07;08;09

К спектральным оценкам параметров зонной структуры наночастиц полититаната калия, модифицированного в растворах солей переходных металлов

© Д.А. Зимняков, А.В. Гороховский, Е.В. Третьяченко, В.И. Кочубей, С.А. Ювченко, Дж.С. Сина

Саратовский государственный технический университет им. Гагарина Ю.А. E-mail: zimnykov@mail.ru

Поступило в Редакцию 27 декабря 2013 г.

Рассмотрен подход к спектральному анализу параметров зонной структуры (ширины запрещенной зоны и энергии Урбаха) для модифицированных переходными металлами нанопластин полититанатов калия как платформы для синтеза фотокаталитических материалов. Показано, что модифицированные образцы характеризуются пониженными значениями ширины запрещенной зоны и более высокими значениями энергии Урбаха по сравнению с исходным материалом. Обсуждены возможные механизмы данного явления.

Анализ влияния технологических факторов и свойств исходных веществ на параметры зонной структуры (в частности, ширину запрещенной зоны E_g) синтезируемых дисперсных сред и тонких пленок играет важную роль в процессах синтеза полупроводниковых наноматериалов для различных применений в электронике, фотонике и фотохимии. Одним из традиционных методов оценки E_g является анализ спектров поглощения $\alpha(E)$ в видимой и УФ-областях на основе модели [1,2], в соответствии с которой межзонное поглощение описывается выражением

$$\alpha(E)E = \begin{cases} K(E - E_g)^{\gamma}, & E > E_g; \\ 0, & E \leqslant E_g. \end{cases}$$
(1)

Здесь E — энергия фотона, K — нормировочный коэффициент, а показатель γ определяется типом перехода и равен 1/2 для прямых разрешенных и 2 для непрямых разрешенных переходов. При оценке E_g

80

81

строятся зависимости $\{\alpha(E)E\}^2 = f_1(E)$ либо $\{\alpha(E)E\}^{0.5} = f_2(E)$ и на них выбираются достаточно протяженные линейные участки, экстраполируемые до пересечения с осью *E*. Точки пересечения определяют *E*_g для прямых переходов в первом случае и для непрямых переходов во втором. Подобный метод называется в англоязычной литературе "Tauc plot". В случае оптически плотных дисперсных систем вместо коэффициента поглощения используется функция Кубелки–Мунка *F*(*E*), определяемая по спектральной зависимости коэффициента диффузного отражения *R*(*E*) образца как *F* = $(1 - R^2)/2R \sim \alpha$.

Отметим, что идентификация линейных участков зависимостей $\{\alpha(E)E\}^{1/\gamma}$ или $\{F(E)E\}^{1/\gamma}$ в ряде случаев затруднена вследствие близости значений E_g для различных переходов. Кроме того, для аморфных полупроводников вклад в поглощение при $E \leq E_g$ вносят переходы между локализованными состояниями, соответствующие так называемым "хвостам" Урбаха на зависимостях $\alpha(E)$ и приводящие к нелинейному поведению $\{\alpha(E)E\}^{1/\gamma}$ и $\{F(E)E\}^{1/\gamma}$ для E, сопоставимых с E_g . Данная ситуация еще более осложняется в случае квазиодномерных и квазидвумерных наночастиц, подвергнутых импрегнированию или декорированию наночастицами с иной электронной структурой.

В данной работе обсуждается иной подход к оценке E_g по спектрам диффузного отражения, рассмотренный на примере нанопластин полититанатов калия (ПТК), модифицированных при обработке в растворах солей переходных металлов с целью получения новых высокоэффективных фотокаталитических материалов [3]. Также рассмотрено влияние модификации на величину характеристической энергии Урбаха, определяемой плотностью локализованных электронных состояний в синтезируемых системах.

Предлагаемый подход основан на нахождении локальных максимумов логарифмической производной величины $\Delta(E) = d\{\ln(F(E)E)/dE$. Очевидно, что при наличии только механизма межзонного поглощения, описываемого выражением (1), данная величина характеризуется сингулярностью при $E = E_g$. При $E > E_g \Delta(E) = \gamma/(E - E_g)$. Для реальных систем с вкладом в поглощение других межзонных переходов и "хвостов" Урбаха "включение" межзонного поглощения при $E \ge E_g$ должно сопровождаться появлением локального максимума зависимости $\Delta(E)$, что позволит надежно оценить величину E_g . Аналогичный подход применялся, например, в работе [4] для оценки ширины запрещенной

зоны наночастиц оксида железа. Предварительная проверка представленного подхода была проведена с использованием заимствованных из литературы и модифицированных данных для систем с надежно идентифицируемыми прямыми (CuGaSe₂, [5]) и непрямыми (ZrO₂, [6]) переходами, когда оценка E_g может быть проведена с применением метода линейной экстраполяции. Расхождения между оценками E_g , полученными с использованием метода экстраполяции и обсуждаемого подхода, не превышали ≈ 0.02 eV.

С использованием спектрофотометра UV-2550PC (Shimadzu) с интегрирующей сферой ISR-2200 в интервале длин волн 200-1200 nm были получены спектры диффузного отражения слоев плотно упакованных частиц ПТК, модифицированных в растворах солей переходных металлов (Cu, Fe, Ni, Zn, Co). Базовые образцы нанопорошков ПТК, состоящих из плоских слоистых частиц с характерным поперечным размером 160 ± 80 nm и толщиной 5–15 nm, были синтезированы в соответствии с методикой [7] на основе реакционной смеси порошков TiO₂(10%), КОН(10%) и КNO₃(80 mass %) при нагреве в муфельной печи в алундовом тигле при температуре 500°C в течение 2 h. Полученный продукт (мольное соотношение TiO₂ : K₂O = 4.16) отмывали от водорастворимых соединений и просушивали при 40°С. Модифицирование ПТК солями переходных металлов проводили по следующей методике: порошок ПТК (навеска 20 g) помещали в термостатированный при 23°С сосуд с водным раствором соли металла (сульфаты), из расчета 10 g полититаната калия на 0.01 mol соли. Полученные суспензии перемешивали с помощью магнитной мешалки в течение 8 h, отфильтровывали и просушивали при 40°C. Химический состав полученных образцов исследовали с помощью сканирующего электронного микроскопа Philips XL30ESEM с устройством для локального рентгеновского микроанализа EDAX Pegasus, а морфологию частиц — с помощью просвечивающего электронного микроскопа iCE-3500 (Jeol).

Как показано ранее [7], модифицирование ПТК в этих условиях включает параллельное протекание двух процессов: декорирования частиц ПТК наночастицами гидроксида металла, переходящего при просушивании в оксидную форму, а также интеркаляции ионов переходного металла в межслойное пространство ПТК за счет ионного обмена $nK^+(H_3O^+) \leftrightarrow Me^{n+}$. На рис. 1 представлено типичное электронномикроскопическое изображение частиц ПТК, модифицированных в

Рис. 1. Электронная микрофотография (просвечивающая электронная микроскопия) частиц ПТК, модифицированных в растворе сульфата железа; *I* — нанопластины ПТК.

водном растворе сульфата железа, подтверждающее интенсивное формирование металлооксидных наночастиц в ходе обработки.

В результате обработки спектров диффузного отражения были получены зависимости $\Delta(E)$ для частиц исходного ПТК (рис. 2, *a*) и для модифицированных частиц. С целью минимизации влияния шума в исходных спектральных данных на вычисляемую $\Delta(E)$ было проведено их предварительное сглаживание с ипользованием процедуры Савицкого–Голея (фильтр 2 порядка, ширина окна — 15 отсчетов). На рис. 2, *b* приведена в качестве примера зависимость $\Delta(E)$ для частиц ПТК, модифицированных соединениями железа; налицо существенное изменение спектра поглощения (и соответственно зонной структуры) по сравнению с исходными ПТК. На врезках рис. 2, *a*, *b* в полулогарифмических координатах также представлены исходные спектры функций *F*(*E*), позволяющие по скорости экспоненциального спада "хвоста" оценить характеристическую энергию Урбаха.

Для характеризации изменений в электронной структуре частиц ПТК в результате модифицирования были использованы значения E_{g1}

Д.А
. Зимняков,
A.B.
Гороховский

Влияние модифицирования нанопластин	ПТК с	солями	переходных	металлов	на	определяемые	из	спектров	поглоще-
ния параметры зонной структуры									

N₂	Частицы	E_{g1}, eV	$\begin{array}{c} \Delta(E_{g1}),\\ \mathrm{eV}^{-1} \end{array}$	$E_{g2},$ eV	$\begin{array}{c} \Delta(E_{g2}),\\ \mathrm{eV}^{-1} \end{array}$	$E_U,$ eV	Примечания
1	TiO ₂	3.2	—	3.32-3.36	-	Ι	Сырьевой материал согласно [8]
2	Наноплас- тины ПТК	2.90 ± 0.05	6.72 ± 0.25	3.41 ± 0.15	0.75 ± 0.05	0.16 ± 0.01	
3	МПТК/Со	2.68 ± 0.07	2.12 ± 0.10	2.95 ± 0.12	1.57 ± 0.10	0.62 ± 0.03	
4	МПТК/Fe	2.66 ± 0.12	0.88 ± 0.06	3.00 ± 0.15	0.76 ± 0.05	0.48 ± 0.03	Образец получен при взаимодействии нанопластин ПТК с Fe ₂ (SO ₄) ₃
5	МПТК/Cu	_	_	3.05 ± 0.12	1.64 ± 0.10	0.56 ± 0.03	Пик $\Delta(E_{g1})$ маски- руется полосой погло- щения с максимумом при ≈ 2.43 eV
6	MIITK/Ni	2.52 ± 0.12	_	2.95 ± 0.12	1.89 ± 0.10	0.53 ± 0.03	Пик $\Delta(E_{g1})$ частично маскируется полосой поглощения с максимумом при $\approx 2.35 {\rm eV}$
7	MIITK/Zn	2.98 ± 0.05	6.98 ± 0.25	3.40 ± 0.10	2.03 ± 0.15	0.17 ± 0.01	

Письма в ЖТФ, 2014, том 40, вып. 10

Примечание. МПТК/Co(Fe, Cu, Ni, Zn) — нанопластины ПТК, модифицированные CoSO₄, FeSO₄, CuSO₄, ZnSO₄ соответственно.

84

85

Рис. 2. Зависимость $\Delta(E)$ для нанопластин ПТК. На врезках: спектр функции Кубелки—Мунка для исследуемого образца. *а* — нанопластины ПТК без модифицирования; *b* — Fe-модифицированные нанопластины ПТК (образец № 4 в таблице). Пик $\Delta(E_{g,d})$ при $E \approx 1.99$ eV предположительно соответствует межзонному переходу в наночастицах Fe₂O₃ (для объемного материала $E_g \approx 2.1$ eV).

и E_{g2} , определяющие положения отмеченных на рис. 2, *а* максимумов $\Delta(E)$ и пиковые значения $\Delta(E)$ этих максимумов (см. таблицу). Величины E_{g1} и E_{g2} ассоциируются с непрямым и прямым электронными переходами в ПТК, несколько смещенными относительно значений, типичных для оксида титана (анатаз) (см., например, [8]), использованного в качестве сырьевого материала. Здесь же приведены определенные по спектрам F(E) значения энергии Урбаха E_U .

Анализ полученных данных показывает, что модифицированные в водных растворах солей переходных металлов частицы ПТК, представляющие по сути гетероструктурные комплексы, характеризуются

более низкими по сравнению с немодифицированным материалом значениями ширины запрещенной зоны как для непрямого (E_{g1}) , так для прямого (E_{g2}) переходов с одновременным уменьшением разности энергий переходов $E_{g2}-E_{g1}$.

Существенное убывание $\Delta(E_{g1})$ и возрастание характеристической энергии Урбаха E_U для модифицированных нанопластин (в 3–4 раза по сравнению с исходным ПТК) может быть интерпретировано как результат значительного увеличения плотности локализованных электронных состояний. Причиной подобных изменений могут быть оба механизма взаимодействия переходных металлов с ПТК в ходе модифицирования. В частности, при формировании на поверхности пластин ПТК металлооксидных наночастиц с *p*-типом проводимости в зоне контакта возникают локальные гетеропереходы, а в случае образования наночастиц, имеющих *n*-тип проводимости, — барьерные потенциалы. Отметим, что в длинноволновой области спектров погло-

щения Сu-, Fe-, Ni-, Co-содержащих ПТК присутствуют полосы поглощения, предположительно ассоциируемые с межзонными переходами в соответствующих металлооксидных полупроводниках. Обращает на себя внимание то обстоятельство, что для Zn-допированных ПТК сдвиг E_{g1} и E_{g2} в низкочастотную область практически отсутствует, величина $\Delta(E_{g1})$ по отношению к исходному ПТК изменена незначительно, а возрастание E_U пренебрежимо мало по сравнению с другими образцами. При этом оксид цинка, как и полититанаты, относится к полупроводникам *n*-типа с шириной запрещенной зоны ($\approx 3.36 \text{ eV}$), близкой к E_{g1} для базового ПТК (2.9 eV).

В заключение отметим, что рассмотренный подход к анализу спектров диффузного отражения дисперсных наносистем на основе ПТК демонстрирует высокую чувствительность к вариациям их электронной структуры, обусловленным процессами модифицирования солями переходных металлов, и открывает новые возможности для ее исследования.

Данная работа поддержана госконтрактом с Минобрнауки РФ № 14.В37.21.1080.

Список литературы

- [1] Tauc J., Grigorovici R., Vancu A. // Phys. Stat. Sol. 1966. V. 15. P. 627.
- [2] Park J., Lee E., Hwang N., Kang M. // Angew. Chem. Int. Ed. 2005. V. 44. P. 2872.
- [3] Третьяченко Е.В., Гороховский А.В., Юрков Г.Ю., Викулова М.А., Ковалева Д.С., Манцуров А.А. // Нанотехника. 2012. № 3. С. 56.
- [4] Харламова М.В., Саполетова Н.А., Елисеев А.А., Лукашин А.В. // Письма в ЖТФ. 2008. Т. 34. В. 7. С. 36.
- [5] http://www2.shimadzu.com/applications/UV/VIS/A428.pdf.
- [6] Weihua J., Chunshui J., Lei L., Hongli Z., Huaijiang Y. // Proc. SPIE. 2008. V. 6624. P. 66 241A.
- [7] Sanchez-Monjaras T., Gorokhovsky A.V., Escalante-Garcia J.I. // J. Am. Ceram. Soc. 2008. V. 91. P. 3058.
- [8] Reddy K.M., Manorama S.V., Reddy A.R. // Mater. Chem. Phys. 2002. V. 78. P. 239.