < 3/2\varphi$ и $0 < \varphi < \sqrt{3}$.

Параметры R, ϕ и ϕ_1 для кристаллов GPI определялись из подгонки экспериментальных температурных зависимостей диэлектрической проницаемости ε_b и ε_c вдоль оси Y и Z ($e_y = 0, e_z = 0$), показанных на рис. 1 и 2 соответственно и рассчитанных зависимостей диэлектрической проницаемости вдоль оси Y и Z, полученных из выражений (4) при $p_{int} = 0$. Отметим, что в параметр R кроме константы Кюри-Вейсса и фоновой диэлектрической проницаемости, значения которых известны, входит одна неизвестная величина ΔT , определяющая близость фазового перехода к трикритической точке без учета инварианта $P\eta^3$ в термодинамическом потенциале (1) и являющаяся размерным коэффициентом, переводящим температуру t в безразмерных единицах в температуру в размерных единицах $T(K) = t \cdot \Delta T(K) + T_c^{\exp} (T_c^{\exp})$ — экспериментальное значение температуры фазового перехода).

Рассчитанные с использованием выражений (4) температурные зависимости диэлектрической проницаемости ε_b и ε_c и обратной диэлектрической проницаемости $1/\varepsilon_b$ и $1/\varepsilon_c$ в номинально чистом кристалле GPI в отсутствие смещающих полей и встроенной поляризации ($p_{int} = 0$) показаны в виде сплошных кривых на рис. 1 и 2 соответственно. Видно хорошее согласие между экспериментальными и теоретическими зависимостями при значениях параметров R = 0.8686, $\varphi = 1.726$, $\varphi_1 = 0.01$ и при близости фазового перехода к трикритической точке $\delta T = \Delta t \cdot \Delta T = 0.0015$ K.

Для кристаллов GPI–GP температурные зависимости диэлектрической проницаемости ε_c рассчитывались с использованием выражений (4) при учете встроенной поляризации $p_{int} \neq 0$. На рис. З видно хорошее соответствие экспериментальных и рассчитанных зависимостей (сплошные кривые) диэлектрической проницаемости примерно при тех же значениях параметров R = 0.869, $\varphi = 1.723$, $\varphi_1 = 0.01$ и близости фазового перехода к

Соотношение константы Кюри–Вейсса и фоновой диэлектрической проницаемости $C_+/(\varepsilon_{\infty y} - 1)$, значения независимых параметров R, φ , φ_1 и близости фазового перехода к трикритической точке δT в кристаллах GPI и GPI–GP

	GPI	GPI-GP
$C_+/(arepsilon_\infty-1)$	28	20
$P_{\rm int}$ (160 K)	—	$P_{\rm int}/P_s \approx 0.3$
$\delta T, \mathbf{K}$	0.0015	0.008
R	0.8686	0.869
ϕ	1.726	1.723
$arphi_1$	0.01	0.01

Примечание. Для кристалла GPI-GP указана относительная величина внутренней поляризации, обусловленной примесью, при температуре 160 К.

трикритической точке $\delta T = \Delta t \cdot \Delta T = 0.008$ К. Как и в номинально чистых кристаллах GPI, фазовый переход в кристаллах GPI–GP остается близким к трикритической точке. Учет поляризации $p_{int} \parallel Y$, обусловленной примесью GP в GPI, позволяет описать размытие диэлектрической аномалии вдоль оси Z в области фазового перехода.

В таблице представлены значения независимых параметров R, φ и φ_1 , а также значения δT , характеризующие близость фазового перехода к трикритической точке, полученные для номинально чистых кристаллов GPI и кристаллов GPI с примесью GP. Как видно из таблицы, значения независимых параметров слабо изменяются при введении примеси GP в кристалл GPI. Иными словами, примесь слабо влияет на параметры линейного и нелинейного взаимодействия, а также на близость фазового перехода к трикритической точке. Ее присутствие в акустических и диэлектрических измерениях проявляется в размытии аномалий в области сегнетоэлектрического фазового перехода.

Зная параметры R и φ_1 , можно рассчитать температурные зависимости параметра порядка q и поляризации p_y . На рис. 4 показаны эти зависимости в линейном (a) и двойном логарифмическом масштабе (b) для номинально чистых кристаллов GPI. Наклон температурной зависимости параметра порядка q (критический индекс) равен 0.25, что соответствует трикритической точке, а наклон температурной зависимости поляризации $p_y \ge 0.5$.

На рис. 5 представлены рассчитанные с использованием выражений (4) ($p_{int} = 0$) температурные зависимости диэлектрической проницаемости ε_b (*a*) вдоль оси спонтанной поляризации Y и ε_c (*b*) вдоль оси Z в различных смещающих полях e_z ($e_y = 0$) при значениях параметров R = 0.887, $\varphi = 1.68$, $\varphi_1 = 0.38$ и при близости фазового перехода к трикритической точке $\delta T = 0.1$ К. На вставке к рис. 5, *b* показаны экспериментальные точки, взятые из работы [16]. Видно, что рассчитанные зависимости весьма близки к экспериментальным, полученным для номинально чистого кристалла GPI в работах [8,16]. Для наилучшего описания зависимостей, полученных в [8,16], необходимо брать несколько меньшую величину нелинейного параметра φ . При этом соотношение наклонов обратной диэлектрической проницаемости 1/є_b в параэлектрической и сегнетоэлектрической фазах близко к 2 (рис. 5, а) и обратная диэлектрическая проницаемость 1/г при отсутствии смещающих полей меняется линейно с температурой в сегнетоэлектрической фазе (рис. 5, b). О том, что фазовый переход близок к трикритической точке, свидетельствует лишь быстро уширяющиеся с увеличением смещающего поля минимумы $1/\varepsilon_c$. Заметные различия в диэлектрическом поведении между кристаллами, исследованными в настоящей работе и в работе [16], проявляются в величине параметра φ_1 ($\varphi_1 = 0.01$ для наших кристаллов и 0.38 для образцов, исследованных в [16]), определяющего нелинейную биквадратную связь между p_v и p_z . Такое сильное различие не удивительно, поскольку величина

Рис. 4. Рассчитанные с использованием выражений (4) температурные зависимости параметра порядка η и поляризации p_y в линейном (*a*) и двойном логарифмическом масштабе (*b*) для номинально чистых кристаллов GPI, исследованных в настоящей работе.

Рис. 5. Рассчитанные с использованием выражений (4) $(p_{int} = 0)$ температурные зависимости диэлектрической проницаемости ε_b вдоль оси спонтанной поляризации Y (*a*) и ε_c вдоль оси Z в различных смещающих полях e_z $(e_y = 0)$ при значениях параметров R = 0.887, $\varphi = 1.68$, $\varphi_1 = 0.38$ и при близости фазового перехода к трикритической точке $\delta T = 0.1$ K (*b*). На вставке показаны экспериментальные точки из работы [16] и соответствующие рассчитанные кривые.

константы Кюри—Вейсса, температура перехода, а также другие коэффициенты термодинамического потенциала в кристаллах GPI, выращенных в различных условиях или по разным методикам, могут меняться в довольно широких пределах. Например, константа Кюри—Вейсса меняется по разным данным от 200 до 1000 К [1,8].

10 Физика твердого тела, 2007, том 49, вып. 2

Проведенные исследования показывают, что в кристаллах GPI проявляются нелинейные эффекты, обусловленные сложным механизмом сегнетоэлектрического фазового перехода. Акустические измерения отражают главным образом свойства параметра порядка η , в то время как диэлектрические свойства кристаллов корректируются вкладом инвариантов связи высокого порядка, который обусловлен нелинейным взаимодействием между фононной модой и модой типа порядок—беспорядок. Присутствие примеси GP в кристаллах GPI—GP практически не изменяет параметры билинейного и нелинейного взаимодействий, а проявляется главным образом в размытии аномалий при фазовом переходе, который остается близким к трикритической точке.

Список литературы

- S. Dacko, Z. Czapla, J. Baran, M. Drozd. Phys. Lett. A 223, 217 (1996).
- [2] В.В. Леманов, С.Г. Шульгин, В.К. Ярмаркин, С.Н. Попов, Г.А. Панкова. ФТТ 46, 1246 (2004).
- [3] Е.В. Балашова, В.В. Леманов, Г.А. Панкова. ФТТ 47, 176 (2005).
- [4] Е.В. Балашова, В.В. Леманов, Г.А. Панкова. Изв. РАН. Сер. физ. 69, 935 (2005).
- [5] B. Kosturek, J. Baran. Ferroelectrics Lett. 27 (1–2), 11 (2000).
- [6] Е.В. Балашова, В.В. Леманов, Г.А. Панкова. ФТТ 43, 1275 (2001).
- [7] J.A. Moreira, A. Almeida, L.G. Viera, J.L. Ribeiro, M.R. Chaves, M.L. Santos, A. Klöpperpieper. Phys. Rev. B 72, 094111 (2005).
- [8] R. Tchukvinskyi, Z. Czapla, R. Sobeistianskas, A. Brilingas, J. Grigas, J. Baran. Acta Phys. Polonika A 92, 1191 (1997).
- [9] Б.А. Струков, А.П. Леванюк. Физические основы сегнетоэлектрических явлений в кристаллах. Наука, М. (1995).
 (B.A. Strukov, A.P. Levanyuk. Ferroelectrics Phenomena in Crystals. Springer-Verlag, Berlin (1998).)
- [10] Е.М. Лифшиц. ЖЭТФ 14(9), 353 (1944).
- [11] А.П. Плетнюк, Д.Г. Санников. ЖЭТФ 55, 256 (1968).
- [12] J. Holakovsky. Phys. Stat. Sol. (b) 56, 615 (1973).
- [13] Ю. Гуфман, Е.С. Ларин. ФТТ 22, 463 (1980).
- [14] E.V. Balashova, A.K. Tagantsev. Phys. Rev. B 48, 9979 (1993).
- [15] Y. Ishibashi. J. Phys. Soc. Jpn. 63, 2082 (1994).
- [16] I. Stasyuk, Z. Czapla, S. Dacko, O. Velychko. Condens. Metter Phys. 6, 483 (2003).