⁰⁶ Выращивание кристаллов β-Ga₂O₃ из собственного расплава

© В.Н. Маслов, В.М. Крымов, М.Н. Блашенков, А.А. Головатенко, В.И. Николаев

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург ООО "Совершенные кристаллы" ООО "Лабтехноком" Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики E-mail: maslov_vn@hotmail.com

Поступило в Редакцию 24 ноября 2013 г.

Проведены исследования применимости ряда недрагоценных материалов для роста кристаллов β -Ga₂O₃ методом свободной кристаллизации в тигле. Показана возможность выращивания кристаллов β -Ga₂O₃ в тиглях из монокристаллического сапфира. Исследованы основные закономерности роста и свойства полученных кристаллов.

В настоящее время ведущие лаборатории Японии и Германии проявляют повышенный интерес к монокристаллам оксида галлия β -Ga₂O₃ [1,2]. Данный материал особо интересен для УФ-приложений, поскольку является широкозонным полупроводником (4.6–4.7 eV) с достаточной проводимостью, чтобы говорить о создании на его основе приборов вертикальной геометрии, способных обеспечить наибольшую энергоэффективность [3]. В 2013 году начат выпуск опытных светодиодов, выращенных на подложках β -Ga₂O₃ [4]. Кроме того β -Ga₂O₃ как проводящий прозрачный материал в перспективе может решить не только задачу проводящей подложки, но и заместить в конструкции светодиодного чипа другие оксиды, используемые в качестве прозрачных контактов для эффективного вывода света из светодиодных чипов [5].

Для экспериментов по выращиванию кристаллов оксида галлия в качестве исходного сырья использовался порошок ЧДА. Эксперименты проводились на установке "ГРАНАТ-2М", оборудованной печью резистивного нагрева. Нагреватель был выполнен из графита, тепловые экраны из молибдена. Наблюдение за расплавлением и кристаллизацией

56

Рис. 1. *а* — кристаллы, полученные путем свободной кристаллизации в сапфировом тигле расплава оксида галлия (стрелкой показано направление роста кристаллов); *b* — образец, освобожденный от тигля. Фотография хорошо демонстрирует шапку кристаллов оксида галлия, выросшего из газовой фазы.

велось через смотровое окно, располагающееся в верхнем фланце камеры. Рост кристаллов проходил в режиме свободной кристаллизации в тигле.

Ростовые эксперименты проводились как в вакууме, так и в атмосфере аргона при различном давлении газа в камере. При выращивании монокристаллов β -Ga₂O₃ проявились следующие трудности:

1. Вещество является тугоплавким — температура плавления по разным сведениям колеблется от 1725 до 1800°С, что требует высокотемпературных материалов тигля [6].

2. Высокая упругость пара — уже при температуре $700-1000^{\circ}$ С и нормальном давлении легко диссоциирует на Ga и O₂, требуется повышенное давление.

3. Реагирует почти со всеми металлами при высоких температурах — в связи с диссоциацией, образующийся кислород окисляет все металлические элементы в зоне.

Испытывался ряд металлических и неметаллических материалов для тиглей для подбора альтернативы известному, но дорогостоящему ва-

Рис. 2. Спектр рентгеновской дифракции порошка в режиме $\theta - 2\theta$.

рианту с использованием иридия в конструкции тигля [1]. В результате проведенных экспериментов были исключены:

 молибден и вольфрам (из-за сильного взаимодействия с продуктами разложения оксида галлия и реакции переноса и осаждения материала тигля в камере роста);

2) графит, как сильный восстановитель;

3) керамика на основе BN, как химически не устойчивая.

В результате в качестве материала тигля для экспериментов был выбран монокристаллический сапфир.

Тигли из монокристаллического сапфира диаметром 26 mm и высотой 50 mm были выращены из расплава способом Степанова (EFG) [7]. Тигель получался при выращивании трубки путем затравления на пластину, которая и являлась дном тигля. В качестве затравки использовалась также предварительно выращенная пластина толщиной 4 mm, нулевой ориентации. Таким образом рост трубки осуществлялся в

Рис. 3. Отношение оксида алюминия к оксиду галлия в образце, представленном на рис. 1, от края до центра образца.

направлении оптической оси (0001). В ходе работы было проведено 8 плавок. Эксперименты проходили в атмосфере аргона при давлении 1.5-1.7 atm. В результате, способом свободной кристаллизации в тигле, были получены таблитчатые (плоские) и игольчатые кристаллы β -Ga₂O₃ серого с голубоватым оттенком цвета размером: по удлинению (от стенки к центру) до 8 mm, поперек удлинения до 1 mm в агрегате секреционного типа (рис. 1, *a*). На рисунке хорошо видно, что кристаллы, растущие от стенки к центру тигля, имеют шестилучевую направленность, что коррелирует с симметрией монокристаллического сапфирового тигля. Во всех экспериментах наблюдался эффект возгонки оксида галлия, в результате чего на поликристаллических агрегатах образовывалась более прозрачная шапка кристаллов, выросших из газовой фазы (рис. 1, *b*).

Рентгеновский дифракционный анализ порошка, полученного из выращенных образцов, показал характерные для β -Ga₂O₃ пики ($\overline{3}11$), (002) и (400).

Рис. 4. Спектры катодолюминесценции кристаллов Ga₂O₃ при 100 K и напряжении 10.5 kV: *a* — общий вид; *b* — пик красной люминесценции и его аппроксимация тремя гауссовыми линиями.

Был сделан микрозондовый анализ, выяснилось, что выращенные кристаллы β -Ga₂O₃ содержат примесь Al₂O₃ с содержанием от 8 до 13 wt.%, нарастающим от центра кристалла к краю (рис. 2). Все образцы имели низкую электрическую проводимость, что мы связываем с высоким содержанием Al₂O₃ (рис. 3).

Было проведено исследование спектра катодолюминесценции выращенных кристаллов (рис. 4). В спектре наблюдалось 2 полосы: широкая УФ-полоса с максимумом в области 3.3-3.4 eV и узкая полоса высокой интенсивности в области 1.7-1.8 eV, которая хорошо описывается тремя гауссовыми пиками с максимумами 1.805, 1.770 и 1.730 eV. Подобный спектр катодолюминесценции ранее наблюдался в наностержнях Ga₂O₃ [6]. Авторы связывают такую структуру красной части спектра с размерным квантованием энергии в одномерных игольчатых структурах [6]. Широкая УФ-полоса связана с собственными переходами в Ga₂O₃, более выражена у кристаллов, прошедших высокотемпературный отжиг [7,8].

Таким образом, показана возможность выращивания кристаллов β -Ga₂O₃ в тиглях из монокристаллического сапфира.

Список литературы

- Hideo Aida, Kengo Nishiguchi, Hidetoshi Takeda et al. // Japan. J. Appl. Phys. 2008. V. 47(11). P. 8506.
- [2] Galazka Z., Uecker R., Irmscher K. et al. // Cryst. Res. Technol. 2010. V. 45(12).
 P. 1229.
- [3] Shun Ito 1, Kenichiro Takeda 1 // Japan. J. Appl. Physics. 2012. V. 9(3). P. 519.
- [4] http://www.supashop.ch/news/artikel/japanese-firms-use-gallium-oxide-produceimproved-white-led/102450/
- [5] Nogales E., Méndez B., Piqueras J. // Appl. Phys. Lett. 2005. V. 86. P. 113 112.
- [6] Guzmán-Navarro G., Herrera-Zaldívar M., Valenzuela-Benavides J., Maestre D. // J. Appl. Phys. 2011. V. 110. P. 034 315.
- [7] Антонов П.И., Крымов В.М., Москалев А.В. // Наука производству. 2005. № 2. С. 36–38.
- [8] Добровинская Е.Р., Литвинов Л.А., Пищик В.В. // Энциклопедия сапфира. Харьков: Ин-т монокристаллов, 2004. С. 508.