Структурные и радиационные центры окраски и диэлектрические свойства примесных кристаллов алюмоиттриевого граната

© Н.А. Кулагин, Я. Дойчилович*

Харьковский национальный университет радиоэлектроники, 61045 Харьков, Украина * Университет Белграда, 11000 Белград, Сербия

E-mail: nkulagin@bestnet.kharkov.ua,jablan@ff.bg.ac.yu

(Поступила в Редакцию в окончательном виде 28 марта 2006 г.)

Проведен анализ экспериментальных и теоретических результатов исследования спектральных и диэлектрических свойств кристаллов граната Y₃Al₅O₁₂. Изучены кристаллы, выращенные в различных условиях, беспримесные и содержащие примесь ряда ионов группы железа (Ti, Cr, Fe), до и после облучения *γ*-квантами и высокоэнергетическими электронами. Обсуждается модель образования центров окраски и их влияния на радиационно-оптические и диэлектрические свойства.

Работа выполнена в рамках проекта НИР г/б № 206 Министерства образования и науки Украины и грантов № 1996 и 141021 Сербии и Черногории.

PACS: 78.40.Ha, 77.22.Ch, 81.40.Wx

Кристаллы простых и сложных оксидов остаются одним из наиболее изучаемых объектов [1,2]. В последние годы значительно возрос интерес к образцам с размерами порядка $10^{-6} - 10^{-9}$ m, что связано с изменением спектральных и других физических свойств кристаллов при уменьшении их размеров (в частности, возможно увеличение интенсивности люминесценции). Хорошо известно [3,4], что оксидные материалы относятся к соединениям, в которых возможна значительная концентрация анионных вакансий. Это свойство предполагает изменение концентрации анионных вакансий и стехиометрического состава кристаллов в процессе роста и термического отжига, что позволяет целенаправленно изменять некоторые физические свойства образцов. Нарушение стехиометрии оксидных соединений, например кристаллов со структурой граната $(A_{3}B_{2}C_{3}O_{12})$, при изменении классического отношения содержания ионов кислорода и катионов A/O, A/B, В/С в процессе выращивания или термического отжига образцов приводит к появлению повышенной концентрации структурных дефектов и связанного с ними дополнительного поглощения. Для некоторых оксидных соединений, содержащих ионы групп железа и лантана, наблюдается изменение электронного состояния регулярных ионов вследствие компенсации заряда анионных вакансий [5,6].

Варьирование условий выращивания кристаллов, как и последующий термический отжиг (технический или высокотемпературный), все чаще используется в качестве технологического приема для изменения спектральных свойств образцов. Влияние технологических приемов особенно заметно при изучении воздействия радиации различных видов и доз на свойства оксидных монокристаллов [7]. Исследованию радиационно-спектральных свойств оксидных монокристаллов различной кристаллографической структуры посвящено большое число работ (см. в [3]). Отметим, что изучению свойств кристаллов со структурой граната $A_3B_2C_3O_{12}$ также посвящено значительное число работ (см., например, [5,6]).

Известно, что введение примесей ионов группы железа (Ме-ионов) или редкоземельных ионов приводит к изменению спектральных свойств кристаллов, связанному как с появлением полос поглощения и люминесценции примесных ионов во всей области прозрачности кристаллов, так и с образованием структурных и примесных дефектов и центров окраски [8,9]. Внедрение примесных ионов в концентрации более 10^{-3} wt.% приводит к существенному изменению электронной структуры оксидных соединений и перераспределению зарядов по дефектам, ловушкам и центрам окраски [6].

Облучение кристаллов различными видами и дозами радиации в большинстве случаев приводит к появлению дополнительных оптических полос поглощения — так называемого наведенного поглощения (НП) [7]. Обычно полосы НП связаны с перезарядкой структурных дефектов и изменением электронного состояния (валентности) примесных ионов.

Таким образом, существенное влияние технологии выращивания кристаллов на их спектральные свойства позволяет получить и исследовать образцы с различной концентрацией структурных и примесных дефектов, т.е. образцы с различной электронной структурой и различающимися физическими свойствами.

В настоящей работе предпринята попытка изучения радиационно-спектральных и диэлектрических свойств монокристаллов алюмоиттриевого граната Y₃Al₅O₁₂ (YAG), полученных различными методами из шихт разного качества, с целью отделить фундаментальные свойства YAG от влияния факторов технологии получения кристаллов.

Образцы и экспериментальные методы

Изучались образцы алюмоиттриевого граната, полученные различными методами: Вернейля, направленной кристаллизации (горизонтальной и вертикальной), а также методом Чохральского. При этом использовались различные параметры кристаллизации, материал контейнера (иридий, молибден), атмосфера выращивания, условия термической обработки (вакуум, H₂, CO, CO₂, Аг при T = 600 - 1800 K). Шихта 1 содержала примеси ионов группы железа, прежде всего хрома и железа в концентрации порядка 10^{-4} wt.%. Шихта 2 очищалась от примесей ионов группы железа химическими методами с уменьшением концентрации Ме-ионов на порядок. Очистка шихты 3 проводилась путем рекристаллизации. Специально не активированные кристаллы тем не менее содержали примеси ряда ионов, в том числе и ионов группы железа, и их можно назвать номинально чистыми образцами. Активирование образцов ионами группы железа проводилось на стадии подготовки шихты. В ряде случаев на стадии подготовки шихты использовалось соактивирование образцов граната ионами Мg или Са.

При исследовании спектральных свойств образцов применялись стандартные методы регистрации спектров поглощения и люминесценции во всей области прозрачности кристаллов. Изучение спектров электронного парамагнитного резонанса (ЭПР) проводилось при $\lambda = 3$ сm, T = 77 и 300 K [8]. Спектры термолюминесценции и термопроводимости, т.е. графики зависимости интенсивности люминесценции и силы тока термопроводимости от температуры, в интервале $T = 100 - 1000 \,\mathrm{K}$ регистрировались одновременно [10-12]. Для определения стехиометрии образцов и стабильности электронного состояния регулярных и примесных ионов применялся метод валентных сдвигов рентгеновских линий (РЛ) с использованием рентгеновского микроанализатора и двухкристального рентгеновского спектрометра [3,6,13]; у-облучение образцов с энергией 1.25 MeV проводилось при T = 90 и 300 K дозами до 10^4 Gy, облучение электронами с энергией E = 2 и 10 MeV — при T = 300 K дозами до 10^{15} cm $^{-2}$.

Диэлектрические измерения ε_0 и tan δ проводились в интервале температур T = 40-300 K. Температурные зависимости диэлектрических параметров $\varepsilon(T)$ и tan $\delta(T)$ измерялись в вакууме 10^{-5} Torr на частоте 1 MHz. При этом использовался прибор RLC meter HP4271B с мостом Boonton Electronics 75D. Охлаждение образцов до 10 K и контроль температуры и скорости ее изменения проводились на установке 22с-Cryodin фирмы Lake Shore Cryotronics, Inc. Относительная погрешность определения значений диэлектрических параметров составляла 1-5% при погрешности определения температуры 0.2-0.5 K [14]. Монокристаллы YAG были выращены методами горизонтальной и вертикальной направленной кристаллизации в вакууме или в атмосфере аргона. Кристаллы, полученные методом Чохральского, выраще-

Рис. 1. Упрощенная схема рентгеновского микроанализатора. *1* — электронный зонд, *2* — образец, *3* — кристалланализатор, *4* — детектор.

ны в атмосфере аргона. Концентрация примесных ионов группы железа варьировалась от 10^{-2} до $5 \cdot 10^{-1}$ wt.%.

Метод валентных сдвигов РЛ, подробно описанный в работах [3,5,15], использован при исследовании изменения электронного состояния (валентности) примесных и регулярных ионов до и после облучения и/или термического отжига кристаллов граната. В основе метода лежит зависимость энергии максимума РЛ от электронного состояния иона (числа "внешних" электронов). Изменение энергии РЛ при увеличении или уменьшении числа 3d- или 4f-электронов ионов групп железа или лантана составляет около 1 eV. Направление смещения РЛ однозначно свидетельствует о характере изменения валентности иона, а величина смещения — валентный сдвиг — позволяет рассчитать относительную и абсолютную концентрацию ионов, изменивших электронное состояние.

Упрощенная схема эксперимента показана на рис. 1. Электронный зонд диаметром около $1\,\mu$ m (ток порядка 10 nA) возбуждает в образце флуоресцентное рентгеновское излучение, которое диспергируется кристаллом-анализатором и регистрируется пропорциональным счетчиком. Интенсивность рентгеновского излучения тестируемых образцов (эталона и изучаемых кристаллов) для уменьшения погрешности эксперимента определяется на каждом шаге поворота кристаллаанализатора (шаг 1"). Профиль РЛ описывался функцией Лоренца. Отличие интенсивности РЛ для разных точек образца составляло от 1 до 3%. Точность определяется.

Порог чувствительности методики при определении суммарной концентрации примесных ионов (с учетом соответствующих поправок [16]) составлял порядка 10^{-4} wt.%, а при определении стабильности электронного состояния — порядка 10^{-2} wt.%.

Интенсивное оптическое поглощение номинально чистых кристаллов YAG начинается вблизи 154 nm (рис. 2). Поглощение в ВУФ–УФ-области спектра связано с полосами 162, 182, 227 и 260 nm [17,18]. Как показали исследования, интенсивность двух последних плос в кристаллах, полученных методом направленной кристаллизации, зависит от атмосферы выращивания и примесного состава. Люминесценция образцов в области 320 nm возбуждается в полосах поглощения, что свидельствует о возможности образования сложных центров или каскадном характере распада комплекса.

Облучение номинально чистых образцов YAG приводит к появлению спектра НП с максимумами 227 и 260 nm. При этом при температурах до 600 K в областях 246, 279, 295, 311 и 320 nm наблюдались *in situ* пики термопроводимости и термолюминесценции. Спектр рентгеновской люминесценции также содержит полосы 246, 279, 295, 311 и 320 nm. Отметим, что в отличие от данных, полученных для лейкосапфира [6], интенсивность полос термопроводимости и термолюминесценции для YAG изменяется синбатно. Сводные данные влияния условий выращивания (вакуум или азот) на спектры термолюминесценции и термопроводимости после облучения кристаллов YAG приведены в табл. 1, где также представлены данные расчета энергии "ловушек".

3. Спектральные свойства примесных кристаллов

В качестве объектов исследований были выбраны образцы YAG с примесью ионов Ti, Cr, Fe в концентрации от 10^{-3} до $5 \cdot 10^{-1}$ wt.%. Спектральные свойства примесных кристаллов до облучения хорошо известны [3,9]. Для кристаллов YAG: Ti с концентрацией примеси порядка 10^{-2} wt.% характерны полосы поглощения 430, 500 и 650 nm, соответствующие переходам в примесных ионах Ti³⁺ и сопутствующих кислородных вакансиях, захвативших электрон. Для образцов YAG: Fe при $C_{\rm Fe} \sim 3 \cdot 10^{-2}$ wt.% характерны полосы поглощения в области 370–800 nm, соответствующие переходам ионов

Таблица 1. Значения температуры пиков термолюминесценции (TL) и термопроводимости (TC), а также значения энергии центров захвата в чистых кристаллах YAG

Параметры	YAG (вакуум)	ҮА (азот)		
T _{TL} , K	425, 555	377, 420, 490, 547, 602		
T _{TC} , K	428, 560	380, 423, 495, 552, 607		
E, eV	0.95, —	0.86, -, 1.05, 1.51, 2.1		

Рис. 2. Спектр поглощения кристаллов YAG в ВУФ–УФобласти спектра. *1* — образец, выращенный из стандартной шихты методом Чохральского, *2* — образец, выращенный из очищенной шихты методом вертикальной кристаллизации.

Рис. 3. Спектр поглощения кристаллов YAG: Сг до (I) и после (2) γ -облучения дозой 10⁴ Gy.

Fe³⁺ в октаэдрических узлах кристаллической решетки граната.

После облучения дозами до 10⁴ Gy интенсивность полос поглощения кристаллов граната с примесью ионов титана уменьшается на 15–20%. Интенсивность оптического поглощения кристаллов с примесью ионов железа после облучения практически не меняется.

Наиболее полные данные получены для кристаллов YAG с примесью ионов хрома. Зависимость спектра оптического поглощения от концентрации примесных ионов (прежде всего, ионов Cr^{3+}) при облучении раз-

Рис. 4. Зависимость интенсивности ЭПР-линии $1/2 \leftrightarrow -1/2$ иона Cr^{3+} в YAG от C_{Cr} и дозы γ -облучения: 10^3 (*I*), 10^4 (*2*), 10^5 Gy (*3*).

личными дозами у-квантов и электронов была детально изучена в работах [15-18]. Дополнительное внедрение ионов Мд или Са может не приводить к изменению оптического спектра исходных образцов YAG: Cr, но изменяет их радиационно-спектральные свойства. Спектры оптического поглощения исходных образцов YAG: Cr (вертикальная кристаллизация) до и после у-облучения и термического отжига показаны на рис. 3. На рис. 3 приведен стандартный спектр интенсивных U- и V-полос ионов Cr³⁺ в октаэдрическом окружении (до облучения кристаллов) [18]. После облучения кристаллов YAG: Cr или высокотемпературного окислительного отжига образцов YAG: Cr: Мд наблюдаются полосы НП с максимумами при 253, 282, 417, 488 nm. Подобные четыре полосы НП наблюдались и для у-облученных кристаллов рубина [3], что связывалось с переходом части ионов Cr^{3+} в состояние Cr^{4+} [19].

Для облученных кристаллов YAG: Сг в отличие от кристаллов рубина характерна нелинейная зависимость интенсивности и полуширины ЭПР-линий $1/2 \leftrightarrow -1/2$ ионов хрома от концентрации хрома и дозы облучения. Соответствующие кривые показаны на рис. 4. Существенно нелинейная зависимость интенсивности линии ЭПР от концентрации ионов хрома и дозы облучения кристаллов граната является весьма необычной. Вместе с тем, как и в рубине, наблюдается исчезновение всех линий спектра НП после отжига облученных кристаллов граната на воздухе при T = 900 K в течение 600 s.

Стабильность электронного состояния регулярных и примесных ионов кристаллов граната

Исследовалось смещение максимума энергии РЛ регулярных и примесных ионов образцов YAG до и после облучения по методике, описанной в разделе 1. Анализ экспериментальных данных по изменению спектров поглощения кристаллов YAG: Сг после γ -облучения дозой $10^2 - 10^4$ Gy, как и в случае образцов, прошедших термический отжиг, позволяет предположить возможность изменения электронного состояния примеси в процессе облучения (отжига). В этом случае анализ смещения РЛ позволяет сделать выводы о характере изменений и определить концентрацию ионов, изменивших валентность.

Прежде всего, изучение влияния максимальной дозы облучения и термического отжига на электронное состояние регулярных катионов решетки граната (как неактивированных, так и с примесью ионов группы железа) не выявило смещения РЛ, что свидетельствует от высокой стабильности электронной конфигурации этих ионов. Однако у-облучение YAG: Сг при концентрации примеси около 10⁻¹ wt.% сопровождается смещением кривой интенсивности РЛ иона хрома $\operatorname{Cr} K_{\alpha_1}$ в область меньших значений энергий при дозах начиная с 10² Gy. Профиль Сг K_{а1}-линии в гранате до и после облучения показан на рис. 5. Образец металлического хрома использовался как эталон при измерениях полуширины и валентного сдвига Cr K_{а1}-линии. Математическая обработка профиля РЛ функциями Лоренца позволяет рассчитать значение сдвига Cr K_{α_1} -линии как $\Delta E(\operatorname{Cr} K_{\alpha_1}) = -(0.22 \pm 0.08) \, \mathrm{eV}.$ Отрицательное значение смещения Сг Ка1-линии однозначно свидетельствует об увеличении валентности части ионов хрома, т.е. о доминирующем влиянии процесса с переходом $\operatorname{Cr}^{3+} \to \operatorname{Cr}^{4+} [3]$.

Относительную концентрацию ионов Cr^{4+} в кристаллах после облучения или отжига можно определить с помощью выражения $C(Cr^{4+}) = \frac{\Delta E_x^{exp}}{\Delta E_x^{theor}} \cdot 100\%$, где ΔE_x^{exp} и ΔE_x^{theor} — экспериментальное и теоретическое значения смещения. В этом случае относительная концен-

Рис. 5. Профиль Сг K_{α_1} -линии до (1) и после (2) γ -облучения кристалла YAG: Сг дозой 10⁴ Gy.

трация ионов Cr^{4+} после облучения граната составляет $C_{Cr^{4+}} = 18.3 \pm 6.7\%$. Отметим, что интенсивность ЭПР-линии $1/2 \leftrightarrow -1/2 \ Cr^{3+}$ в YAG в зависимости от концентрации примеси и дозы облучения уменьшается в пределах от 4 до 18% [3]. Отметим также, что исследование сдвига рентгеновской $Cr K_{\alpha_1}$ -линии образцов после термического отжига при 900 К в течение 600 s предварительно облученных γ -квантами кристаллов не выявило смещения линии в пределах погрешности эксперимента. Это свидетельствует об обратном характере изменения валентности ионов хрома в процессе отжига образцов граната, что согласуется с оптическими и ЭПР-данными.

Исследования валентного сдвига РЛ для кристаллов граната с примесью ионов титана и железа не привели к однозначным выводам о стабильности электронного состояния примесей из-за недостаточной концентрации примеси.

5. Результаты диэлектрических измерений

Графики температурной зависимости диэлектрических параметров $\varepsilon(T)$ для изученных кристаллов до и после облучения приведены на рис. 6, 7. В соответствии с литературными данными значение низкочастотной диэлектрической проницаемости равно $\varepsilon_0 = 10.55$, при частоте 20 GHz $\varepsilon_0 = 10.60$ [20].

Температурные зависимости $\varepsilon(T)$ для номинально чистых и легированных образцов до и после облучения различаются не очень сильно. Вместе с тем сам характер температурной зависимости $\varepsilon(T)$ у номинально чистых образцов весьма интересен, поскольку кривая имеет несколько точек перегиба. Прежде всего это особенности в области 60–200 К: 59, 78, 137, 183 К и наиболее заметная — 221 К — в случае кристаллов и 61, 81, 142, 183 и 229 К в случае облученных образцов.

Рис. 6. Температурная зависимость $\varepsilon(T)$ для кристаллов YAG (вертикальная кристаллизация) до (1) и после (2) γ -облучения.

Рис. 7. Температурная зависимость $\varepsilon(T)$ для кристаллов YAG с примесью ионов Ті, Сг и Fe до (*a*) и после (*b*) γ -облучения.

Если первые две и четвертую особые точки можно считать не зависящими от облучения образцов, то изменение температуры на 5 К для третьей точки и на 8 К для последней у облученных кристаллов нельзя отнести на счет погрешности эксперимента. Излом кривых на графиках $\varepsilon(T)$ для исходного и облученного кристаллов, возможно, свидетельствует о ротационном характере изменения кристаллической структуры граната, подобном эффекту в титанате стронция при T = 105 К. В последнем случае также наблюдается излом кривых $\varepsilon(T)$ [21]. Отметим, что как гамма-, так и электронное воздействие на образцы граната приводит к небольшому уменьшению абсолютных значений ε_0 и изменению зависимости $\varepsilon(T)$. Соответствующие графики приведены на рис. 6.

Внедрение примесных ионов приводит к уменьшению абсолютных значений диэлектрической проницаемости граната на 20–25%. Для кристаллов YAG: Ті при T = 300 К значения ε_0 уменьшаются до 8.37, для YAG: Fe — до 8.12, для YAG: Cr до 7.85. Уменьшение абсолютных значений ε_0 при 300 К, по-видимому, связано с изменением условий выращивания кристаллов и увеличением концентрации кислородных вакансий. Вместе с уменьшением абсолютных значений ε_0 наблюдается изменение температурного хода кривых. Для примесных кристаллов практически отсутствуют особые точки на кривых $\varepsilon(T)$. Если для кристаллов YAG: Fe можно выделить слабую аномалию при T = 220 K (рис. 7, *a*), то для кристаллов YAG: Cr и тем более для YAG: Ti некоторые аномалии ввиду их малости можно списать на погрешность эксперимента. Экспериментальные зависимости $\varepsilon(T)$ до облучения кристаллов представлены на рис. 7, *a*.

На рис. 7, *b* показаны зависимости $\varepsilon(T)$ для изученных кристаллов после облучения. Они подобны кривым для номинально чистых образцов. Вместе с тем облучение кристаллов приводит к увеличению ε_0 при комнатной температуре для образцов YAG: Ті до 8.43 и для YAG: Fe до 8.82. Для образцов с примесью ионов хрома облучение приводит к уменьшению значений ε_0 до 7.58. Полученные данные указывают на существенную зависимость диэлектрических параметров монокристаллов YAG от типа внедряемой примеси, ее концентрации и условий отжига образцов.

Теоретический расчет энергии оптических полос и рентгеновских линий

Для интерпретации спектра НП кристаллов YAG: Сг методом самосогласованного поля для кластеров были проведены *ab initio* расчеты энергии РЛ и энергии $d \leftrightarrow d$ -переходов Ме-ионов. Особое внимание уделено ионам в кластере $Cr^n : [O^{2-}]_k$, в котором примесный ион находится в окружении *k*-ионов ближайшего окружения O^{2-} . Симметрия кластера (октаэдрическая или тетраэдрическая) соответствует симметрии ближайшего окружения ионов хрома в решетке граната [3,6].

Теоретическое значение энергии Сг K_{α_1} -линии, рассчитанное как разность энергий $n'l'3d^N$ -конфигураций при n'l' = 1s и 2p с учетом спин-орбитального взаимодействия, равно $E(K_{\alpha_1}) = 5412.14$ eV. Экспериментальное значение энергии Сг K_{α_1} -линии для металлического хрома составляло $E(K_{\alpha_1}) = 5411.88$ eV [15]. Теоретическое значение валентного сдвига Сг K_{α_1} -линии при увеличении валентности иона составляет $\Delta E(\mathrm{Cr}^{3+} \to \mathrm{Cr}^{4+}) = 1.20 \,\mathrm{eV}$ [3]. Используя одноэлектронное приближение и функции центрального поля, энергию кластера можно записать в виде [3,6]

$$E(\operatorname{Me}^{n}:[L]_{k}) = E_{0} + kE_{1} + k'(E_{z} + E_{c} + E_{ex}), \quad (1)$$

где $E_0(E_1)$ — энергия центрального иона (лиганда) в свободном состоянии, члены E_z , E_c и E_{ex} описывают энергию вазимодействия ионов кластера. Детальные выражения для членов E_z , E_c и E_{ex} в уравнении (1) приведены в работах [3,6,19].

Минимизация выражения (1) относительно радиальных орбиталей ионов кластера позволяет записать уравнения самосогласованного поля для кластера

$$\left[\frac{d^2}{dr^2} + \frac{2}{r}Y'(nl|r) - \varepsilon_{nl} - \frac{l(l+1)}{r^2}\right]P(nl|r)$$
$$= X'(nl|r) + \sum_{n' \neq n} \varepsilon_{n'l}P(n'l|r), \quad (2)$$

которые отличаются от кулоновского и обменного потенциалов в уравнениях Хартри-Фока дополнительными членами

$$\Delta Y(nl|r) = r/2 \sum_{k,k_1,n'l'} \left[a_{ll'}^{kk_1} Y_{kk_1}(n'l',n'l'|r) + b_{ll'}^{kk_1} Y_{kk_1}(nl,n'l'|r) \right],$$

$$\Delta X(nl|r) = -\sum_{k,k_1,n'l'} \left[a_{ll'}^{kk_1} Y_{kk_1}(nl,n'l'|r) + \beta_{ll'}^k r^{k_1} \right]$$

$$\times P(n'l'|r), \qquad (3)$$

зависящими от волновых функций всех ионов кластера.

Входящие в выражения (2), (3) функции Y(nl|r) и X(nl|r) представляют собой прямой и обменный потенциалы Хартри-Фока, P(nl|r) — радиальная часть одноэлектронной волновой функции, а ε_{nl} — одноэлектронная энергия [3]. Входящие в выражения (3) тензоры и функции $Y_{kk_1}(nl, n'l'|r)$ подробно рассмотрены в работах [3,6].

Окончательное выражение для энергии штарковских компонент Ме-иона в кристалле можно записать в виде

$$E(nl^{N}|\alpha\alpha' LSJ\Gamma) = E_{0} + \sum_{i} e_{i}(l^{N}, \alpha\alpha' LS)E_{i}(nl, nl) + \chi(LSL'S', J)\eta(nl) + \sum_{k,q,i} B_{kq}Y_{kq}(\Theta_{i}\Phi_{i}),$$
(4)

в котором E_0 — центр тяжести nl^N — конфигурации, а $E_i(nl, nl)$ и $\eta(nl)$ — радиальные интегралы Рака

Таблица 2. Зависимость энергии переходов иона Cr^{3+} в кластере $Cr^{3+}:[O^{2-}]_6$ от межионного расстояния (в $cm^{-1})$

$R_{\rm Cr-O}, {\rm \AA}$	^{2}E	$^{2}T_{1}$	${}^{4}T_{2}$	$^{2}T_{2}$	${}^4T_1(t_2^2e)$	$^{4}T_{1}(t_{2}e^{2})$
2.0	14850	15652	16 500	22 171	24 229	37 661
1.96	14 220	14969	18 100	21 538	25811	40 324
1.9	12 500	13 113	20 500	19 392	27659	44 176

Таблица 3. Теоретические значения энергии уровней хрома в кластере $Cr^{4+}: [O^{2-}]_6$ в YAG при $Dq = 2050 \text{ cm}^{-1}$, $B = 1050 \text{ cm}^{-1}$ и $C = 3873 \text{ cm}^{-1}$

$^{2S+1}\Gamma(t, e)$ -уровень	E, cm^{-1}	$^{2S+1}\Gamma(t, e)$ -уровень	E, cm^{-1}
${}^{3}T_{1}(t_{2}^{2})$	0	$^{1}T_{2}(t_{2}e)$	34 909
${}^{1}E(t_{2}^{2})$	15 002	${}^{3}A_{2}(e^{2})$	38 391
$^{1}T_{2}(t_{2}^{2})$	15618	$^{1}T_{1}(t_{2}e)$	38 391
$^{3}T_{2}(t_{2}e)$	18 045	${}^{1}E(e^{2})$	54 429
$^{1}A_{1}(t_{2}^{2})$	30 962	${}^{1}A_{1}(e^{2})$	75683
${}^{3}T_{1}(t_{2}e)$	31 939		

(интегралы *B* и *C* для ионов группы железа) и константа спин-орбитального взаимодействия, B_{kq} — параметры кристаллического поля [3,6].

Результаты расчетов радиальных интегралов для октаэдрических кластеров $\operatorname{Cr}^n : [\operatorname{O}^{2-}]_k$ для трех- и четырехвалентных ионов в октаэдрических (k = 6) кластерах приведены в табл. 2, 3. Приведенная зависимость энергии уровней от величины межионного расстояния достаточно хорошо описывает энергию полос поглощения ионов Cr^{3+} как в рубине, так и в гранате [9].

Как видно из сравнения теоретических и экспериментальных данных, расчет удовлетворительно описывает наблюдаемые оптические спектры примесных ионов хрома в исходном состоянии. Полосы НП хорошо соответствуют переходам кластера Cr^{4+} : $[O^{2-}]_6$.

7. Обсуждение результатов

На основании полученных экспериментальных данных можно сделать вывод, что для номинально чистых кристаллов алюмоиттриевого граната изменение технологии выращивания кристаллов не приводит к образованию каких-либо специфических дефектов, но влияет на изменение концентрации точечных дефектов и спектральных свойств образцов. Влияние кислородных и катионных вакансий $V_{\rm O}^{2-}$, $V_{\rm Al}^{3+}$, $V_{\rm Y}^{3+}$ весьма существенно сказывается на протекании радиационно-стимулированных процессов в кристаллах граната. Экспериментальные исследования показали наличие сложного многоступенчатого механизма образования и распада радиационных центров окраски в кристаллах граната.

Результаты исследования оптических спектров поглощения до и после облучения, спектров ЭПР и термостимулированных процессов в γ -облученных кристаллах алюмоиттриевого граната совместно с данными по смещению РЛ характеристического излучения и результатами теоретических расчетов позволяют представить модель образования радиационных и примесных центров окраски в виде системы электронных (e^-) и/или дырочных (h) центров

$$Me^n \rightarrow Me^{n+1} + e^-$$
или $Me^n \rightarrow Me^{n-1} + h.$ (5)

Для ионов первой половины группы железа (Ti, V, Cr) обычно реализуется первая схема с увеличением эффективного заряда примеси и образованием электронного центра. Для ионов второй половины группы железа реализуется второй (дырочный) механизм образования радиационных центров окраски.

Подобное объяснение легко укладывается в классическую схему дефектообразования. Такой результат легко получить при сравнении значений энергии ионизации Ме-иона I_{Me^n} и значений константы Маделунга α_M для соответствующего катионного узла кристаллической решетки. Все возможные радиационные дефекты, связанные с изменением электронного состояния примеси, описываются соотношением $I_{Me}^n < \alpha_M < I_{Me}^{n\pm 1}$, при помощи которого можно определить возможное электронное состояние примеси и его стабильность.

Образование ионов Cr⁴⁺ при облучении YAG: Cr, очевидно, обусловлено переходом части ионов Cr³⁺ в состояние Cr⁴⁺ с захватом электрона кластером Cr⁴⁺: [O²⁻]₆ и образованием системы, подобной локализованному экситону: $Cr^{4+}: [O^{2-}]_6 + e^-$. Термический отжиг приводит к термоактивации электрона и захвату его ионом хрома: $Cr^{4+} + e^- \rightarrow Cr^{3+}$. В пользу подобной интерпретации радиационно-стимулированных процессов в оксидных кристаллах с примесью ионов хрома свидетельствуют данные о спектрах НП в других кристаллах со структурой граната: гадолиний-скандийгаллиевого, гадолиний-скандий-алюминиевого и иттрийскандий-алюминиевого [13]. Отметим, что в спектрах поглощения всех приведенных кристаллов граната с примесью хрома после облучения наблюдаются четыре полосы НП с максимумами при 253, 300, 417 и 488 nm (для алюмоиттриевого граната) и при 270, 295, 400 и 425 (для сложных гранатов), что указывает на образование подобных (идентичных) центров. Результаты теоретических расчетов подтверждают справедливость этой модели.

Весьма интересными оказались результаты диэлектрических исследований. Наличие изломов на кривой $\varepsilon(T)$ номинально чистых образцов свидетельствует о возможной переориентации кислородных октаэдров при $T \sim 200 \,\mathrm{K}$, что требует дополнительных рентгеноструктурных исследований. Значительное изменение температурной зависимости $\varepsilon(T)$ с внедрением примеси ионов группы железа можно объяснить как изменением условий кристаллизации, так и существенным изменением кулоновского и обменного взаимодействия ионов в решетке граната с примесью ионов группы железа. Небольшое влияние облучения на абсолютные значения диэлектрической проницаемости можно объяснить образованием радиационных центров захвата и появлением значительной концентрации заряженных дефектов, что и вызывает изменение ε_0 . Термический отжиг при 900 К приводит к распаду радиационных дефектов и возвращению ε_0 к исходным значениям.

Авторы благодарны С. Спасович за помощь в проведении диэлектрических измерений.

Список литературы

- [1] А.А. Каминский. Лазерные кристаллы. Наука, М. (1975).
- [2] А.Ф. Константинова, Б.Н. Гречушников, Б.В. Бокуть, Е.Г. Валяшко. Оптические свойства кристаллов. Наука и техника, Минск (1995).
- [3] Н.А. Кулагин, Д.Т. Свиридов. Методы расчета электронных структур свободных и примесных ионов. Наука, М. (1986).
- [4] А.Н. Мень, Ю.П. Воробьев, Г.И. Шувалов. Физико-химические свойства нестехиометрических окислов. Наука, Л. (1973).

241

- [5] И.И. Залюбовский, Н.А. Кулагин, Л.А. Литвинов, Л.П. Подус. ФТТ 23, 846 (1981).
- [6] Physics of laser crystals / Eds J.-C. Krupa, N. Kulagin. Kluwer Academic Publisher, Brussels (2003).
- [7] Т.С. Бессонова. В сб.: Проблемы ядерной физики и космических лучей. Высш. шк., Харьков (1982). Т. 16. С. 3–20.
- [8] А. Абрахам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Пер. с англ. В 2-х т. Мир, М. (1972–1973).
- [9] Д.Т. Свиридов, Р.К. Свиридова, Ю.Ф. Смирнов. Оптические спектры ионов переходных металлов в кристаллах. Наука, М. (1976).
- [10] А.Л. Апанасенко, Н.А. Кулагин. ЖПС 35, 135 (1981).
- [11] Н.А. Кулагин, А.Е. Овечкин, Е.В. Антонов. ЖПС 43, 478 (1985).
- [12] Н.А. Кулагин, Г.Н. Троян-Головян. Опт. и спектр. 74, 141 (1993).
- [13] Л.И. Крутова, Н.А. Кулагин, В.А. Сандуленко, А.В. Сандуленко. ФТТ 31, 170 (1989).
- [14] Я. Дойчилович, Н.А. Кулагин. ФТТ 38, 2012 (1996).
- [15] Н.А. Кулагин, Д.Т. Свиридов. Введение в физику активированных кристаллов. Высш. шк., Харьков (1990).
- [16] Л.Б. Баринский, В.И. Нефедов. Рентгеноспектральное определение заряда атомов и молекул. Наука, М. (1966).
- [17] Н.А. Кулагин, М.Ф. Озеров, В.О. Рохманова. ЖПС 46, 612 (1987).
- [18] Е.В. Жариков, В.В. Осико, И.А. Щербаков. Изв. АН СССР. Сер. физ. 48 1330 (1984).
- [19] Н.А. Кулагин, В.А. Сандуленко. ФТТ 31, 243 (1989).
- [20] Y. Krupka, K. Derzakowski, M. Tobar, J. Harnett et al. Measur. Sci. Tech. 10, 387 (1999).
- [21] N.A. Kulagin, J. Dojcilovic, D. Popovic. Cryogenics 41, 745 (2001).