от Прямые и непрямые механизмы оже-рекомбинации в *n*-InGaN

© А.В. Зиновчук

Житомирский государственный университет им. И. Франко, Житомир, Украина E-mail: zinovchuk.a@zu.edu.ua

Поступило в Редакцию 23 декабря 2013 г.

Представлен численный анализ оже-рекомбинации в нитридных соединениях $In_x Ga_{1-x} N$ *п*-типа при T = 300 К. Скорость рекомбинации рассчитывалась исходя из зонной структуры и волновых функций, полученных методом эмпирического псевдопотенциала. Непрямой оже-процесс с участием фононов анализировался с помощью как теории возмущений второго порядка, так и метода функций спектральной плотности. Показано, что для соединений, которые излучают в видимой спектральной области, оже-коэффициент изменяется от $3.1 \cdot 10^{-30}$ до $2.0 \cdot 10^{-32}$ ст⁶/s, причем непрямая рекомбинация в этих соединениях играет второстепенную роль.

На сегодняшний день расчет скорости оже-рекомбинации в слоях InGaN считается практически важной задачей в связи с тем, что ожерекомбинация рассматривается как один из возможных механизмов, ответственных за нетермическое падение эффективности в излучающих приборах на основе InGaN. Для согласования с экспериментальными данными по падению эффективности оже-коэффициент в широкозонных In_xGa_{1-x}N слоях (x < 0.25) дожен быть порядка $10^{-31}-10^{-30}$ сm⁶ · s⁻¹. В работе [1] показано, что такие достаточно большие для широкозонных материалов значения объясняются междузонным "резонансным" механизмом рекомбинации. Однако в [2] похожий расчет уже дает значения

1

1

оже-коэффициента на несколько порядков меньше. Авторы работ [3,4] отмечают, что непрямые механизмы оже-рекомбинации также могут быть ответственны за нетермическое падение эффективности. В [3] скорость непрямой рекомбинации рассчитывалась на основе теории возмущений второго порядка. В [4] рассчитывалась та же скорость рекомбинации методом функций спектральной плотности, однако предыдущий расчет показывает значительно более слабую зависимость ожекоэффициента от ширины запрещенной зоны E_g . Таким образом, известные на данный момент результаты численных расчетов достаточно отличаются между собой, что требует проведения дополнительного анализа. В данной работе скорость оже-рекомбинации в $n-In_xGa_{1-x}N$ рассчитывалась как по теории возмущений, так и по методу функций спектральной плотности, с использованием одной и той же системы волновых функций и зонной структуры в обоих методах.

Отправной точкой в расчетах являются электронная зонная структура и волновые функции, а также фононные дисперсионные кривые в In_xGa_{1-x}N с решеткой типа вюрцита. Для получения зонной структуры бинарных соединений GaN и InN использовался метод эмпирического псевдопотенциала с атомными модельными потенциалами в форме, представленной в работе [5]. Подгоночные числовые параметры модельных потенциалов подбирались так, чтобы значения энергии в точках высокой симметрии зоны Бриллюэна при псевдопотенциальном расчете как можно меньше отличались от соответствующих энергий, полученных расчетом из первых принципов. Атомные модельные потенциалы для расчета зонной структуры $In_xGa_{1-x}N$ при 1 < x < 0 получались из линейной интерполяции потенциалов для GaN и InN. Диагонализация псевдопотенциального гамильтониана проводилась с помощью базисного набора, состоящего из 225 плоских волн. Фононные дисперсионные кривые рассчитывались с использованием модифицированной модели валентного силового поля для вюрцитных кристаллов [6].

Численное интегрирование в зоне Бриллюэна выполнялось с помощью однородной сетки *k*-точек, построенной по методу Монкхорста—Пака. Расчеты проводились на сетках разной плотности от $11 \times 11 \times 11$ до $57 \times 57 \times 57$. На рис. 1, *a* показаны зависимости ожекоэффициента от плотности сетки, рассчитанные по теории возмущений и по методу функций спектральной плотности. Как видно, в обоих случаях для сходимости процесса плотность сетки должна быть не меньше $50 \times 50 \times 50$, что соответствует более чем 125000 *k*-точек в

Рис. 1. *а* — зависимости оже-коэффициента в *n*-InN от плотности сетки *k*-точек, рассчитанные по теории возмущений (C_n^{phon}) и по методу функций спектральной плотности C_n^{total} . *b* — ширина запрещенной зоны E_g и энергетический зазор между нижайшими зонами проводимости Δ_E в зависимости от состава *x* соединений *n*-In_{*x*}Ga_{1-*x*}N, рассчитанные методом эмпирического псевдопотенциала. На вставке зонная структура GaN.

зоне Бриллюэна. Процедура диагонализации псевдопотенциального гамильтониана проводилась только для k-точек, лежащих в неприводимой части зоны Бриллюэна (6525 точек для сетки 57 × 57 × 57). Значения энергии и волновые функции в остальных k-точках получались путем применения операций симметрии к каждой точке в неприводимой части. На той же сетке k-точек проводилась диагонализация динамической матрицы для нахождения собственных энергий фононов.

Традиционно скорость оже-рекомбинации рассчитывается с помощью теории возмущений первого (прямой механизм) и второго (непрямой механизм) порядков. Для СНСС процесса, доминирующего в полупроводниках *п*-типа, скорости прямой и непрямой ожерекомбинации с участием фононов могут быть вычислены по формулам, представленным в работе [7]. Экранировка кулоновского взаимодействия и вероятность заполнения электронных состояний учитывались с помощью статической модельной диэлектрической функции [8] и функции Ферми соответственно. При расчете скорости непрямой ожерекомбинации принималось, что рассеяние в промежуточные состояния вследствие взаимодействия с фононами происходило только в зоне тяжелых дырок. Взаимодействие дырок с оптическими полярными фононами описывалось гамильтонианом Фрелиха, а взаимодействие с неполярными оптическими и акустическими фононами описывалось с помощью деформационных потенциалов, значения которых для нитридов приведены в [9].

Альтернативный подход к вычислению скорости оже-рекомбинации есть метод функций спектральной плотности [10], который является следствием теории линейного отклика. Согласно этому методу, полная скорость СНСС оже-рекомбинации (прямой + непрямой механизм) в полупроводниках *n*-типа представляется в виде

$$R_{0} + R_{phon} = 2 \frac{2\pi}{\hbar} \frac{V^{3}}{(2\pi)^{9}} \iiint |M_{ee}|^{2} f_{n}(E_{1}) f_{n}(E_{2})$$

$$\times f_{p}(E_{1} + E_{2} - E_{2}') (1 - f_{n}(E_{2}')) (1 - \exp[-(E_{Fp} - E_{Fn})/kT])$$

$$\times A(k_{1}', E_{1} + E_{2} - E_{2}') \delta(k_{1} + k_{2} - k_{1}' - k_{2}') dk_{1} dk_{2} dk_{1}' dk_{2}', \qquad (1)$$

где M_{ee} — матричный элемент экранированного кулоновского взаимодействия; $f_n(E)$ и $f_p(E)$ — функции Ферми; E_{Fp} и E_{Fn} — квазиуровни

Ферми; индексы 1, 2, 2' относятся к электронам в зонах проводимости, а 1' — к тяжелой дырке; V — объем кристалла. Формально эта формула может рассматриваться как первый порядок теории возмущений по кулоновскому взаимодействию, а все эффекты электрон-фононного взаимодействия учитываются в функции спектральной плотности

$$A(k, E) = -\frac{1}{\pi} \frac{\text{Im}\Sigma(k, E)}{(E - E_k)^2 + (\text{Im}\Sigma(k, E))^2},$$
(2)

где $\operatorname{Re}\Sigma(k, E) + i\operatorname{Im}\Sigma(k, E)$ — электронная неприводимая собственноэнергетическая часть. Согласно [10], действительная составляющая $\operatorname{Re}\Sigma(k, E)$, которая вносит небольшие поправки в зонную структуру, не учитывалась. Мнимая составляющая неприводимой собственноэнергетической части имеет следующий вид:

$$Im\Sigma(k, E) = -\frac{\pi}{(2\pi)^3} \sum_{j=1}^3 \int |M_{j,(e-ph)}(k, k')|^2 [(P(\omega_j) + 1/2 \pm 1/2) \mp f(E \mp \hbar \omega_j)] \delta(E \mp \hbar \omega_j - E'_k) dk';$$
(3)

здесь суммирование идет по трем механизмам электрон-фононного взаимодействия, $M_{(e-ph)}$ — матричный элемент соответствующего электрон-фононного взаимодействия; $\hbar\omega$ — энергия фонона; $P(\omega)$ — функция Бозе-Эйнштейна.

На рис. 2 показаны результаты расчета оже-коэффициента для прямого (C_n) и непрямого (C_n^{phon}) механизма рекомбинации в n-In_xGa_{1-x}N в зависимости от ширины запрещенной зоны соединения (E_g) при комнатной температуре. Расчет проводился в предположении избыточной концентрации носителей, равной $n = p = 10^{19}$ cm⁻³. Как видно из рис. 2, широкозонные соединения, которые излучают в видимой спектральной области, попадают в диапазон влияния междузонного механизма оже-рекомбинации с переходом электронов в вышележащую зону проводимости. Резкое возрастание C_n в этой области обусловлено резонансом между E_g и Δ_E (рис. 1, b). Максимальное значение $C_n = 3.1 \cdot 10^{-30}$ cm⁶/s наблюдается при $E_g = 2.55$ eV и спадает до $C_n = 2.0 \cdot 10^{-32}$ cm⁶/s на краю видимой области. Следует отметить, что ход зависимости $C_n(E_g)$ находится в очень хорошем согласии с расчетом, представленным в [1]. Расчет коэффициента C_n^{phon} по теории

Рис. 2. Зависимость оже-коэффициента от ширины запрещенной зоны в $n-\ln_x \operatorname{Ga}_{1-x} N$ при комнатной температуре: C_n — прямой механизм; C_n^{phon} — непрямой механизм с участием фононов (теория возмущений); C_n^{total} — прямой + непрямой механизм (метод функций спектральной плотности).

возмущений второго порядка показывает более слабую зависимость от E_g по сравнению с C_n . Для внутризонных переходов (оже-электрон после рекомбинации остается в одной зоне проводимости) $C_n^{phon} > C_n$ при всех E_g . Однако для междузонных переходов вблизи резонанса C_n^{phon} почти на два порядка меньше C_n . Тот же вывод можно сделать, анализируя суммарный коэффициент $C_n^{total} = (C_n^{phon} + C_n)$, полученный методом функций спектральной плотности. Как видно, в области резонанса $(E_g = 2.25 - 2.9 \text{ eV})$ C_n^{total} почти совпадает с C_n , что говорит о доминирующей роли прямого оже-механизма в этой области. В завершение следует отметить, что $C_n^{total}(E_g)$ и $C_n^{phon}(E_g)$ существенно зависят от аппроксимации, принятой для энергетической δ -функции. В данной работе использовалась ступенчатая ап-

проксимация $\delta(E - E_0) = 0$ при $E - E_0 > \Delta \varepsilon$ и $\delta(E - E_0) = 1/\Delta \varepsilon$ при $E - E_0 < \Delta \varepsilon$, где параметр $\Delta \varepsilon$ должен принимать достаточно малое значение. Кривые на рис. 2 соответствуют расчету при $\Delta \varepsilon = 0.001 \text{ eV}$. Однако если провести расчет при больших значениях $\Delta \varepsilon$ (например, при 0.2 eV, как это делалось в других работах [11]), то зависимости C_n^{total} и C_n^{phon} от E_g становятся более слабыми и монотонными, без ярко выраженного резонанса в области междузонных переходов.

Таким образом, в работе подтверждается ключевое влияние прямых электронных переходов между двумя зонами проводимости на скорость оже-рекомбинации в соединениях $n-\ln_x \text{Ga}_{1-x}$ N для составов x, которые соответствут видимому спектру излучения. Такой междузонный механизм рекомбинации сильно чувствителен к резонансу между шириной запрещенной зоны и энергетическим зазором между нижайшими зонами проводимости. Поскольку вопрос о параметрах зонной структуры нитридов все еще остается открытым (особенно в свете последних расчетов из первых принципов [12]), для дальнейшего уточнения результатов, представленных в данной работе, необходимо провести более фундаментальные исследования зонной структуры InGaN.

Список литературы

- Denaley K.T., Rinke P., Van de Walle C.G. // Appl. Phys. Lett. 2009. V. 94. P. 191 109.
- [2] Bertazzi F., Goano M., Bellotti E. // Appl. Phys. Lett. 2010. V. 97. P. 231 118.
- [3] Kioupakis E., Rinke P., Denaley K.T., Van de Walle C.G. // Appl. Phys. Lett. 2011. V. 98. P. 161 107.
- [4] Bertazzi F., Goano M., Bellotti E. // Appl. Phys. Lett. 2012. V. 101. P. 011111.
- [5] Goano M., Bellotti E., Ghillino E., Ghione G., Brennan K. // J. Appl. Phys. 2000. V. 88. N 11. P. 6467.
- [6] Siegle H., Kaczmarczyk G., Filippidis L., Litvinchuk A.P., Hoffmann A., Thomsen C. // Phys. Rev. 1997. V. 55. N 11. P. 7000.
- [7] Haug A. // J. Phys. C. 1983. V. 16. P. 4159.
- [8] Cappellini G., Del Sole R., Reining K., Bechstedt F. // Phys. Rev. B. 1993. V. 47. N 15. P. 9892.

- [9] Piprek J. // Nitride semiconductor devices: principles and simulation. Berlin: Wiley-VCH, 2007. P. 72.
- [10] Bardyszewski W., Yevick D. // J. Appl. Phys. 1985. V. 58. N 7. P. 2713.
- [11] Govoni M., Marri I., Ossicini S. // Phys. Rev. B. 2011. V. 84. P. 075 215.
- [12] Svane A., Christensen N.E., Gorzyca I., van Schilfgaarde M., Chantis A.N., Kotani T. // Phys. Rev. B. 2010. V. 82. P. 115102.