Влияние дефицита кислорода на электрические и магнитные свойства манганитов La_{1-x}Ca_xMnO_{3- $\alpha}$ (x = 0.5, 0.6 и 0.7)</sub>

© Ю.М. Байков, Е.И. Никулин, Ю.П. Степанов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: E.Nikulin@mail.ioffe.ru

(Поступила в Редакцию 22 января 2008 г.)

Проводимость сплавов La_{1-x}Ca_xMnO_{3- α} (x = 0.5) в магнитном поле 0.6 T исследовали в интервале температур 78–300 К. Это соединение при $\alpha = 0$, согласно диаграмме состояния, находится в граничной области между ферромагнитной проводящей (x < 0.5) и антиферромагнитной полупроводниковой (x > 0.5) фазами и содержит "островки" металлической фазы. При дефиците кислорода доля металлической фазы растет, и наблюдается переход полупроводник-металл. Проявление связанных "островков" металлической фазы наблюдали также при дефиците кислорода у соединений La_{0.4}Ca_{0.6}MnO_{3- α}.

PACS: 75.47.Gk, 75.47.Lx, 81.40.Rs

1. Введение

Исследованию материалов с гигантским отрицательным магнитосопротивлением в последние годы посвящено большое количество экспериментальных и теоретических работ. Согласно современным представлениям, эффект гигантского отрицательного магнитосопротивления обусловлен фазовым переходом полупроводникметалл (ПМ-переход). Ниже температуры ПМ-перехода в случае поликристаллических образцов также наблюдается заметное магнитосопротивление, вызванное спинзависимым туннелированием между границами зерен. ПМ-переход обусловлен ферромагнитным взаимодействием между ионами Mn³⁺-Mn⁴⁺ через промежуточный ион О²⁻ (так называемая теория двойного обмена) [1]. Согласно этой теории, ферромагнитное взимодействие существует только при наличии электронов проводимости. Более того, зависимость между проводимостью и точкой Кюри материала установлена экспериментально.

В настоящей работе исследованы некоторые представители достаточно хорошо изученного семейства La_{1-r}Ca_rMnO₃. Обычно состояние этой системы изображают диаграммой температура фазового перехода-атомная доля Са в позиции лантана (x) [2]. (Meталлическая ферромагнитная фаза наблюдается для 0.15 < x < 0.5). Поскольку в силу требования электронейтральности замена La на Ca приводит к увеличению доли Mn^{4+} , то казалось бы, значения *x* на диаграмме можно трактовать также и как долю Mn⁴⁺. Однако это справедливо лишь при условии постоянства содержания кислорода. Действительно, при постоянном значении х удаление одного атома кислорода приводит к изменению валентности двух ионов Mn c +4 до +3. Иными словами, уменьшение содержания кислорода на один атом в 2 раза эффективнее действует на уменьшение числа ионов Mn^{4+} , чем замена одного атома Ca^{2+} на La^{3+} . Кроме того, при изменении числа ионов O²⁻ изменяется и число цепочек Mn³⁺-O²⁻-Mn⁴⁺. Таким образом,

извлечение кислорода оказывает в определенном смысле двойное воздействие на свойства манганитов. В нашей предыдущей работе [3] было показано, что уменьшение содержания кислорода (с $\alpha = 0$ до $\alpha = 0.16$) в манганите La_{0.67}Ca_{0.33}MnO_{3- α} приводит к снижению температуры Кюри с 200 до 125 K, а также к уменьшению проводимости металлической фазы и далее к переходу металл-полупроводник. Отметим, что при нарастающем дефиците кислорода в этом случае доля ионов Mn⁴⁺ уменьшается от значения 0.33 до 0. Последнее характерно для LaMnO₃.

2. Образцы La_{0.5}Ca_{0.5}MnO_{3-a}

2.1. Исходный образец. При исследовании образцов La_{0.5}Ca_{0.5}MnO_{3- $\alpha}$} ($x = 0.5; 0 \le \alpha \le 0.05$) особое внимание уделялось исходному образцу с $\alpha = 0$. Этот состав на диаграмме соответствует линии, разделяющей два принципиально разных состояния системы: металлическое ферромагнитное (0.15 < x < 0.5) и полупроводниковое антиферромагнитное (x > 0.5), т.е. является своего рода пограничным составом. Именно поэтому малейшие отклонения от исходного состава существенно влияют на свойства материала, и особое внимание было уделено его синтезу. Образцы с x = 0.5отжигались в атмосфере аргона при температуре 1470 К в течение 50 h. После этого иодометрический анализ показал, что $\alpha = 0$, т.е. мы имеем состав La_{0.5}Ca_{0.5}MnO₃. (Точность определения коэффициентов лучше 0.1%). Эти образцы не показывают ПМ-перехода до температуры жидкого азота. Хотя сопротивление монотонно растет при понижении температуры, и температурная зависимость в координатах $\lg \rho - 1/T$ соответствует полупроводниковой в области перехода от собственной проводимости к примесной, тем не менее проявляется заметное магнитосопротивление в поле 0.6 Т, максимум которого достигает 18% при 200 К (рис. 1). Такой ход экспериментальных зависимостей можно трактовать

Рис. 1. Сопротивление ρ и магнитосопротивление $(\rho_0 - \rho_H)/\rho_0$ (ρ_0 — сопротивление при H = 0, ρ_H — сопротивление в поле H = 0.6 T) исходного образца La_{0.5}Ca_{0.5}MnO_{3- α} ($\alpha = 0$).

как специфическую двухфазность: в полупроводниковом образце La_{0.5}Ca_{0.5}MnO₃ имеются "островки" металлической фазы, не образующие замкнутые каналы проводимости через образец. Поэтому сопротивление образца формируется последовательно соединенными металлическими и полупроводниковыми областями.

2.2. Образцы с x = 0.5 и с явным, но низким дефицитом по кислороду ($\alpha < 0.007$). Эти образцы были приготовлены из исходных (см. выше) путем отжига в форвакууме при температурах 510 и 910 К. Температурный ход сопротивления и магнитосопротивления у обоих образцов одинаковый. В отличие от исходного образца наблюдаются максимумы на кривой $\rho(T)$ при 91 и 97 К соответственно. Это можно интерпретировать как свидетельство МП-перехода. Разница максимумов температур объясняется разным уровнем кислородного дефицита из-за различия температуры отжига. На рис. 2 представлены температурные зависимости удельного сопротивления и магнитосопротивления образца, отожженного при 910 К. Кривые магнитосопротивления имеют достаточно сложный характер, что, вероятно, можно объяснить неравномерным распределением кислородных вакансий по объему образца при малых степенях извлечения кислорода. На зависимости $\rho_{H}(T)$ явно прослеживаются три максимума: первый высокотемпературный (220 К), второй примерно при 180 К и намечающийся третий, соответствующий максимуму зависимости $\rho(T)$. Таким образом, здесь можно предположить наличие нескольких фаз с близкими характеристиками, которые различаются только числом кислородных вакансий.

2.3. Образцы с заметным количественно определенным дефицитом кислорода ($\alpha = 0.011, 0.022, 0.038$ и 0.050). При приготовлении этих образцов использован подробно описанный в наших предыдущих работах [3] метод извлечения кислорода с помощью водорода, позволяющий достаточно точно

Рис. 2. Сопротивление и магнитосопротивление образца $La_{0.5}Ca_{0.5}MnO_{3-\alpha}$ с малым дефицитом кислорода ($\alpha < 0.007$).

Рис. 3. Сопротивление и магнитосопротивление образца $La_{0.5}Ca_{0.5}MnO_{3-\alpha}$ ($\alpha = 0.022$).

Рис. 4. Зависимость температуры Кюри T_c образцов La_{0.5}Ca_{0.5}MnO_{3- α} от содержания ионов Mn⁴⁺.

определить количество удаленного кислорода. Экспериментальные зависимости образцов имеют подобный характер, что свидетельствует о равномерном распределении кислородных вакансий по объему. Все образцы показывают явно выраженный максимум в зависимости $\rho(T)$, т.е. явный ПМ-переход при понижении температуры. На рис. 3 представлены температурные зависимости сопротивления и магнитосопротивления одного из образцов ($\alpha = 0.022$). Отметим, что при нарастающем дефиците кислорода (т.е. при уменьшении содержания ионов Mn⁴⁺) температура ПМ-перехода (температура Кюри) сначала растет, достигает максимального значения при $\alpha = 0.022$ и далее падает (рис. 4). Как обычно, максимум $\rho_H(T)$ сдвигается относительно максимума $\rho(T)$ в сторону более низких температур. В нашем случае ввиду достаточно низкой температуры ПМ-перехода (около 90 K) максимум в $\rho_H(T)$ зависимости иногда не достигается.

Максимальное количество извлеченного кислорода ($\alpha = 0.05$) соответствует содержанию ионов Mn⁴⁺, равному 0.4, т. е. практически середине металлической фазы согласно диаграмме состояний.

Образцы La_{0.4}Ca_{0.6}MnO_{3-α} и La_{0.3}Ca_{0.7}MnO₃

Согласно фазовой диаграмме, при $\alpha = 0$ состояние этих материалов характеризуется как антиферромагнитная непроводящая фаза. На рис. 5 представлена температурная зависимость сопротивления этих образцов в координатах $\lg \rho - 1/T$. Зависимость носит обычный для полупроводников характер в области перехода от собственной проводимости к примесной. Никакого влияния магнитного поля 0.6 T не обнаружено.

С помощью водородной методики из этих образцов был извлечен кислород ($\alpha = 0.05$). Уменьшение содержания кислорода практически не сказывается на образцах La_{0.3}Ca_{0.7}MnO₃. Это и понятно, так как даже

Рис. 5. Сопротивление образцов $La_{0.4}Ca_{0.6}MnO_3$ и $La_{0.3}Ca_{0.7}MnO_3$ в интервале температур 78–300 К.

Рис. 6. Сопротивление и магнитосопротивление образца $La_{0.4}Ca_{0.6}MnO_{3-\alpha}$ ($\alpha = 0.05$).

при уменьшенном содержании кислорода ($\alpha = 0.05$) количество ионов Mn^{4+} не превышает 0.6, т.е. образец не вышел из области антиферромагнитного полупроводника.

Иную картину демонстрируют образны $La_{0.4}Ca_{0.6}MnO_3$ (рис. 6). В этом случае при $\alpha = 0.05$ содержание ионов Mn⁴⁺ равно 0.5, т.е. мы находимся на границе между ферромагнитной металлической и антиферромагнитной полупроводниковой фазами. Видно, что наблюдаемые зависимости очень напоминают те, что существуют для случая La_{0.5}Ca_{0.5}MnO₃ $(\alpha = 0)$ (рис. 1). Также не наблюдается ПМ-переход и имеется максимум магнитосопротивления, но при более низкой температуре (115 К) и вдвое меньшей по величине (10%). Итак, при одном и том же содержании ионов Mn⁴⁺ (0.5) уменьшение содержания кислорода $(\alpha = 0.05)$ (или уменьшение числа цепочек Mn–O–Mn) приводит к сдвигу $\max \rho_H(T)$ в сторону низких температур и уменьшению его вдвое. А отсутствие ПМперехода в образцах с содержанием иона $Mn^{4+} = 0.5$ можно объяснить присутствием областей двух фаз ферромагнитной металлической и антиферромагнитной полупроводниковой.

4. Обсуждение результатов

Итак, в результате извлечения кислорода из манганитов La_{1-x}Ca_xMn³⁺_{1-x}Mn⁴⁺_xO_{3- α} была получена возможность сравнить свойства образцов с одним и тем же содержанием иона Mn⁴⁺, но с разным содержанием кислорода, т.е. с разным числом цепочек Mn³⁺–O^{2–}–Mn⁴⁺. Именно эти цепочки, согласно теории двойного обмена, и определяют свойства манганита.

Образцы La_{0.67}Ca_{0.33}MnO_{3- α} при $\alpha = 0$ находятся в середине ферромагнитной металлической области с максимальной температурой Кюри $T_C = 197$ К. Там же находятся образцы La_{0.5}Ca_{0.5}MnO_{3- α}, где $\alpha = 0.05$. Но в этом случае температура Кюри $T_C = 90$ К. Итак, при содержании ионов Mn⁴⁺, приблизительно равном 0.4, при уменьшении числа цепочек Mn–O–Mn на 1.7% температура Кюри уменьшается с 200 до 90 К.

Температура Кюри образцов La_{0.5}Ca_{0.5}MnO_{3- α} при извлечении кислорода проходит через максимум при содержании ионов Mn⁴⁺, равном 0.46 (а не 0.38, как при 100% количестве цепочек Mn–O–Mn).

Образцы La_{0.4}Ca_{0.6}MnO_{3- α} при $\alpha = 0.05$ по содержанию ионов Mn⁴⁺ соответствуют La_{0.5}Ca_{0.5}MnO₃, но число цепочек Mn³⁺-O²⁻-Mn⁴⁺ у них на 1.7% меньше. В этом случае наблюдается уменьшение температуры максимума $\rho_H(T)$ и его абсолютной величины.

Результаты работы можно кратко сформулировать таким образом: при дефиците кислорода (т. е. при уменьшенном количестве цепочек $Mn^{3+}-O^{2-}-Mn^{4+})$ при одном и том же соотношении Mn^{3+}/Mn^{4+} наблюдается уменьшение температуры МП-перехода и максимума магнитосопротивления.

Список литературы

- [1] C. Zener. Phys. Rev. 82, 403 (1951).
- [2] S.W. Cheong, P.A. Sharma, N. Hur, V. Horibe, C.H. Chen. Physica B 318, 39 (2002).
- [3] Е.И. Никулин, В.М. Егоров, Ю.М. Байков, Б.Т. Мелех, Ю.П. Степанов, И.Н. Зимкин. ФТТ **44**, 881 (2002).