Перестраиваемая высокочастотная ЭПР-спектроскопия кристаллов LiYF₄ и LiLuF₄, активированных редкоземельными ионами

© Г.С. Шакуров, Б.З. Малкин*, М.В. Ванюнин*, С.Л. Кораблева*

Казанский физико-технический институт им. Е.К. Завойского Российской академии наук, 420029 Казань, Россия * Казанский государственный университет, 420008 Казань, Россия

E-mail: shakurov@kfti.knc.ru

Измерены спектры ЭПР изоструктурных кристаллов LiYF₄ и LiLuF₄, активированных ионами Dy³⁺, Er³⁺ и Ho³⁺, при температуре 4.2 K в области частот 40–800 GHz. Обнаружены и исследованы эффекты, обусловленные изотопическим беспорядком в литиевых подрешетках, случайным кристаллическим полем и взаимодействием между примесными парамагнитными ионами. Результаты измерений использованы для определения спектральных характеристик исследованных соединений и параметров кристаллического поля. Показано, что доминирующую роль в формировании изотопической структуры сигналов ЭПР играют индуцированные дефектами массы локальные деформации кристаллической решетки.

Работа поддержана Министерством образования и науки РФ (проект РНП 2.1.1.7348) и грантом ВНШ.-6213.2006.2.

PACS: 71.70.Ej, 75.10.Dg, 76.30.Kg

1. Введение

Спектральные и магнитные свойства активированных редкоземельными (РЗ) ионами кристаллов двойных фторидов лития-иттрия и лития-лютеция интенсивно исследуются уже в течение нескольких десятилетий. Эти кристаллы являются модельными системами в теоретической спектроскопии и широко используются как эффективные лазерные материалы. Использование субмиллиметровой техники электронного парамагнитного резонанса (ЭПР) дает возможность изучать квантовые переходы между подуровнями основных мультиплетов РЗ-ионов, расщепленных в кристаллическом поле (КП). Из анализа полевых зависимостей частот резонансных переходов, структуры и ширины спектральных линий можно получить информацию о параметрах КП, пространственной структуре парамагнитного центра и взаимодействиях между парамагнитными ионами.

Кристаллы LiYF4 и LiLuF4 имеют тетрагональную структуру (пространственная группа $I4_1/a$), примесные РЗ-ионы замещают ионы Y³⁺ и (Lu³⁺) в узлах с локальной симметрией S₄. Мультиплеты незаполненной электронной 4fⁿ-оболочки некрамерсовых РЗ-ионов с четным *n* расщепляются в КП на синглеты (отвечающие неприводимым представлениям Г1 и Г2 точечной группы S_4) и дублеты Γ_{34} ; спектр крамерсовых ионов состоит из дублетов Г₅₆ и Г₇₈. Внешнее постоянное магнитное поле В смещает штарковские подуровни мультиплетов и расщепляет дублеты. Переменное магнитное поле $\mathbf{B}_1(t)$ частоты ω может индуцировать резонансные переходы как между подуровнями одного дублета, так и между подуровнями различных дублетов, а также переходы дублет-синглет и синглет-синглет. Ранее высокочастотные спектры ЭПР были измерены в концентрированных РЗ-кристаллах LiRF₄ (R = Tb, Er, Ho) [1] и в разбавленном парамагнетике LiYF₄:Ho³⁺ [2,3]. В работе [3] нами была обнаружена тонкая структура сигналов ЭПР, обусловленная изотопическим беспорядком в литиевых подрешетках, идентифицированы линии парных центров, определены характеристики случайного КП низкой симметрии. В настоящей работе приводятся результаты дополнительного экспериментального и теоретического исследования спектров ЭПР монокристаллов LiYF₄ и LiLuF₄ с различными концентрациями примесных РЗ-ионов в расширенной области частот.

2. Результаты измерений

Измерения были выполнены на ЭПР-спектрометре с использованием ламп обратной волны в качестве генераторов в диапазоне частот 40–800 GHz при температуре 4.2 К в постоянном магнитном поле с напряженностью до 1 Т (детальное описание спектрометра приведено в работе [4]). Исследованы монокристаллы LiYF₄:Ho (0.1%, 1%), LiLuF₄:Ho (0.1%, 1%, 2%, 3%), LiYF₄:Er (0.025%) и LiYF₄:Dy (0.05%, 0.02%, 0.005%) с естественным содержанием изотопов лития ⁶Li (7.4%) и ⁷Li (92.6%), выращенные по методу Бриджмена–Стокбаргера, и изотопически обогащенные образцы ⁷LiYF₄:Ho (0.1%) и ⁷Li_{0.1}⁶Li_{0.9}YF₄:Ho³⁺ (0.1%), изученные ранее методами оптической спектроскопии [5].

В спектрах ЭПР кристаллов LiYF₄: Dy³⁺ и LiYF₄: Er³⁺ наблюдались сигналы, отвечающие как переходам между подуровнями основного дублета (Γ_{56} -Dy³⁺, Γ_{78} — Er³⁺), так и между подуровнями основного и первого возубжденного дублетов. Эксперименты выполнены в скрещенных (**B**₁ \perp **B**) и коллинеарных (**B**₁ \parallel **B**) полях; интенсивности спектральных

линий на переходах дублет – дублет существенно зависят от взаимной ориентации постоянного и переменного полей. Сигналы, соответствующие резонансу в основном дублете, содержат интенсивную центральную линию

Рис. 1. Частоты переходов между зеемановскими подуровнями основного и первого возбужденного дублетов ионов Dy³⁺ в кристалле LiYF₄. Точки — данные измерений, сплошные линии — результаты вычислений с параметрами КП, приведенные в таблице.

Рис. 2. Резонансные частоты переходов между подуровнями двух нижних дублетов ионов Er^{3+} в кристалле LiYF₄ в зависимости от магнитного поля **В** || **с.** Точки — данные измерений, сплошные линии — результаты вычислений.

Рис. 3. Изотопическая структура линий ЭПР в кристалле LiYF₄: Er^{3+} (0.025%) на частоте 495 GHz (переходы дублет-дублет) в магнитном поле **В** || **с**.

четных изотопов и разрешенную сверхтонкую структуру нечетных изотопов ¹⁶¹Dy (18.9%) и ¹⁶³Dy (25%) с ядерным спином I = 5/2, ¹⁶⁷Er (24.4%) с ядерным спином I = 7/2. Сверхтонкая структура линии ЭПР наблюдается и на переходах дублет-дублет в ионах Dy³⁺. Зависимости частот сигналов от величины и ориентации постоянного магнитного поля (рис. 1,2) удовлетворительно согласуются с измеренными ранее величинами g-факторов основных и первых возбужденных дублетов ионов Er³⁺ и Dy³⁺ [6,7]. Энергии возбужденных дублетов (Γ_{78} , 433.2 \pm 1 GHz и Γ_{56} , $510 \pm 1 \,\text{GHz}$, в спектрах Dy³⁺ и Er³⁺ соответственно) определены непосредственно по частоте сигналов ЭПР в нулевом магнитном поле и согласуются с данными оптических исследований [8]. Следует заметить, что частоты переходов дублет-дублет изменяются при вращении постоянного магнитного поля вокруг оси симметрии кристаллической решетки.

На переходах дублет—дублет в спектрах кристалла LiYF₄: Er^{3+} впервые наблюдалась тонкая структура линий ЭПР с интервалами 500 ± 50 MHz (рис. 3), подобная наблюдавшейся ранее структуре оптических спектральных линий [9]. Эта структура, обусловленная изотопическим беспорядком в литиевых подрешетках, детально обсуждается далее.

Форма сигналов ЭПР кристаллов LiYF₄: Ho³⁺ и LiLuF₄: Ho³⁺ существенно отличается от спектров эрбия и диспрозия, в которых доминируют линии четных изотопов, поскольку имеется только один изотоп ¹⁶⁵Но с ядерным спином I = 7/2 и с наибольшей среди РЗ-элементов константой магнитного сверхтонкого взаимодействия в основном мультиплете ⁵I₈. Магнитная сверхтонкая структура наблюдалась во всех зарегистрированных сигналах ЭПР, отвечающих четырем типам переходов: между зеемановскими подуровнями основно-

го дублета, между подуровнями основного дублета и первых двух возбужденных синглетов, а также между подуровнями этих синглетов. Наиболее простой вид (восемь почти эквидистантных линий) сверхтонкая структура имеет при ориентации постоянного магнитного поля вдоль оси симметрии решетки c. Если **В** || **с**, переходы дублет-синглет разрешены в скрещенных постоянном и переменном полях, переходы синглет-синглет разрешены в коллинеарных полях. Измеренные полевые зависимости частот разрешенных переходов синглет-синглет и дублет-второй синглет в кристалле LiYF₄: Ho³⁺ представлены на рис. 4. Верхние восемь и нижние восемь ветвей в спектре частот на рис. 4, b отвечают соответственно переходам с нижних и верхних сверхтонких подуровней основного дублета с *g*-факторами *g*_{||} = 13.3 и $g_{\perp} = 0$. В нулевом магнитном поле энергии возбуждения синглетов равны 6.85 и 23.2 cm⁻¹ (эти величины совпадают с данными, полученными методами оптической спектроскопии высокого разрешения [10]). В кристалле LiLuF₄:Ho³⁺ соответствующие энергии равны 5.92 и 26 сm⁻¹ и $g_{\parallel} = 12.7$ (ранее энергия возбуждения первого синглета была определена в работе [11]).

Вследствие смешивания волновых функций основного дублета с волновыми функциями синглетов магнитным

Magnetic field, T

Рис. 5. Спектр ЭПР кристалла LiYF₄: Ho³⁺(1%) и вычисленная производная спектра поглощения на частоте 100 GHz при температуре 4.2 K в коллинеарных постоянном и переменном магнитных полях (**B** || **B**₁ || **c**).

Рис. 6. Изотопическая структура сверхтонких компонент линий ЭПР примесных ионов Ho³⁺ (концентрация 0.1%) в кристаллах ⁷Li_{1-c}⁶Li_cLuF₄ на частоте 205 GHz (*a*) и ⁷Li₆⁶Li_cLi_cYF₄ на частоте 250 GHz (*b*) в магнитном поле **B** \parallel **c**.

Рис. 4. Частоты резонансных переходов между сверхтонкими подуровнями синглетов Γ_2^1 и Γ_2^2 (*a*), основного дублета Γ_{34} и синглета Γ_2^2 (*b*) в зависимости от постоянного магнитного поля, параллельного оси **с**, в кристалле LiYF₄: Но. Точки — данные измерений, сплошные линии соответствуют вычисленным частотам переходов.

сверхтонким взаимодействием и сверхтонких подуровней дублета случайным КП низкой симметрии [12] соответствующие сигналы ЭПР (переходы дублет—первый синглет и переходы между подуровнями дублета с одинаковыми проекциями ядерного спина на ось c) наблюдаются в коллинеарных полях **В** || **В**₁ || **с**. Интенсивности запрещенных переходов имеют сравнимую величину в кристаллах с достаточно большой концентрацией примесных центров, возмущающих кристаллическую решетку. В частности, соответствующие сигналы ЭПР в кристалле LiYF₄:Ho³⁺ (1%) при фиксированной частоте и мощности генератора представлены на рис. 5. Моделирование спектра дало возможность оценить характеристики случайного поля в этом кристалле (см. далее).

Сигналы ЭПР в кристаллах LiYF4: Но и LiLuF4: Но с естественным содержанием изотопов лития и малой концентрацией (0.1%) ионов Но³⁺ имеют разрешенную тонкую структуру с интервалами между соседними компонентами 300 ± 50 MHz (переходы дублет-первый синглет, синглет-синглет). Измерения спектров ЭПР в кристаллах, обогащенных по ⁷Li (тонкая структура не наблюдается) и по ⁶Li (см. рис. 6, в соответствиви с изменением знака дефекта массы изменяется и знак смещений компонент структуры), однозначно указывают на связь этой структуры с изотоптическим беспорядком в литиевых подрешетках. Относительные интегральные интенсивности компонент изотопической структуры качественно согласуются с биномиальным распределением вероятностей заполнения ближайших к РЗ-иону позиций ионов лития изотопами ⁶Li и ⁷Li [13].

Помимо сигналов от изолированных ионов гольмия в спектрах ЭПР присутствуют слабые линии-сателлиты (рис. 7), отвечающие парным центрам (интенсивность этих линий по отношению к интенсивности основного сигнала увеличивается пропорционально концентрациии парамагнитных ионов). Смещения линий димеров (Ho^{3+})₂ относительно линий изолированных ионов в LiLuF4 существенно больше, чем в LiYF4, вследствие изменения КП в парных центрах, обусловленного существенной локальной деформацией решетки при замещении ионов Lu³⁺ ионами Ho³⁺.

3. Обсуждение результатов

Измеренные полевые зависимости частот и интенсивностей резонансных переходов были использованы для определения параметров КП в кристаллах LiYF₄ и LiLuF₄, активированных РЗ-ионами. При моделировании спектра поглощения в магнитных полях **В** и **B**₁(t) использовался гамильтониан РЗ-иона

$$H = H_{cf} + g_J \mu_{\rm B} \mathbf{B} \mathbf{J} + A \mathbf{J} \mathbf{I} + H_{rcf}, \qquad (1)$$

определенный в пространстве (2J+1)(2I+1)электронно-ядерных состояний основного мультиплета с полным моментом *J*. Первое слагаемое в правой части (1)

$$H_{cf} = \alpha B_2^0 O_2^2 + \beta (B_4^0 O_4^0 + B_4^4 O_4^4 + B_4^{-4} \Omega_4^4) + \gamma (B_6^0 O_6^0 + B_6^4 O_6^4 + B_6^{-4} \Omega_6^4)$$
(2)

— оператор энергии иона в КП в кристаллографической системе координат $(O_p^k, \Omega_p^k$ -операторы Стивенса, α , β ,

Рис. 7. Сигналы ЭПР парных центров (указаны стрелками) примесных ионов Ho^{3+} (1%) в кристаллах LiYF₄ (*a*) и LiLuF₄ (*b*) на частотах 250 и 215 GHz соответственно в магнитном поле **B** || **c**.

 γ — соответствующие приведенные матричные элементы). Второе слагаемое — электронная зеемановская энергия ($\mu_{\rm B}$ — магнетон Бора, g_J — фактор Ланде). Третье слагаемое — энергия магнитного сверхтонкого взаимодействия. Взаимодействие со случайным КП, которое проявляется в основном в спектральных характеристиках некрамерсовых ионов, в частности Ho³⁺, мы определили, следуя работе [3], параметрами B_2^2 и B_2^{-2}

$$H_{rcf} = \alpha (B_2^2 O_2^2 + B_2^{-2} \Omega_2^2).$$
(3)

Приведенные в таблице параметры КП получены из сопоставления результатов численной диагонализации оператора (1) с измеренными полевыми зависимостями частот переходов дублет—дублет (для ионов Dy^{3+} и Er^{3+} см. рис. 1 и 2) и основной дублет—ближайший синглет (Ho³⁺ в LiLuF₄). В качестве "затравочных" использовались параметры, найденные ранее из анализа оптических спектров [8]. Как видно из таблицы, относительно небольшие изменения этих параметров дают возможность удовлетворительно описать спектры рассмотренных кристаллов во внешнем магнитном поле.

Параметры кристаллического поля (cm^{-1}) в кристаллах $LiY(Lu)F_4\colon Ln^{3+}$ (в скобках приведены литературные данные для Dy^{3+} [8], Ho^{3+} [3], Er^{3+} [8])

Пара-	$Dy^{3+}(4f^9)$	$Ho^{3+}(4f^{10})$		${\rm Er}^{3+}(4f^{11})$
метр	LiYF ₄	LiLuF4	LiYF ₄	LiYF ₄
B_{2}^{0}	165 (165)	188.35	(190)	200 (190)
B_{4}^{0}	-87(-88)	-80.5	(-78.25)	-79.2(-80)
B_{6}^{0}	-4.2(-4.4)	-3.5	(-3.25)	-3.1(-2.3)
B_4^4	-691(-980)	-640.23	(-657.2)	-672(-1020)
B_{4}^{-4}	-646(0)	-623.63	(-568.6)	-579(0)
B_{6}^{4}	-370(-427)	-379.04	(-364)	-331(-420)
B_{6}^{-4}	-223(65)	-230.3	(-222)	-211 (70)

Параметры КР в кристалле LiYF₄:Ho³⁺ были определены ранее в работе [3] также из моделирования спектра ЭПР в области переходов дублет-ближайший синглет Γ_2^1 ; вычисленные с этими параметрами полевые зависимости частот переходов дублет-второй синглет Γ_2^2 и синглет Γ_2^1 -синглет Γ_2^2 хорошо согласуются с данными измерений (рис. 4), если увеличить вычисленную энергию синглета Γ_2^1 на 1.86 сm⁻¹.

Параметры оператора (3) — случайные величины с нормальным распределением вероятностей [3]. Из сравнения вычисленных интенсивностей запрещенных переходов между сверхтонкими подуровнями основного дублета и переходов дублет—синглет Γ_2^1 ионов Ho³⁺ в полях **B** || **B**₁ || **c** в кристалле LiYF₄: Ho (1%) с данными измерений (рис. 5) мы получили наиболее вероятные значения $|B_2^2| \sim |B_2^{-2}| \sim 1.25 \text{ cm}^{-1}$, которые в 2.7 раза больше, чем соответствующие величины, найденные в работе [3] для кристалла LiYF₄: Ho (0.1%). Увеличение средних характеристик случайного КП с концентрацией ионов гольмия указывает на то, что, по-видимому, несмотря на малое различие ионных радиусов ионов Y³⁺ и Ho³⁺, примесные ионы существенно возмущают кристаллическую решетку.

Изотопическая структура сигналов ЭПР РЗ-ионов в кристаллах ${}^{6}\text{Li}_{x}^{7}\text{Li}_{1-x}Y(\text{Lu})F_{4}$ формируется вследствие различного изотопического состава в ближайших к РЗ-иону литиевых позициях [13,14]. Две четверки ионов Li^+ находятся в узлах L_1 и L_2 с координатами (относительно примесного иона) $(\pm a/2; a/2; 0), (\pm a/2; -a/2;$ 0) и $(\pm a/2; 0; c/4), (0; \pm a/2; -c/4)$ соответственно, где а и с — постоянные решетки. При низких температурах кристаллическая решетка расширяется (сжимается) вблизи примесного изотопа ⁶Li(⁷Li) в кристалле 7 LiRF₄(6 LiRF₄). В частности, вычисленные компоненты вектора смещения одного из четырех ионов F⁻, ближайших к изотопу ⁶Li, с координатами (0.146; 0.085; 0.087) nm в кристалле ⁷LiYF₄ при температуре 4 К в кристаллографической системе координат с центром на дефекте массы равны (4.03; 1.96; 2.32)·10⁻⁵ nm. КП на РЗ-ионах изменяется в основном вследствие смещений ионов F⁻, являющихся общими ближайшими соседями РЗ-иона и примесных изотопов ⁶Li(⁷Li) в позициях Li₁ и Li₂; соответствующие параметры операторов $\Delta H_{cf}^{L_1}$ и $\Delta H_{cf}^{L_2}$ были вычислены в рамках модели обменных зарядов. Интервалы изотопической структуры сигналов ЭПР равны разностям δ_{L_k} средних значений операторов $\Delta H_{cf}^{L_k}$ (k = 1, 2) на волновых функциях начального и конечного состояний соответствующего перехода.

Представленные на рис. З сигналы ЭПР отвечают переходам из основного дублета на нижний подуровень верхнего дублета ионов Er^{3+} . Наблюдаемая изотопическая структура соответствует увеличению штарковского расщепления на 0.015 cm^{-1} на один изотоп ⁶Li в ближайшем окружении иона Er^{3+} (наиболее интенсивная низкополевая линия принадлежит спектру ионов Er^{3+} в окружении восьми ионов ⁷Li⁺). Результаты вычислений ($\delta_{L1} = 0.0185$, $\delta_{L2} = 0.006 \text{ cm}^{-1}$) согласуются с данными измерений по знаку и порядку величины, доминирующую роль в формировании структуры играют центры с изотопами ⁶Li в четырех позициях L_1 .

Из анализа структуры сигналов ЭПР ионов Ho³⁺ следует, что энергия синглета Γ_2^1 уменьшается на 0.012 сm⁻¹ ($\delta_{L_1} = -0.010$ сm⁻¹, $\delta_{L_2} = -0.003$ сm⁻¹), а разность энергий синглетов Γ_2^2 и Γ_2^1 увеличивается на 0.009 сm⁻¹ ($\delta_{L_1} = 0.007$ сm⁻¹, $\delta_{L_2} = 0.004$ сm⁻¹) на один изотоп ⁶Li в ближайшем окружении иона Ho³⁺. Приведенные в скобках вычисленные интервалы изотопической структуры качественно согласуются с экспериментальными данными.

4. Заключение

Измеренные в настоящей работе полевые зависимости частоты сигналов ЭПР кристаллов LiYF₄, содержащих ионы Er³⁺, Dy³⁺ и Ho³⁺, и кристалла LiLuF₄:Ho³⁺ интерпретированы в рамках приближения КП с использованием параметров, согласующихся с данными оптической спектроскопии.

Сравнение спектров ЭПР ионов Ho^{3+} в кристаллах с естественным содержанием изотопов лития со спектрами кристаллов, обогащенных по изотопам ⁷Li и ⁶Li, позволило однозначно интерпретировать обнаруженную тонкую структуру спектральных линий как результат изотопического беспорядка в литиевых подрешетках. Оценки интервалов изотопической структуры на основе расчета смещений ионов фтора, ближайших к изолированному примесному изотопу ⁶Li в решетке ⁷LiYF₄, и соответствующих изменений КП в соседних позициях РЗ-ионов согласуются по знаку и порядку величины с данными измерений.

Сдвиги частот линий-сателлитов, соответствующих димерам $(Ho^{3+})_2$ в кристаллах LiYF4 и LiLuF4, согласуются с результатами анализа спектров парных центров с учетом магнитного диполь-дипольного взаимодействия между ионами и локальной деформации решетки при замещении ионов Y^{3+} и Lu³⁺ ионами Ho³⁺.

Список литературы

- J. Magarino, J. Tuchendler, P. Beauvillain, I. Laursen. Phys. Rev. B 21, 18 (1980).
- [2] J. Magarino, J. Tuchendler, J.P.D'Haenens, A. Linz. Phys. Rev. B 13, 2805 (1976).
- [3] G.S. Shakurov, M.V. Vanyunin, B.Z. Malkin, B. Barbara, R.Y. Abdulsabirov, S.L. Korableva. Appl. Magn. Res. 28, 251 (2005).
- [4] V.F. Tarasov, G.S. Shakurov. Appl. Magn. Res. 2, 571 (1991).
- [5] N.I. Agladze, M.N. Popova, G.N. Zhizhin, V.J. Egorov, M.A. Petrova. Phys. Rev. Lett. 66, 477 (1991).
- [6] J.P. Sattler, J. Nemarich. Phys. Rev. B 4, 1 (1971).
- [7] А.А. Антипин, Б.Н. Казаков, С.Л. Кораблева, Р.М. Рахматуллин, Ю.К. Чиркин, А.А. Федий. Изв. вузов. Физика 9, 93 (1978).
- [8] М.П. Давыдова, С.Б. Зданович, Б.Н. Казаков, А.Л. Столов, С.Л. Кораблева. Опт. и спектр. 42, 547 (1977).
- [9] E.P. Chukalina, M.N. Popova, S.L. Korableva, R.Yu. Abdulsabirov. Phys. Lett. A 269, 348 (2000).
- [10] N.I. Agladze, M.N. Popova. Solid State Commun. 55, 1097 (1985).
- [11] М.Н. Попова, С.А. Климин, Е.П. Чукалина, Г.Н. Жижин, С.Л. Кораблева, Р.Ю. Абдулсабиров. Опт. и спектр. 97, 57 (2004).
- [12] J. Kirton. Phys. Rev. A 139, A 1930 (1965).
- [13] Н.И. Агладзе, М.Н. Попова, М.А. Корейба, Б.З. Малкин, В.Р. Пекуровский. ЖЭТФ 104, 4171 (1993).
- [14] B.Z. Malkin, S.K. Saikin. Proc. SPIE 2706, 193 (1996).