01

Прыжковая миграция протонов в оксидах типа рутила в поле резонансного лазерного излучения при комнатных температурах

© А.Л. Самгин, А.Н. Езин

Институт высокотемпературной электрохимии УрО РАН, Екатеринбург E-mail: anesin@ihte.uran.ru

Поступило в Редакцию 29 октября 2013 г.

Обсуждается новый в области твердооксидных топливных элементов способ понижения рабочей температуры устройств с прыжковым переносом протонов. Показано, что в оксидах типа рутила TiO_2 возможно резкое увеличение скорости переноса при комнатной температуре за счет возбуждения образца источником резонансного инфракрасного света.

В твердооксидных топливных элементах (SOFC) применяются оксиды ABO₃ (их частным случаем являются оксиды BO₂), в которых высокая скорость реакции (τ^{-1}) переноса ионов водорода (H⁺) или дейтерия (D⁺) достигается при высокой температуре (HT). Механизм протонной проводимости в них сводится к "структурной диффузии", которая может быть выражена [1] на языке модели [2] поляронного типа. В рамках таких представлений удобно изучать роль константы $2u^2$ протон-фононной связи, когда под фононами понимаются колебания октаэдров BO₆ [3]. В данной работе изучается низкотемпературный (LT) аналог таких колебаний. Так как теория суперионной проводимости не создана, мы развиваем феноменологическую модель с оценкой параметра $2u^2$ из экспериментальных данных.

Высокие значения T осложняют работу SOFC [1]. Один из путей к снижению рабочей температуры состоит в обращении к полимерам или иным системам, но на нем есть свои трудности (в частности, для мембранных технологий большие расходы связаны с использованием катализаторов [4]). Можно ли понизить ее без ущерба для эффективности прыжкового переноса H^+ ? Это возможно при распаде локальной колебательной моды (ЛКМ) частоты Ω в возбужденном инфракрасным

42

(ИК) лазером образце ВО₂. Это направление, возникшее в последние годы, основано на том, что лазерный импульс резонирует с колебаниями моды растяжения (O–H stretch) и переводит протон в высшие колебательные состояния. Наблюдение усиления τ_{LT}^{-1} осуществлено методом "накачка–зондирование" [5] и объяснено на основе модели решеточно-ассистируемых протонных прыжков (LAPH) [6,7]. Указанная выше реинтерпретация механизма "структурной диффузии" вдоль пространственной оси (скажем, оси *z*) с коэффициентом диффузии

$$D = D_0 \exp(-E_a/kT) \tag{1}$$

говорит, на наш взгляд, о возможности стимуляции протон-фононным взаимодействием переноса H^+ . Возникает вопрос о том, при каких значениях T и u такая стимуляция оптимальна. В TiO_2 диффузия H^+ с наименьшей E_a идет вдоль c-канала [8]. В качестве осциллятора, сильно связанного с протонным носителем, могут служить колебания атомов, окружающих c-канал, для которого в [5] предложен термин "assist phonon", а в [7] — "phonon assistance" (PA). Роль РА (для H^+ ее выполняет wag-мода [5]) видна из анализа характерных времен (времени T_1 жизни возбужденного осциллятора и времени t_0 между прыжками).

Лазер возбуждает образец с разрушением связи О–Н. Прыжки протонов с РА служат каналом релаксации при наличии нескольких условий. Во-первых, перераспределение энергии от распада ЛКМ обычно идет к низкочастотным степеням свободы [9]. Частота Ω относится к последним, вследствие чего новая координата реакции *q* совпадает с направлением wag-моды. Во-вторых, элементарная стадия реакции включает распад ЛКМ и поворот протонной конфигурации для перехода H⁺ в канал легкой диффузии. Последний этап идет через связь двух разных ОН-осцилляторов [5], а его быстрота обеспечивается удачной геометрией решетки. Следовательно, третье и главное условие — это ортогональность направлений О–H stretching и О–H wagging. С первым из них связано время *T*₁, а со вторым — время *t*₀. Рассмотрим эти связи. Полуширина ИК линии Г (FWHM), согласующаяся в данном методе с длительностью светового импульса, равна [5,9,10]:

$$\Gamma = 1/2\pi c T_1,\tag{2}$$

где c — скорость света. Отличительная зависимость T_1 от T появляется при замене в уравнении (1) статического барьера $U(z_0) = U_0 \approx E_a$

динамическим барьером $E_a^{(d)} = E_a^{(d)}(u, T, \Omega)$. Отметим самосогласованность механизма, при котором путь с более низким, чем $U_0 \sim 10kT$, барьером $V(q_0) = V_0 \approx E_a^{(d)}$ формируется при участии самого фонона (в простейшем сценарии [7] предполагается одинаковое разложение обоих потенциалов U(z) и V(q) около их вершин в соответствующих точках z_0 и q_0), а величина $E_a^{(d)}$ фактически оценивается [5] по энергии фотонов лазера. Перейдем к анализу t_0 и $E_a^{(d)}$. Так как обычно релаксационная динамика водородных ЛКМ относится к пикосекундному диапазону [9], то для t_0 можно ожидать таких же значений. В (1) коэффициент $D = D_{HT}$ с $D_0 = v_a d^2$ связан со скоростью одномерной реакции перескоков, определяемой теорией абсолютных скоростей реакций (ART) как

$$\tau^{-1(ART)} = (2\pi)^{-1}\omega \exp(-U_0/kT)$$
(3)

 $(v_a = (2\pi)^{-1}\omega$ — частота попыток перескоков, d — расстояние между ионами O^{2-} , ω — частота колебаний на дне ямы). Вдоль направления, параллельного *c*-каналу, v_a равна удвоенной частоте ω_{\parallel} либрационного осциллятора [11]. По аналогии с выводом D_{HT} на основе обычной флуктуационно-диссипативной теоремы (ФДТ) [12] нами было предложено [6] использовать квантовую ФДТ для конкретизации вида D_{LT} , определяемого в модели LAPH как

$$D_{LT} = d^2 w, (4)$$

где w — вероятность прыжка протона при низких T вдоль q. Так как по смыслу

$$v \approx t_0^{-1},\tag{5}$$

то мы с учетом "классического" характера миграции можем применить выражение типа (3):

$$w = v_{aLT} \exp(-E_a^{(d)}/kT).$$
(6)

Аналогия с формулой $\omega = 2\omega_{\parallel}$ приводит с учетом сильной связи протона с осциллятором к

$$\nu_{aLT} = A\Omega,\tag{7}$$

где A — параметр (ввиду квантового механизма для него нет простой интерпретации, как для числа 2 в $2\omega_{\parallel}$, связанного [11] с количеством попыток), а аналогия с $E_a \sim kT$ приводит к

$$E_a^{(d)} = 2u^2 kT \tanh(\hbar\Omega/4kT), \tag{8}$$

45

где kT заменено на среднюю энергию осциллятора. По своей сути A связан с перекрытием волновых функций и может зависеть, в частности, от d и kT. Мы, однако, не выходим за пределы простого феноменологического описания с A = const. B его рамках параметр Ω в (8) относится скорее к эффективной частоте Ω_{eff} , близкой к средней частоте осцилляторов бани.

Формулу (8) можно получить более строгим путем. Опуская неважные для целей данной работы выкладки, отметим, что она следует из гамильтониана [9,13] "система-резервуар"

$$H = H_S + H_R + H_I, \tag{9}$$

где H_S , H_R и H_I относятся, соответственно, к системе (протону), осцилляторам резервуара и протон-фононному взаимодействию. В этом случае непосредственно измеряемый параметр u^2 прямо пропорционален параметру связи осциллятора в соответствующем члене H. В (8) u^2 определяется просто как отношение $V_0/\hbar\Omega_{eff}$ (аналогично теории полярона [14] с оптическими фононами в цепочке связей O–H) при $\hbar\Omega_{eff} \sim 2kT$. Подобное условие следует [7] из анализа на основе квантового уравнения Ланжевена, соответствующего (9), и задает оптимальную для SOFC температуру T_0 (перехода от классического режима к квантовому):

$$\hbar\Omega \approx 2kT_0. \tag{10}$$

При насыщении образцов в атмосфере H_2O экспериментальные значения $\log D$ вдоль *с*-оси при высоких и относительно низких *T* (в последнем случае перенос, разумеется, связан с обычным туннелированием) описываются двумя прямыми почти одинакового наклона. По мнению авторов работы [8], это означает, что туннельный коэффициент диффузии

$$D_{tun} \approx d^2 w_{tun} \tag{11}$$

соответствует продолжению классического процесса, однако требуются дополнительные объяснения того, что частота туннелирования меньше

Рис. 1. Температурная зависимость времени между прыжками протонов для параметров $\Omega = 400 \text{ cm}^{-1}$, A = 5.7 cm/ps и u = 2.78. Для иллюстрации значения феноменологических параметров модели выбраны так, чтобы частота РА соответствовала критерию (10) для $T_0 \approx 300 \text{ K}$, а формулы (5) и (8) соответствовали экспериментально ожидаемым [5] значениям Γ (с временами жизни порядка 1 рs) и энергии фотонов лазера ($\sim 0.2 \text{ eV}$), при которой $D_{LT} \rightarrow 0$.

низкотемпературного предела w_{tun} . В нашем случае переход от D_{LT} к D_{HT} объясняется логически строго за счет перехода формулы (8) при высоких T в обычное соотношение $E_a \sim kT$; однако появляется возможность моделировать рост $\tau_{LT}^{-1} \sim 2\pi c\Gamma$ за счет протон-фононного взаимодействия. Несмотря на сходство формул (4) и (11), между ними есть два отличия. Во-первых, они описывают разные (надбарьерные и подбарьерные) переходы; во-вторых, вероятность w относится не к нижнему краю частот, как w_{tun} , а, наоборот, ограничена сверху реальным спектром решетки. Поэтому предсказываемые значения $D_{LT}(T_0)$ с $v_{aLT} \gg w_{tun}$ лежат выше наблюдаемых значений $D_{HT}(T_0)$.

Для $\Omega \approx 400 \,\mathrm{cm}^{-1}$, $u \approx 2.78$ и $A \approx 5.7 \,\mathrm{cm/ps}$ получаем с помощью формул (3), (6)–(8), что

$$\tau_{LT}^{-1}(300 \,\mathrm{K})/\tau^{-1(ART)}(300 \,\mathrm{K}) \approx 10^9$$
 (12)

Рис. 2. Температурная зависимость времени между прыжками протонов для перенормированных параметров $\Omega = \Omega_{eff} = 400 \text{ cm}^{-1}$, $A = A_{eff} = 0.01 \text{ cm/ps}$, $u = u_{eff} = 1.06$.

(со значениями $d=1.48{\rm \AA},~U_0\approx 0.59\,{\rm eV}$ и $\nu_a\approx 10^{13}\,{\rm s}^{-1}$ [8]). С учетом (10) и $C=2(e/\hbar)A$ имеем

$$\mu \approx \mu_0 \exp(-u^2),\tag{13}$$

где

$$\mu_0 = Cd^2. \tag{14}$$

Выражения (12)-(14) явно показывают отличительные свойства процесса низкотемпературной прыжковой миграции протонов: резкое усиление константы скорости реакции, сильное влияние протонфононного взаимодействия на вероятность надбарьерных переходов и квантовую природу подвижности μ из-за наличия \hbar . Поведение t_0 для этого набора параметров показано на рис. 1. Характерный масштаб времени $t_0 \sim 1$ рѕ может достигаться и с другими A_{eff} и u_{eff} (см. рис. 2 с перенормированными параметрами, отражающими учет многочастичных эффектов типа вклада межмолекулярных колебаний в уширение оптического спектра), а для более низких T — с большими значениями $\Omega = \Omega_{eff}$ (рис. 3). Из рис. 3 видно, что при T = 60 К времена

Рис. 3. Частотная зависимость времени между прыжками протонов при T = 60 K для набора параметров: $A_{O-H} = 0.01$ cm/ps, $u_{O-H} = 1.05$, $A_{O-D} = 0.0013$ cm/ps, $u_{O-D} = 0.53$.

жизни OD с $\Omega_D = 330 \,\mathrm{cm}^{-1}$ и OH с $\Omega_H = 400 \,\mathrm{cm}^{-1}$ различаются примерно в 2 раза, что согласуется с экспериментом [5]. Частоты РА соответствуют обычному изотопному эффекту $m_H \Omega_H^2 \approx m_D \Omega_D^2$, выполняющемуся [15] для ионных кристаллов (здесь *m* обозначает массу изотопа). Рис. 2 показывает, что время t_0 при $T < 40 \,\mathrm{K}$ практически не зависит от *T*, а при $T \sim 300-400 \,\mathrm{K}$ приближается к 0.5 рs. Первое говорит о наличии низкотемпературного плато для τ_{LT}^{-1} при оптической стимуляции прыжковой миграции протонов. Последнее служит косвенным доводом в пользу квантовой природы рассматриваемых переходов при комнатной *T*, поскольку времена порядка 0.5 рs характеризуют [16] квантовый протонный перенос. Теоретическая кривая на рис. 2 хорошо описывает экспериментально наблюдаемую при низких *T* (рис. 3 в [5]) зависимость $T_1(T)$.

По прогнозам "фемтосекундные импульсы, скорее всего, станут основой многих технологий" [10]. Результаты настоящей работы показывают возможность их применения в области SOFC и дополняют наши предыдущие результаты [17] изучения динамической природы D_0 .

Работа выполнена при финансовой поддержке РФФИ (проект № 12-03-00423-а).

49

Список литературы

- Kreuer K.D. // Perovskite Oxide for Solid Oxide Fuel Cells (T. Ishihara, ed.), Springer, 2009. P. 261–272.
- [2] Самгин А.Л. // Электрохимия. 1999. Т. 35. N 3. С. 312.
- [3] Samgin A.L. // Solid State Ionics. 2000. V. 136–137. P. 291.
- [4] Martin K.E., Kopasz J.P., McMurphy K.W. // Fuel Cell Chemistry and Operation, ACS Symposium Series. Washington, DC: American Chemical Society, 2010. Ch. 1. P. 1–13.
- [5] Spahr E.J., Wen L., Stavola M., Boatner L.A., Feldman LC., Tolk N.H., Lüpke G. // Phys. Rev. Lett. 2010. V. 104. N 20. P. 205 901.
- [6] Samgin A.L. // Solid State Commun. 2012. V. 152. N 7. P. 585.
- [7] Samgin A.L. // J. Phys. Chem. Solids. 2013. V. 74. N 12. P. 1661.
- [8] Johnson O.W., Paek S.-H., DeFord J.W. // J. Appl. 1975. V. 46. N 3. P. 1026.
- [9] Lüpke G., Tolk N.H., Feldman L.C. // J. Appl. Phys. 2003. V. 93. N 5. P. 2317.
- [10] Козлов С.А., Самарцев В.В. Основы фемтосекундной оптики. М.: Физматлит, 2009. 292 с.
- [11] Grone A., Kapphan S. // J. Phys.: Condens. Matter. 1995. V. 7. N 15. P. 3051.
- [12] *Гуревич Ю.Я., Харкац Ю.И.* Суперионные проводники. М.: Наука, 1992. 288 с.
- [13] Banerjee D., Banik S.K., Bag B.C., Ray D.S. // Phys. Rev. E. 2002. V. 66. P. 051 105.
- [14] Krasnogolovets V.V., Protsenko N.A., Tomhuk P.M. // Intern. J. Quant. Chem. 1988. V. 33. P. 349.
- [15] Flynn C.P., Stoneham A.M. // Phys. Rev. B. 1970. V. 1. P. 3966.
- [16] Antoniou D., Schwartz S.D. // J. Chem. Phys. 1999. V. 110. N 15. P. 7359.
- [17] Ezin A.N., Samgin A.L. // Phys. Rev. E. 2010. V. 82. P. 056 703.