05

Нарушение контакта в окрестности цилиндрических и сферических включений нанокомпозита

© Н.М. Власов, Ю.Г. Драгунов

Подольский институт (филиал) Московского государственного открытого университета им. В.С. Черномырдина, 142114 Подольск, Россия e-mail: chelyapina@pochta.ru

e-mail. cheiyapina@pochta.ru

(Поступило в Редакцию 12 июля 2013 г. В окончательной редакции 14 ноября 2013 г.)

Исследовано нарушение контакта в окрестности цилиндрических и сферических включений нанокомпозита. Физическую основу процесса составляет образование свободного объема на границе "включение матрица" вследствие диффузионного потока вакансий.

Введение

Модельная схема нанокомпозита представляет собой матрицу, упрочненную цилиндрическими или сферическими включениями из другого материала. Последнему присущи высокие упругие и прочностные характеристики в сочетании с низким коэффициентом термического расширения. Включения разной геометрической формы когерентно (без сетки эпитаксиальных дислокаций) связаны с матрицей. При тепловом нагружении нанокомпозита возникают термонапряжения. Их появление обусловлено различными значениями свойств материала матрицы и включений. Контактное давление на границе "включение—матрица" определяется из выражения

$$p = (\alpha_m - \alpha_i)E_m(T - T_0), \qquad (1)$$

где α_m и α_i — коэффициенты термического расширения матрицы и включения соответственно, E_m — модуль Юнга материала матрицы, Т₀ — начальная температура (отсутствуют термонапряжения), Т — температура эксплуатации (возникают остаточные напряжения в матрице нанокомпозита). При $\alpha_m > \alpha_i$ и $E_i > E_m$ (E_i — модуль Юнга материала влючения) матрица находится в состоянии сжатия, а включения — в состоянии растяжения. По мере повышения температуры контактное давление увеличивается, и в окрестности включений начинается пластическое течение. Оно возникает на внутренней поверхности матрицы при условии, что сдвиговые компоненты тензора термонапряжений превышают предел текучести материала при данной температуре. В окрестности включений формируются остаточные напряжения сжатия. Они уменьшают равновесную концентрацию вакансий. Это приводит к их диффузионной миграции на границу включения и, как следствие, происходит образование свободного объема между матрицей и включением. Тепловое сопротивление нанокомпозита возрастает и возникают локальные всплески температуры.

Неоднородные остаточные напряжения увеличивают диффузионный поток вакансий на границу контакта матрицы и включения. Это обусловлено упругим взаимодействием вакансий с первым инвариантом тензора остаточных напряжений. Потенциал взаимодействия (энергия связи) определяется известным соотношением

$$V = -\frac{\sigma_{ll}}{3}\delta v, \qquad (2)$$

где σ_{ll} — первый инвариант тензора остаточных напряжений ($\sigma_{ll}/3$ — давление), δv — изменение объема кристалла при размещении вакансии. Для $\sigma_{ll} < 0$ (напряжение сжатия) и $\delta v < 0$ (вакансии уменьшают параметр кристаллической решетки) потенциал V принимает отрицательное значение. Это соответствует диффузионной миграции вакансий в зону напряжения сжатия и их вытеснению из области растягивающих напряжений. Неравенство $\delta v < 0$ показывает, что разность между объемами вакансии и атома отрицательна. Действительно, $(v_v - v_{at}) < 0$, так как $v_{at} > v_v$, где v_v — объем вакансии, v_{at} — объем атома.

Предлагаемая работа посвящена исследованию нарушения контакта между матрицей и включениями в нанокомпозите. Алгоритм математического моделирования включает следующие операции: вычисление первого инварианта тензора остаточных напряжений, решение уравнений диффузионной кинетики, определение скорости перемещения границы матрицы в окрестности включения.

1. Цилиндрические включения

Рассмотрим модельную систему нанокомпозита с цилиндрическими включениями. Их характерный размер соответствует общепринятым условиям наноструктур. Распределение включений цилиндрической формы может быть произвольным или упорядоченным. Это относится и к расстоянию между центрами включений. Материал включения обладает высоким модулем упругости и малым коэффициентом термического расширения по отношению к матрице [1,2]. В качестве иллюстраций достаточно упомянуть систему "W-Cu" [1]. Упомянутые свойства имеют следующие численные значения: вольфрам — $E = 41 \cdot 10^4$ MPa, $\alpha = 5.5 \cdot 10^{-6}$ K⁻¹; медь — $E = 12.3 \cdot 10^4$ MPa, $\alpha = 16.5 \cdot 10^{-6}$ K⁻¹ при комнатной температуре. Это позволяет, не нарушая общности,

Рис. 1. Деформация композита "медь–вольфрамовая проволока" [1]. Цифры обозначают объемные доли вольфрама в процентах (σ — напряжения, ε — деформация).

рассматривать абсолютно жесткое включение в пластической матрице. Поэтому все процессы пластического течения разыгрываются в окружающей матрице.

Экспериментальные кривые деформации системы "W-Cu" приведены на рис. 1 [1]. При увеличении объемного содержания вольфрама в виде волокон возрастает прочность композита. Поэтому можно высказать предположение, что подобное поведение свойственно всем композиционным материалам, включая и наноструктуры. Обоснованность предположения базируется на единой физической природе деформации систем с упругими включениями и пластической матрицей. Модельная схема нанокомпозита с равномерно распределенными цилиндрическими включениями показана на рис. 2, *а.* Упругая модель матрицы в окрестности отдельного включения приведена на рис. 2, *b*. Полый цилиндр находится под действием внутреннего давления *p* в состоянии плоской деформации. При этом $\sigma_{rr} = -p$ при $r = r_0$ и

Рис. 2. Модельная схема нанокомпозита с дилиндрическими/ включениями: *a*) — общий вид, *b*) — матрица в окрестности отдельного включения.

 $\sigma_{rr} = 0$ при r = R, где r_0 и R — внутренний и внешний радиусы цилиндра, σ_{rr} — радиальная компонента тензора термонапряжений. Внутренний радиус цилиндра соответствует характерному размеру включения, а внешний (штриховая окружность рис. 2, *a*) представляет собой половину расстояния между включениями при их равномерном распределении. Образование остаточных напряжений в полых цилиндрах и сферах при условии идеальной пластичности (отсутствует деформационное упрочнение материала) и несжимаемости (коэффициент Пуассона v = 1/2) исследовалось достаточно подробно [3,4]. Следуя [3], приведем компоненты тензора остаточных напряжений в полом цилиндре. Они идентичны полю напряжений клиновой дисклинации [5]

$$\sigma_{rr} = -p + \sigma_s \ln r/r_0, \quad \sigma_{\theta\theta} = -p + \sigma_s \left(1 + \frac{\ln r}{r_0}\right),$$

$$\sigma_{zz} = -p \frac{\sigma_s}{2} \left(1 + 2\ln \frac{r}{r_0}\right), \quad (3)$$

где σ_s — предел текучести материала матрицы. Значение σ_s определяется из условия $\sigma_{\theta\theta} - \sigma_{zz} = \sigma_s$. Далее легко записать первый инвариант тензора остаточных напряжений

$$\sigma_{ll} = \sigma_{rr} + \sigma_{\theta\theta} + \sigma_{zz} = -3p + 3\sigma_s \left(\frac{1}{2} + \ln\frac{r}{r_0}\right), \quad (4)$$

который определяет диффузионную миграцию вакансий в объеме цилиндра. Условия на границах цилиндра нуждаются в пояснении. Для удаления атома с внутренней поверхности (при обмене с вакансией) и его присоединения к внешней совершается работа только против сил нормального давления. Поэтому граничные условия диффузионной задачи (равновесная концентрация вакансий) зависят только от радиальной компоненты соотношения (3), т.е. $\sigma_{rr} = -p$ при $r = r_0$ и $\sigma_{rr} = 0$ при r = R. Величина внутреннего давления p определяется из условия, что весь цилиндр охвачен пластическим течением

$$p = \sigma_s \ln \frac{R}{r_0}.$$
 (5)

Однако зона пластичности может занимать не весь объем цилиндра, а ограничиваться некоторым радиусом r < R. Тогда упругая область $(r_1 \le r \le R)$ служит источником поступления вакансий в зону остаточных напряжений. Это обусловлено тем, что равновесная концентрация вакансий в упругой области $(\sigma_{ll} = 0)$ превышает соответствующую величину в зоне пластичности $(\sigma_{ll} < 0)$. Если же весь объем охвачен пластическим течением, то условие на границе r = R можно интерпретировать так: равновесие на внешней поверхности мгновенно отслеживает свою температуру и поэтому остается неизменным во время диффузионного процесса. Равновесная концентрация вакансий в объеме цилин-

дра экспоненциально зависит от потенциала V:

$$C_p = C_0 \exp\left(-\frac{V}{kT}\right),\tag{6}$$

где k — постоянная Больцмана, T — абсолютная температура, C_0 — средняя концентрация вакансий.

Ее численное значение соответствует равновесной концентрации при данной температуре без остаточных напряжений. В области напряжения сжатия $C_p < C_0$, при растяжении $C_p > C_0$ и $C_p = C_0$ при отсутствии остаточных напряжений. Равновесная концентрация вакансий на поверхностях определяется радиальной компонентой тензора остаточных напряжений

$$C_p = C_0 \exp\left(-\frac{\omega p}{kT}\right)$$
 при $r = r_0,$
 $C_p = C_0,$ при $r = R.$ (7)

где ω — объем вакансий, *р* —- контактное давление на границе "включение-матрица". Граничные условия (7) используют при решении задач диффузионной кинетики. Зависимость приведенной величины σ_{ll} от безразмерного радиуса r/r_0 для $R/r_0 = 10$ показана на рис. 3. Логарифмическая функция упрощает решение уравнений диффузионной кинетики. С позиции математического формализма это обусловлено тем, что она является гармонической (оператор Лапласа равен нулю), а ее градиент обратно пропорционален радиусу (соответствует одному из членов оператора Лапласа). Равновесная концентрация вакансий в объеме зависит от величины σ_{ll} и уменьшается по мере приближения к внутренней поверхности цилиндра. Такое уменьшение происходит за счет миграции вакансий на его внутреннюю поверхность. Физически это соответствует нарушению контакта и образованию свободного объема между включениями и матрицей при тепловом нагружении нанокомпозита. Зависимость σ_{ll} от радиальной координаты определяется с точностью до постоянных. Последние исчезают при дифференцировании и поэтому не оказывают влияния на диффузионную кинетику вакансий.

Диффузия вакансий с учетом остаточных напряжений подчиняется уравнению параболического типа при соот-

3

2.5

2

1.5

Рис. 3. Зависимость приведенного σ_{ll} от безразмерного радиуса r/r_0 для цилиндрического включения.

ветствующих начальном и граничных условиях [6,7]

$$\frac{1}{D}\frac{\partial C}{\partial t} = \Delta C - \frac{\nabla (C\nabla V)}{kT}, \quad r_0 < r < R,$$

$$C(r, 0) = C_0, \quad C(r_0, t) = C_p, \quad C(R, t) = C_0, \quad (8)$$

где *D* — коэффициент диффузии вакансии,

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r}, \qquad \nabla = \frac{\partial}{\partial r}.$$

Остальные обозначения соответствуют принятым ранее. Отрицательное значение второго члена правой части уравнения (8) означает, что остаточные напряжения "поглощают" вакансии для достижения равновесной концентрации. С учетом знака потенциала V получим "источник" вакансий ($C_0 - C_p$) > 0 для увеличения внутреннего радиуса цилиндра. Физический смысл начального и граничных условий задачи (8) вполне очевиден. В начальный момент времени концентрация вакансий в цилиндре равна среднему значению С₀ при данной температуре. Такая же концентрация вакансий сохраняется и на внешней поверхности после образования остаточных напряжений. Краевое условие при $r = r_0$ означает, что равновесная концентрация вакансий мгновенно отслеживает радиальную компоненту тензора остаточных напряжений (контактное давление *p*). Использование соотношений (2) и (4) существенно упрощает математическую формулировку задачи (8)

$$\frac{1}{D}\frac{\partial C}{\partial t} = \frac{\partial^2 C}{\partial r^2} + \frac{1+\alpha_1}{r}\frac{\partial C}{\partial r}, \quad r_0 < r < R,$$

$$C(r,0) = C_0, \quad C(r_0,t) = C_p, \quad C(R,t) = C_0,$$

$$\alpha_1 = \frac{\sigma_s \delta v}{kT}.$$
(9)

Все обозначения идентичны принятым ранее. Безразмерный параметр задачи α_1 определяет влияние остаточных напряжений на кинетику миграции вакансий. Если $\alpha_1 \ll 1$, то остаточные напряжения слабо возмущают диффузионный поток вакансий. При $\alpha_1 \gg 1$ основной вклад в диффузионную миграцию дают остаточные напряжения. Для $\alpha_1 \approx 1$ диффузионные потоки вакансий вследствие градиентов концентрации и остаточных напряжений сопоставимы. Оценки показывают, что величина α₁ близка к единице. Действительно, для $\sigma_s = 100$ MPa, $\delta v = 2 \cdot 10^{-29}$ m³ и $kT = 4 \cdot 10^{-21} J$ (некоторые условные значения) получим $\alpha_1 \approx 1$. Из уравнения (9) следует, что при $\alpha_1 > 0$ и $\partial C / \partial r > 0$ слагаемое $\alpha_1/r \partial C/\partial r$ можно рассматривать как "источник" вакансий в области остаточных напряжений. Избыточные вакансии возникают вследствие достижения равновесного состояния, поскольку $C_p < C_0$ во всем объеме цилиндра (за исключением границы r = R). Остаточные напряжения при $\alpha_1 = 1$ изменяют симметрию уравнения диффузии. Диффузионный поток вакансий на внутреннюю поверхность полого цилиндра идентичен закону для полой сферы. Это сопровождается "фокусировкой" вакансионного потока, поскольку увеличивается отношение площадей поверхностей полой сферы по сравнению с полым цилиндром:

$$\left(\frac{R}{r_0}\right)^2 > \frac{R}{r_0}.$$

Рассмотрим два варианта решения задачи (9). Первый из них ($\alpha_1 = 1$) учитывает влияние остаточных напряжений на кинетику миграции вакансий. Процесс диффузии вакансий в полом цилиндре протекает по закону для полой сферы при одинаковых начальном и граничных условиях. Изменение симметрии задачи за счет остаточных напряжений ускоряет нарушение контакта между матрицей и включениями. Второй вариант ($\alpha_1 = 0$) не учитывает остаточные напряжения в объеме, а только в граничных условиях. Сопоставление двух кинетик при идентичности краевых условий позволяет получить количественные закономерности по изменению внутреннего радиуса полого цилиндра. Решение соответствующих задач в исходной постановке (например, ряды функций Бесселя) мало проясняют физический смысл процесса. Поэтому исследуем диффузионную кинетику в стационарном приближении. Обоснованность такого подхода обеспечивается тем, что установившаяся концентрация вакансий формируется быстрее по сравнению со скоростью перемещения внутренней поверхности цилиндра. Ранее было показано, что вклад нестационарности в изменение радиуса сферической поры за счет диффузий вакансий несуществен [8]. Если за характерный размер матрицы в окрестности включений принять 10² nm $(10^{-7} \,\mathrm{m})$, то время достижения стационарного состояния при $D = 10^{-16} \text{ m}^2/\text{s}$ составляет $10^{-14}/10^{-16} = 10^2 \text{ s}$. Это также свидетельствует о правомочности использования установившегося диффузионного процесса.

При $\alpha_1 = 1$ стационарная задача математически формулируется следующим образом:

$$\frac{d^2C}{dr^2} + \frac{2}{r}\frac{dC}{dr} = 0, \qquad r_0 < r < R,$$

$$C(r_0) = C_p, \qquad C(R) = C_0. \tag{10}$$

Ее решение дает распределение концентрации вакансий с учетом остаточных напряжений

$$C = C_0 + (C_0 - C) \frac{r_0/R - r_0/r}{1 - r_0/R}.$$
 (11)

Определим скорость изменения внутреннего радиуса цилиндра вследствие полного потока вакансий (градиенты концентрации и остаточных напряжений)

$$\left(\frac{dr_0}{dt}\right)_1 = D\omega N_0 \left(\frac{\partial C}{\partial r} + \frac{C}{kT}\frac{\partial V}{\partial r}\right)_{|r=r_0}$$

= $D\omega N_0 \frac{C_p}{r_0} \left(\frac{C_0/C_p - r_0/R}{1 - r_0/R}\right),$ (12)

где D — коэффициент диффузии вакансии, ω — объем вакансии, N_0 — число атомов в единице объема. Остальные обозначения остались прежними. После интегрирования соотношения (12) при постоянном r_0/R получим

изменение радиуса цилиндра

$$\delta r_0(t)_1 = \sqrt{2Dt\omega N_0 C_p \frac{(C_0/C_p - r_0/R)}{(1 - r_0/R)}}.$$
 (13)

Для $\alpha_1 = 0$ диффузионная задача в стационарном приближении имеет вид

$$\frac{d^2C}{dr^2} + \frac{1}{r}\frac{dC}{dr} = 0, \qquad r_0 < r < R,$$

$$C(r_0) = C_p, \qquad C(R) = C_0. \tag{14}$$

После интегрирования получим концентрацию вакансий без учета остаточных напряжений

$$C = \frac{C_p \ln R/r + C_0 \ln r/r_0}{\ln R/r_0}.$$
 (15)

Диффузионный поток вакансий зависит только от градиента концентрации (без учета остаточных напряжений). Далее легко получить скорость изменения внутреннего радиуса цилиндра для этого случая

$$\left(\frac{dr_0}{dt}\right)_2 = D\omega N_0 \frac{\partial C}{\partial r}\Big|_{r=r_0} = D\omega N_0 \frac{C_p}{r_0} \frac{(C_0/C_p - 1)}{\ln R/r_0}.$$
(16)

После интегрирования этого выражения при постоянном r_0/R получим изменение радиуса цилиндра

$$\delta r_0(t)_2 = \sqrt{2Dt\omega N_0 C_p \frac{(C_0/C_p - 1)}{\ln R/r_0}}.$$
 (17)

Все обозначения идентичны принятым ранее. Отношение выражений (13) и (17) характеризует вклад остаточных напряжений в изменение внутреннего радиуса полого цилиндра

$$\frac{\delta r_0(t)_1}{\delta r_0(t)_2} = \sqrt{\frac{(C_0/C_p - r_0/R)\ln R/r_o}{(1 - r_0/R)(C_0/C_p - 1)}}.$$
(18)

При $R/r_0 > 1$ и $C_0/C_p > 1$ это отношение всегда больше единицы. Физически это означает, что в условиях пластического течения и последующего образования остаточных напряжений нарушение контакта между матрицей и включениями нанокомпозита усиливается.

Выполним некоторые количественные оценки. Они носят условный характер и не претендуют на полноту представления. Отношение $C_0/C_p = \exp(-\omega p/kT) = 1.65$ при p = 100 MPa, $\omega = 2 \cdot 10^{-29}$ m³ и $kT = 4 \cdot 10^{-21}$ J. Для $R/r_0 = 10$ и $C_0/C_p = 1.65$ получим $\delta r_0(t)_1/\delta r_0(t)_2 = 2.47$. Это значение далее следует сравнить с подобным результатом для сферических включений нанокомпозита. Определим увеличение внутреннего радиуса полого цилиндра согласно соотношениям (13) и (17), при $D = 10^{-16}$ m²/s, $t = 10^4$ s, $C_p = 0.6 \cdot 10^{-4}(at)$, $C_0 = 10^{-4}(at)$, $\omega = 10^{-29}$ m³, $N_0 = 10^{29} \frac{at}{m^3}$, $R/r_0 = 10$. После проведения вычислений имеем $\delta r_0(t)_1 = 14.1$ nm, $\delta r_0(t)_2 = 5.8$ nm.

Остаточные напряжения одинаковое время за свободный объем увеличивают в окрестности цилиндрического включения нанокомпозита. При этом диффузионное увеличение может превышать таковое за счет температурного расширения. Принимая $r_0 =$ = 100 nm, $(\alpha_m - \alpha_i) = 10^{-5} \text{ K}^{-1}$ и $T = 10^3 \text{ K}$, получим $(\delta r_0)_1 = 1$ nm. По мере увеличения радиуса включения преобладает температурный эффект нарушения контакта. Так, например, при $r_0 = 10^4 \, \text{nm}$ имеем $(\delta r_0)_1 = 10^2$ nm. Таким образом, диффузионное нарушение контакта присуще наноразмерным включениям.

2. Сферические включения

Нанокомпозит в этом случае представляет собой матрицу, упрочненную сферическими включениями. Характер распределения включений может быть упорядоченным или произвольным. Сохраняя общность, рассмотрим упорядоченное расположение сферических включений. Модельная схема нанокомпозита соответствует рис. 2. При повышении температуры за счет разности коэффициентов термического расширения возникают термонапряжения. Контактное давление на границе когерентного включения приводит к началу пластического течения и образованию остаточных напряжений. Упругой моделью матрицы в окрестности отдельного включения является полая сфера (рис. 2, b). При этом рассматривается сечение нанокомпозита по диаметру включений (рис. 2, *a*). Под *r*₀ и *R* понимают внутренний и внешний радиусы полой сферы. Первый инвариант тензора остаточных напряжений также имеет логарифмическую зависимость от радиальной координаты [3]

$$\sigma_{ll} = -3p + 2\sigma_s (1 + 3\ln r/r_0), \tag{19}$$

где σ_s — предел текучести материала матрицы в условиях идеальной пластичности (без деформационного упрочнения материала). Зависимость приведенного значения σ_{ll} с незначительными отличиями от рис. З для $R/r_0 = 10$ приведена на рис. 4. Принимается, что пластическое течение захватывает весь объем полой сферы и действует только контактное давление на границе "включение—матрица". Удаление атома (при обмене с вакансией) с внутренней поверхности сферы и его присоединение к внешней зависит только от радиальной компоненты тензора остаточных напряжений

$$\sigma_{rr} = -p + 2\sigma_s \ln \frac{r}{r_0}.$$
 (20)

Это приводит к следующим граничным условиям: $\sigma_{rr} = -p$ при $r = r_0$ и $\sigma_{rr} = 0$ при r = R для $p = 2\sigma_s \ln R/r_0$. Отсюда получим краевые условия для задачи диффузионной кинетики

$$C(r, 0) = C_0,$$
 $C_p = c_0 \exp\left(-\frac{\omega p}{kT}\right),$ при $r = r_0,$
 $C = C_0$ при $r = R,$ (21)

Рис. 4. Зависимость приведенного σ_{ll} от безразмерного радиуса r/r_0 для сферического включения.

где все обозначения соответствуют принятым ранее для полого цилиндра.

Концентрация вакансий в полой сфере определяется из решения следующей задачи:

$$\frac{1}{D}\frac{\partial C}{\partial t} = \Delta C - \frac{\nabla (C\nabla V)}{kT}, \quad r_0 < r < R,$$

(r, 0) = C₀, $C(r_0, t) = C_p, \quad C(R, t) = C_0,$ (22)

где

С

$$\Delta = rac{\partial^2}{\partial r^2} + rac{2}{r}rac{\partial}{\partial r}, \qquad
abla = rac{\partial}{\partial r}.$$

Потенциал взаимодействия (энергия связи) V зависит от σ_{ll} соотношения (19). Остальные обозначения встречались ранее. Особенностью уравнения (22) является то, что логарифмическая функция в сферической системе координат отличается от гармонической (оператор Лапласа не равен нулю). Поэтому упрощенный вариант задачи (22) принимает иной вид по сравнению с выражением (9)

$$\frac{1}{D}\frac{\partial C}{\partial t} = \frac{\partial^2 C}{\partial r^2} + \frac{2+\alpha_1}{r}\frac{\partial C}{\partial r} + \frac{\alpha_1}{r^2}C, \quad r_0 < r < R,$$

$$C(r,0) = C_0, \quad C(r_0,t) = C_p, \quad C(R,t) = C_0, \quad (23)$$

$$\alpha_1 = \frac{2\sigma_s \delta v}{kT}.$$

Все обозначения остались прежними. Как и ранее, рассмотрим стационарный диффузионный процесс.

Если $\alpha_1 = 1$, то остаточные напряжения учитываются в уравнении диффузии, граничных условиях и в диффузионном потоке вакансий. Математическая формулировка соответствующей задачи принимает вид

$$\frac{d^2C}{dr^2} + \frac{3}{r}\frac{dC}{dr} + \frac{C}{r^2} = 0, \qquad r_0 < r < R, \qquad (24)$$
$$C(r_0) = C_p, \qquad C(R) = C_0.$$

Журнал технической физики, 2014, том 84, вып. 6

$$C = \frac{r_0 C_p \ln R / r_0 + (R C_0 - r_0 C_p) \ln r / r_0}{r \ln R / r_0},$$
 (25)

которая удовлетворяет уравнению и граничным условиям. Получим выражение для скорости изменения внутреннего радиуса полой сферы

$$\left(\frac{dr_0}{dt}\right)_1 = D\omega N_0 \left(\frac{\partial C}{\partial r} + \frac{C}{kT}\frac{\partial V}{\partial r}\right)_{|r=r_0} = D\omega N_0 \frac{C_p}{r_0} \frac{\left(\frac{RC_0}{r_0C_p} - 1\right)}{\ln R/r_0}.$$
 (26)

После интегрирования этого соотношения при постоянном значении R/r_0 получим изменение внутреннего радиуса полой сферы

$$\delta r_0(t)_1 = \sqrt{2DtC_p\omega N_0 \frac{\left(\frac{RC_0}{r_0C_p} - 1\right)}{\ln R/r_0}}.$$
 (27)

При $\alpha_1 = 0$ остаточные напряжения учитываются только в граничных условиях. Диффузионный поток вакансий на внутреннюю поверхность полой сферы зависит от градиента концентрации. Математическая формулировка задачи и ее решение идентичны соотношениям (10) и (11). Однако скорость изменения внутреннего радиуса принимает другое значение по сравнению с выражением (12), поскольку в диффузионном потоке не учитывается градиент остаточных напряжений

$$\left(\frac{dr_0}{dt}\right)_2 = D\omega N_0 \frac{\partial C}{\partial r}|_{r=r_0} = D\omega N_0 \frac{C_p}{r_0} \frac{(C_0/C_p - 1)}{(1 - r_0/R)}.$$
(28)

Все обозначения идентичны принятым ранее. Отсюда при постоянном значении R/r_0 получим изменение радиуса полой сферы

$$\delta r_0(t)_2 = \sqrt{2DtC_p\omega N_0 \frac{(C_0/C_p - 1)}{(1 - r_0/R)}}.$$
 (29)

Отношение выражений (27) и (29) определяет вклад остаточных напряжений в изменение внутреннего радиуса полой сферы

$$\frac{\delta r_0(t)_1}{\delta r_0(t)_2} = \sqrt{\frac{\left(\frac{RC_0}{r_0C_p} - 1\right)(1 - r_0/R)}{(C_0/C_p - 1)\ln R/r_0}}.$$
 (30)

При $R/r_0 > 1$ и $C_0/C_p > 1$ это отношение всегда больше единицы. Физически это определяет вклад остаточных напряжений в изменение радиуса матрицы в окрестности сферического включения нанокомпозита. Для $R/r_0 = 10$ и $C_0/C_p = 1.65$ получим $\delta r_0(t)_1/\delta r_0(t)_2 = 3.06$, что превышает величину 2.47 для цилиндрических включений. Система более высокой размерности сильнее "фокусирует" вакансионный поток на внутреннюю поверхность полой сферы. Определим изменение внутреннего радиуса полой сферы при тех же значениях постоянных, что приняты для цилиндрических включений. После проведени вычислений получим следующие результаты: $\delta r_0(t)_1 = 28.5$ nm (с учетом остаточных напряжений) и $\delta r_0(t)_2 = 9.3$ nm (без учета остаточных напряжений). Полученные значения превышают соответствующие величины для включений цилиндрической формы. Остаточные напряжения за одинаковое время увеличивают свободный объем в окрестности сферических включений. Для наноразмерных включений основной вклад дает вакансионный поток по сравнению

Заключение

с тепловым расширением матрицы.

Исследован процесс нарушения контакта в окрестности цилиндрических и сферических включений нанокомпозита вследствие диффузионного потока вакансий. Соответствующий алгоритм включает выполнение следующих математических операций: определение остаточных напряжений в матрице, решение задач диффузионной кинетики в стационарном приближении, получение аналитических зависимостей при формировании свободного объема в окрестности включений. Нарушение контакта около сферических включений протекает интенсивнее по сравнению с цилиндрическими. Это объясняется "фокусировкой" потока вакансий при изменении симметрии уравнения диффузии за счет остаточных напряжений. Для наноразмерных включений основную роль при нарушении контакта между матрицей и включением играют диффузионные процессы по сравнению с температурным расширением материала. Результаты математического моделирования представляют интерес для прогноза эксплуатационных возможностей перспективных материалов.

Список литературы

- [1] Келли А. Высокопрочные материалы. Пер. с англ. М.: Мир, 1976. 259 с.
- [2] Иванова В.С., Копьев И.М., Ботвина Л.Р., Шермергор Т.Д. Упрочнение материалов волокнами. М.: Наука, 1973. 207 с.
- [3] Соколовский В.В. Теория пластичности. М.: Высшая школа, 1969. 605 с.
- [4] Ковтанюк Л.В., Мурашкин Е.В. // МТТ. 2009. № 1. С. 94–104.
- [5] Gryaznov V.G., Kaprelov A.M., Polonskii I.A., Romanov A.E. // Phys. Stat. Sol. (b). 1991. Vol. 167. P. 29–36.
- [6] Драгунов Ю.Г., Власов Н.М., Иванов С.Д., Федик И.И. Самоуравновешенные внутренние напряжения. М.: МГОУ, 2010. 391 с.
- [7] Власов Н.М., Федик И.И. Доклады РАН. 2000. Т. 375. № 3. С. 334–337.
- [8] Власов Н.М., Колесов В.С., Федик И.И. Математические методы и физико-механические поля. Киев: Наукова думка, 1977. Вып. 5. С. 57–60.