Торможение дислокационных кинков в твердых растворах

© Б.В. Петухов

Институт кристаллографии им. А.В. Шубникова Российской академии наук, 119333 Москва, Россия

E-mail: petukhov@ns.crys.ru

(Поступила в Редакцию 3 мая 2006 г.)

Теория торможения дислокационных кинков статистическими флуктуациями плотности примесных атомов обобщается на случай твердых растворов. Предлагается простой вывод условий перехода к аномальному дрейфу кинков, характеризуемому нелинейной зависимостью смещения x от времени t: $x \sim t^{\delta}$ ($\delta < 1$). Выводятся следствия для подвижности дислокаций и пластического течения твердого раствора. Теория иллюстрируется расчетом концентрационной зависимости деформирующего напряжения твердого раствора Ge_{1-c}Si_c.

PACS: 61.72.Bb, 62.20.Fe

1. Введение

Движение дислокаций в материалах, характеризуемых высоким кристаллическим рельефом (барьеры Пайерлса–Набарро), осуществляется термоактивируемым рождением пар кинков и их последующим разбеганием вдоль линии дислокации [1]. В то время как теория, описывающая динамику дислокационных кинков в чистых материалах, хорошо разработана (см., например, [1–3]), описание легированных материалов и твердых растворов страдает рядом существенных пробелов.

Известно, что легирование приводит к конкуренции эффектов упрочнения и разупрочнения кристаллических материалов [4], и понимание соответствующих закономерностей открывает возможности управления механическими свойствами этих материалов. Давно установлено что эта конкуренция связана с противоположным действием чужеродных атомов на две существенные для движения дислокаций стадии. Чужеродные атомы служат центрами облегченного зарождения пар кинков и в то же время барьерами, тормозящими перемещение кинков вдоль дислокации [5-7]. Тот или иной эффект преобладает в зависимости от температурного интервала, типа и концентрации легирующей добавки и, конечно, свойств исходного материала. Так, например, в чистых металлах с ОЦК-структурой контролирующую роль играет зарождение пар кинков, и соответственно при низких концентрациях чужеродных атомов имеет место разупрочнение материала. В полупроводниках и других материалах с заметным так называемым вторичным рельефом Пайерлса-Набарро роль миграционных барьеров повышена и можно ожидать преобладания эффекта упрочнения. Целью настоящей работы является описание материалов второго типа в широком интервале концентраций примесных атомов, что потребует дальнейшего развития теории торможения кинков в неупорядоченных твердых растворах.

В работе [5] было предсказано изменение характера движения кинков за счет их торможения на флуктуациях плотности примесных атомов или других точечных дефектов. В то время одиночные примеси, создающие изолированные барьеры на пути движения кинков, перенормируют среднюю скорость, понижая ее величину, случайные скопления чужеродных атомов могут приводить к качественно новому явлению, когда теряет смысл само понятие средней скорости движения кинков. Причиной этого является большой размах флуктуаций потенциального рельефа для кинка в кристалле со случайно расположенными чужеродными атомами. Этот потенциал, предложенный в [5], фактически совершает случайные блуждания по шкале энергии с шагом и, равным изменению энергии дислокационного ядра при попадании в него (или отрыве от него) чужеродного атома. Таким образом, размах флуктуаций и, следовательно, барьеров для кинка растет с преодолеваемым им расстоянием x как $E(x) \sim u\sqrt{x/\overline{l}}$. Здесь \overline{l} — среднее расстояние между чужеродными атомами ($\bar{l} = a_1/c, a_1$ расстояние между узлами решетки вдоль дислокации, с — концентрация посторонних атомов на один узел). Зависимость характерной высоты барьеров от масштаба перемещения и приводит к качественному изменению кинетических закономерностей.

В аномальном режиме зависимость смещения x от времени t под действием движущей силы F приближенно описывается выражением

$$\kappa \approx x_0 (t/\tau_m)^{\delta} \quad (\delta < 1). \tag{1}$$

Здесь $\delta = F/F_0$, $F_0 = u^2/(kT\bar{l})$; k — постоянная Больцмана; T — температура; x_0 и τ_m — некоторые несущественные для дальнейшего рассмотрения масштабные множители, приближенно оцениваемые как $x_0 \sim kT/F$; $\tau_m \sim x_0^2/D_k$; D_k — коэффициент диффузии. Движущая кинк сила определяется приложенным напряжением σ и равна $F = \sigma ba$, где b — величина вектора Бюргерса дислокации, a — высота кинка (расстояние между долинами кристаллического рельефа, период решетки). Эти соотношения верны, когда одиночный чужеродный атом не создает большого барьера для кинка. Обобщение на случай $u \gg kT$ было получено в работе [8].

При $\delta = 1$ кинетический закон (1) переходит в обычный линейный закон дрейфа $x = D_k Ft/(kT)$. Таким образом, существует некоторое критическое значение движущей силы $F = F_0$ (или напряжения $\sigma_0 = u^2/(kTab\bar{l})),$ разделяющее нормальный линейный закон дрейфа при *F* ≥ *F*⁰ и аномальный нелинейный (или, как называют, сублинейный) закон (1) при $F < F_0$. Отметим, что аномальный характер подвижности сохраняется в такой системе при понижении движущей силы вплоть до F = 0, т.е. и для диффузии. Как было показано в [9], зависимость смещения от времени становится при этом логарифмической $x \sim \ln^2 t$ вместо обычной $x \sim \sqrt{t}$. Явление аномальной подвижности, предсказанное и обнаруженное на примере дислокационных кинков [5,10], впоследствии было найдено для многих систем в физике, химии, биофизике (см. обзоры [11–13] и др.).

Переход к аномальному режиму движения дислокационных кинков приводит к кардинальному изменению закономерностей дислокационной подвижности и пластического течения материалов. В ряде экспериментальных работ было обнаружено сильное твердорастворное упрочнение материалов при повышении концентрации атомов раствора. Модельными материалами для изучения этого эффекта могут служить непрерывные твердые растворы $A_{1-c}B_c$, $0 \le c \le 1$. В отличие от некоторых материальных параметров, которые могут быть описаны простой линейной интерполяцией между значениями для чистых компонент, как, например, постоянная решетки $a(c) = a_A + c(a_B - a_A)$, концентрационная зависимость деформирующего напряжения часто имеет ярко выраженный колоколообразный вид. Такое поведение наблюдается, например, в твердых растворах KCl-KBr [14] и Ge-Si [15]. Сильное упрочнение таких материалов при промежуточных концентрациях, как можно предположить, обусловлено переходом к аномальному режиму движения дислокационных кинков.

Обобщенное описание аномального режима движения кинков

Рассчитаем торможение кинков, создаваемое флуктуациями плотности атомов раствора, в несколько более общем виде, чем это было сделано ранее. Существуют различные подходы к подобным вычислениям (см., например, [5,7,16,17]). Здесь использован подход работы [16], ввиду его простоты и наглядности допускающий обобщение на более широкий класс систем.

Коэффициент диффузии кинка D_k во вторичном рельефе в чистом материале (например, A) дается законом Аррениуса $D_k = D_{k0} \exp(-E_{mA}/kT)$, где E_{mA} — энергия активации, D_{k0} — предэкспоненциальный множитель, обычно оцениваемый как $D_{k0} \sim a_1^2 v_D$, v_D — частота Дебая. Встречаемый кинком в первой долине рельефа атом материала B изменяет энергию дислокации на величину u. Соответственно возрастает высота барьера миграции. Скопление n атомов B повышает высоту барьера

Рис. 1. Потенциал для кинка, создаваемый случайными флуктуациями плотности компонентов твердого раствора и линейно понижающимся вкладом внешнего напряжения (штриховая линия). Стрелками показаны высота ΔE и протяженность *l* максимального барьера.

до $E_m + nu$. Если скопление занимает длину l, то работа внешнего напряжения понижает барьер на величину σbal , так что время преодоления такого барьера равно $t = \tau_m \exp[(nu - \sigma bal)/kT]$ (изменением предэкспоненциального множителя пренебрегаем). Здесь n и l — случайные величины, так что на пути кинка встречается спектр барьеров различной высоты ΔE (рис. 1).

Найдем распределение времен задержки кинков на флуктуациях плотности атомов раствора, для чего определим вероятность встретить барьер с заданным временем задержки t. Пусть средняя концентрация атомов Bв расчете на один узел решетки в первой долине есть c_1 , во второй долине c_2 . Хотя атомы раствора предполагаются малоподвижными и для кинка они образуют статический рельеф, все же некоторое отличие от средней концентрации в объеме c может возникать из-за так называемого старения дислокаций за сравнительно длительное время ожидания перехода из одной долины в другую (следующую). Вероятность скопления n_1 атомов раствора в первой долине на длине l, охватывающей $N = l/a_1$ узлов, при достаточно большом N дается распределением Гаусса

$$P_1(n_1) = \frac{1}{\sqrt{2\pi N c_1(1-c_1)}} \exp\left[-\frac{(n_1 - N c_1)^2}{2N c_1(1-c_1)}\right] \quad (2)$$

(см., например, [18]). Вероятность встретить избыток *n* атомов раствора в первой долине над второй есть

$$P_n = \sum_{n_1=0}^{N-n} \frac{1}{2\pi N \sqrt{c_1(1-c_1)c_2(1-c_2)}} \\ \times \exp\left[-\frac{(n_1+n-Nc_1)^2}{2Nc_1(1-c_1)} - \frac{(n_1-Nc_2)^2}{2Nc_2(1-c_2)}\right].$$
 (3)

Оценим эту сумму приближенно окрестностью слагаемого с максимальным показателем экспоненты. После несложных вычислений получаем

$$P_n \approx \frac{1}{\sqrt{2\pi N[c_1(1-c_1)+c_2(1-c_2)]}} \\ \times \exp\left\{-\frac{[n-N(c_1-c_2)]^2}{2N[c_1(1-c_1)+c_2(1-c_2)]}\right\}.$$
 (4)

Из двух параметров, характеризующих скопление (*n* и *l*), один фиксируется требуемой величиной времени задержки

$$n - \frac{\sigma bal}{u} = \frac{kT}{u} \ln \frac{t}{\tau_m}.$$
 (5)

В качестве оставшегося свободного параметра можно взять, например, $z = na_1/l$. Его величину выберем так, чтобы получить наиболее часто встречающиеся флуктуации с данным временем задержки. Вычисляя максимум вероятности P_n (4) по z, приходим к следующему выводу: оптимальные значения параметров равны $z_{\text{opt}} = 2\sigma baa_1/u - c_1 + c_2$,

$$n_{\text{opt}} = \frac{kT}{u} \ln\left(\frac{t}{\tau_m}\right) \frac{2\sigma baa_1 - u(c_1 - c_2)}{\sigma baa_1 - u(c_1 - c_2)},$$

а вероятность встретить такой берьер есть

$$P(t) \approx (\tau_m/t)^{\delta}.$$
 (6)

Здесь

$$\delta = \frac{kT}{u^2} \frac{2[\sigma baa_1 - u(c_1 - c_2)]}{c_1(1 - c_1) + c_2(1 - c_2)}.$$
 (7)

Этот результат обобщает полученный ранее в [5] и переходит в него в пределе $c_1 = c_2 = c \ll 1$ (см. (1)).

Величина P(t) имеет смысл вероятности того, что барьер будет давать время задержки, превышающее t. Среднее время задержки вычисляется с ее помощью как

$$\bar{t} = \int_{0}^{\infty} t \, \frac{dP}{dt} \, dt = \int_{0}^{\infty} P(t) dt.$$
(8)

Из найденного поведения P(t) при больших t (6) видно, что среднее время задержки \bar{t} обращается при $\delta \leq 1$ в бесконечность. Следовательно, флуктуации плотности атомов раствора обращают в этом случае в нуль среднюю скорость движения кинков и приводят к аномальному характеру их подвижности.

Время преодоления кинком некоторого расстояния *l* в аномальном режиме определяется не "средними" барьерами, а в основном задержкой на наиболее сильном препятствии, встречающемся на длине *l*. Хотя в настоящее время существуют достаточно строгие математические подходы к описанию кинетических законов в этой ситуации (например, [19]), будем следовать первоначальной физически наглядной схеме [5], дающей правильные результаты с нужной нам точностью и понимание качественной картины явления.

Длина пробега за время *t* определяется при этом средним расстоянием между барьерами с временем

преодоления t. Число таких барьеров на длине L составляет примерно $(L/x_0)P(t)$, где L/x_0 играет роль числа независимых "ячеек" для барьеров с характерным размером x_0 . Среднее расстояние между интересующими нас барьерами оценивается, следовательно, как

$$l(t) \approx x_0 (t/\tau_m)^{\delta}.$$
 (9)

Отметим, что в отличие от (1) в (9) фигурирует новое значение показателя δ , определяемое более общим выражением (7).

3. Подвижность дислокаций при аномальной кинетике кинков

Перейдем теперь к описанию движения дислокации в целом. Пусть g — частота спонтанного рождения пар кинков в единицу времени на единице длины дислокации. Длина пробега кинков на достаточно длинных дислокационных сегментах ограничивается аннигиляцией с кинками из других независимо рождающихся пар. Из-за рождения новых пар кинков среднее расстояние между ними уменьшается со временем и к моменту t составляет 1/(gt). Когда средняя длина пробега кинков и переход дислокации в следующую долину рельефа. Таким образом, время перехода $t_{\rm tr}$ определяется из условия $l(t_{\rm tr}) \sim 1/(gt_{\rm tr})$, откуда получаем

$$t_{\rm tr} \approx \tau_m (\tau_m x_0 g)^{-1/(1+\delta)}.$$
 (10)

Скорость дислокации $V = a/t_{\rm tr}$ есть, следовательно,

$$V \approx \frac{a}{\tau_m} \left(\tau_m x_0 g \right)^{1/(1+\delta)},\tag{11}$$

а средний пробег кинков до аннигиляции, при превышении которого длиной дислокационного сегмента *L* скорость дислокации перестает зависеть от *L*, равен

$$L = l(t_{\rm tr}) \approx x_0 (\tau_m x_0 g)^{-1/(1+\delta)}.$$
 (12)

При $\delta \to 1$ с возвращением от аномального режима к нормальному выражения (11), (12) переходят в известные формулы теории Лоте–Хирта [1]: $V \approx a \sqrt{v_k g}$, $L \approx \sqrt{v_k / g}$, где $v_k = D_k / x_0$ — скорость движения кинков. Поскольку температурная зависимость частоты рождения кинков описывается формулой Аррениуса $g = g_0 \exp[-(2E_k + E_m)/kT]$ (где E_k — энергия кинка, g_0 — предэкспоненциальный множитель), энергия активации скорости дислокаций E, согласно теории Лоте–Хирта для чистых материалов, равна $E = E_k + E_m$. В аномальном режиме, описываемом формулой (11), "эффективная" энергия активации оказывается равной

$$E = 2E_k/(1+\delta) + E_m. \tag{13}$$

Таким образом, в аномальном режиме из-за изменения δ с напряжением появляется дополнительная сильная

(экспоненциальная) зависимость скорости дислокаций от напряжения, которая может заметно превосходить соответствующую зависимость в чистом материале, часто имеющую степенной вид.

Статистическая неоднородность твердого раствора должна также сказываться на частоте зарождения кинков, так как вследствие вариаций потенциального рельефа существуют благоприятные места для образования пар кинков с локально пониженной высотой барьера. Это создает тенденцию повышения подвижности дислокаций и разупрочнения материала. В таком случае частоту рождения пар кинков *g* следует заменить усредненной величиной \bar{g} , что может приводить к замене входящей в формулу (13) величины E_k "эффективной" энергией кинка, имеющей несколько меньшее значение. Этот эффект, важный для металлов с ОЦК-структурой при небольшой степени легирования [4], имеет второстепенное значение для достаточно концентрированных твердых растворов, и им в настоящей работе пренебрегается.

4. Аномальное твердорастворное упрочнение материалов

Сильное торможение кинков флуктуациями плотности атомов раствора снижает подвижность дислокаций и является более эффективным механизмом упрочнения материалов, чем обычно рассматриваемое упрочнение одиночными атомами. Простейший способ связать подвижность дислокаций с макроскопической пластичностью заключается, как известно, в использовании соотношения Орована

$$\dot{\varepsilon} = \rho b V, \tag{14}$$

где $\dot{\varepsilon}$ — скорость пластического течения, ρ — плотность подвижных дислокаций. Подстановка в (14) выражения (11) для скорости дислокаций при $\delta < 1$ и выра-

Рис. 2. Концентрационная зависимость деформирующего напряжения $Ge_{1-c}Si_c$. Точки — экспериментальные данные [15], T = 1173 K, $\dot{\varepsilon} = 1.8 \cdot 10^{-4} s^{-1}$, сплошная линия — результат расчета по формуле (15). Пунктирная линия показывает линейную интерполяцию между значениями деформирующего напряжения в чистых Ge и Si.

жения Лоте–Хирта при $\delta \geq 1$ дает возможность описать зависимость деформирующего напряжения от температуры, скорости деформации и других параметров как сравнительно чистых материалов при малых концентрациях атомов раствора, так и сильно упрочненных твердых растворов при более высоких концентрациях.

В случае концентрированных твердых растворов следует, вообще говоря, принимать во внимание модификацию материальных параметров. Ограничимся в дальнейшем описанием непрерывных твердых растворов $A_{1-c}B_c$, не изменяющих свою структуру во всей области концентраций $0 \le c \le 1$, со сравнительно плавно меняющимися материальными параметрами, такими как постоянные решетки, энергия активации движения дислокаций E и т.д. В этом случае изменение параметров может быть аппроксимировано линейной интерполяцией между крайними значениями.

Будем пренебрегать в дальнейшем динамическим старением и полагать $c_1 = c_2 = c$. Соотношение Орована дает

$$\sigma = \sigma_i + c(1-c) \frac{u^2}{a a_1 b k T} \frac{2E_k + E_m - k T \ln(\dot{\varepsilon}_0/\dot{\varepsilon})}{k T \ln(\dot{\varepsilon}_0/\dot{\varepsilon}) - E_m}.$$
 (15)

Здесь σ_i — внутренние напряжения, $\dot{\varepsilon}_0$ — постоянная, в которую собраны все предэкспоненциальные множители, зависимостью которых от σ в аномальном режиме можно пренебречь.

Теория иллюстрируется на примере твердого раствора Ge_{1-c}Si_c. В этом материале период решетки меняется от 5.66 · 10⁻¹⁰ m в чистом Ge до 5.43 · 10⁻¹⁰ m в чистом Si, a E переходит от 1.6 eV в Ge к 2.3 eV в Si. Обращает на себя внимание тот экспериментальный факт, что деформирующее напряжение твердого раствора намного выше, чем в составляющих его материалах. Так, по данным [15], при $\dot{\varepsilon} = 1.8 \cdot 10^{-4} \, \mathrm{s}^{-1}$ и T = 1173 К деформирующее напряжение чистого Ge составляет $\sigma \approx 0.6$ MPa, в чистом Si $\sigma \approx 9$ MPa, а в ${\rm Ge}_{0.6}{
m Si}_{0.4}$ $\sigma \approx 35\,{
m MPa}$. Концентрационная зависимость деформирующего напряжения по данным [15] приведена на рис. 2, она имеет ярко выраженный колоколообразный вид. Поскольку основная зависимость от концентрации в (15) дается фактором c(1-c), это может объяснить представленые на рис. 2 данные.

Отметим, что при добавлении в чистый кремний атомов германия в небольшой концентрации наблюдается незначительное разупрочнение исходного материала (рис. 2), связанное, по-видимому, с уменьшением энергии образования кинков. Сам по себе этот эффект интересен, но на фоне изучаемого в настоящей работе сильного упрочнения более концентрированных твердых растворов он имеет второстепенное значение и не оказывает существенного влияния на величину деформирующего напряжения. Небольшая область концентрационной зависимости вблизи чистых компонентов будет исключаться из описания, а некоторая наблюдаемая асимметрия кривой будет моделироваться изменением параметров, включающих внутренние напряжения σ_i . Концентрационную зависимость внутренних напряжений будем линейно интерполировать между крайними значениями $\sigma_i = (0.6 + 8.4c)$ МРа. Параметры интерполируются между значениями для чистых компонентов, взятых из работ [20–23], как $E_k \approx 0.7$ eV, $E_m \approx 0.9 + 0.7c$, $\ln(\dot{\epsilon}_0/\dot{\epsilon}) \approx 20 + 0.5c$. Параметр *и* подбирается подгонкой теоретической формулы (15) к экспериментальным данным [15] и оказывается равным $u \approx 0.18$ eV. Ввиду недостаточности данных концентрационная зависимость *и* не определялась, и полученное значение дает лишь некоторую среднюю оценку, имеющую разумный порядок величины.

5. Заключение

Итак, в настоящей работе показано, что торможение дислокационных кинков флуктуациями плотности атомов различных компонент твердого раствора является эффективным механизмом сопротивления движению дислокаций и в результате приводит к упрочнению материала. Вследствие флуктуационной природы торможения рассчитанное увеличение деформирующего напряжения оказывается наиболее сильным в промежуточной области концентраций раствора, соответствующей наибольшей степени разупорядоченности материала, и обращается в нуль при переходе к любому из компонентов. Такое поведение объясняет наблюдаемую в экспериментах ярко выраженную колоколообразную форму концентрационной зависимости деформирующего напряжения твердых растворов.

Список литературы

- J.P. Hirth, J. Lothe. Theory of dislocations. 2nd ed. Wiley-Intersience, N.Y. (1982). [Д. Хирт, И. Лоте. Теория дислокаций. Атомиздат, М. (1972). 598 с.].
- [2] A. Seeger. In: Dislocations-1984 / Eds P. Veyssiere, L. Kubin, J. Castaing. CNRS, Paris (1984). P. 141.
- [3] Crystal lattice defects and dislocation dynamics / Ed. R.A. Vardanian. Nova Science Publishers, Inc., Huntington, N.Y. (2000).
- [4] E. Pink, R.J. Arsenault. Progr. Mater. Sci. 24, 1 (1979).
- [5] Б.В. Петухов. ФТТ 13, 1445 (1971).
- [6] A. Sato, M. Meshii. Acta Met. 21, 753 (1973).
- [7] H. Suzuki. In: Dislocations in solids / Ed. F.R.N. Nabarro. North-Holland Publ. Co., Amsterdam (1979). Vol. 4. P. 191.
 [9] F.F. F. F. Construction (1999).
- [8] Б.В. Петухов. ФТТ **30**, 2893 (1988).
- [9] Я.Г. Синай. Теория вероятностей и ее применения. 28, 247 (1982).
- [10] Yu.L. Iunin, V.I. Nikitenko, V.I. Orlov, B.V. Petukhov. Phys. Rev. Lett. 78, 3137 (1997).
- [11] J.-P. Bouchaud, A. Georges. Phys. Rep. 195, 127 (1990).
- [12] J.W. Haus, K.W. Kehr. Phys. Pep. 150, 263 (1987).
- [13] D.R. Nelson. Statistical properties of unzipping DNA. Condmat/0309559 v1 24 Sep (2003).
- [14] T. Kataoka, T. Uematsu. Jpn. J. Appl. Phys. 17, 271 (1978).
- [15] I. Yonenaga. Physica B 273–274, 612 (1999).

- [16] Б.В. Петухов. Кристаллография 42, 197 (1997).
- [17] V.M. Vinokur. J. Phys. (Paris) 47, 1425 (1986).
- [18] R. Kubo. Statistical mechanics. North-Holland Company, Amsterdam (1965). [Р. Кубо. Статистическая механика. Мир, М. (1967). 452 с.].
- [19] В.В. Учайкин. УФН 173, 847 (2003).
- [20] F. Louchet, D. Cochet Muchy, Y. Brechet, J. Pelisser. Phil. Mag. A57, 327 (1988).
- [21] Yu.L. Iunin, V.I. Nikitenko. Phys. Stat. Sol. (a) 171, 17 (1999).
- [22] H. Alexander, H.R. Kolar, J.C.H. Spence. Phys. Stat. Sol. (a) 171, 5 (1999).
- [23] T. Kruml, D. Caillard, C. Dupas, J.-L. Martin. J. Phys. Cond. Matter 14, 12 897 (2002).

246