09

Коллиматор рентгеновского излучения на базе поликапиллярной линзы для формирования основных схем дифрактометрии

© А.А. Кумахов,¹ Н.С. Ибраимов,¹ А.М. Кумахов,² Д.И. Груев³

¹ Институт рентгеновской оптики,

143005 Одинцово, Московская область, Россия

² Кабардино-Балкарский государственный университет,

360004 Нальчик, Россия

³ Московский государственный технический университет радиотехники, электроники и автоматики,

125315 Москва, Россия

e-mail: alimkumakhov@gmail.com

(Поступило в Редакцию 25 октября 2013 г.)

Произведена проверка идеи использования протяженного фокуса поликапиллярной линзы в дифракционной схеме параллельного пучка.

Введение

Как известно, основу разрабатываемых и выпускаемых рентгеновских аппаратных комплексов, предназначенных для исследования неорганических материалов в различных областях науки и отраслевой промышленности, составляют рентгенооптические поликапиллярные системы — линзы и полулинзы, способные управлять распространением рентгеновского излучения в широком диапазоне энергий, обеспечивая его захват, фокусировку, пространственную коллимацию и энергетическую фильтрацию.

Ранее управление рентгеновским излучением рентгеновской трубки осуществлялось щелевыми диафрагмами, щелями Соллера — щелевыми системами для ограничения вертикальной и горизонтальной расходимости излучения. Фокусировку и получение сходящихся пучков рентгеновского излучения осуществляли с помощью изгибных монокристаллов. Формирование параллельного пучка осуществлялось зеркалами Гебеля. Применение подобных методов коллимации требует крайне громоздкой рентгеновской техники и рентгеновских трубок большой мощности до нескольких киловатт. КПД этих систем составлял несколько процентов, так как использовалась небольшая часть от общего потока рентгеновского излучения [1,2].

Проведенные исследования показали, что поликапиллярные линзы фокусируют рентгеновское излучение не в точку, а в протяженную область, вытянутую вдоль оптической оси. Излучение в данной области квазипараллельно, основываясь на этой особенности, можно предположить, что протяженную область можно использовать для получения схемы параллельного пучка.

Поликапиллярная оптика в дифрактометрии

Использование полулинзы в классическом методе "параллельного пучка" (метод Дебая-Шеррера), позволяет получать дифракционные картины от всех кристаллографических плоскостей исследуемого образца. Угол между параллельным пучком и участвующими в отражении плоскостями осуществляется строго уравнением Вульфа–Брэгга $n\lambda = 2d \sin \alpha$.

Полулинза обеспечивает увеличение, более одного порядка, плотности параллельных рентгеновских лучей и пространственную коллимацию их с угловой расходимостью $\sim 0.3^{\circ}$ (рис. 1) [3].

Выпускаемые рентгеновские дифрактометры с использованием полулинзы и позиционно-чувствительных детекторов (ПЧД) одновременной регистрации дифракционных отражений в широком интервале ~ 55° (по 2 Θ) широко применяются для определения кристаллической структуры и фазового состава неорганических материалов, механических деформаций, напряжений и т.д.

Использование поликапиллярной линзы в фокусирующей схеме рентгеновского дифрактометра (метод Брэгга-Брентано) позволяет упростить рентгенооптическую схему, освобождая от использования сфокусированного от изгибного монокристалла рентгеновского излучения и рентгеновской трубки с большой мощно-

Рис. 1. Коллимирующие системы с помощью щелей Соллера (*a*) и с поликапиллярной полулинзой (*b*).

Рис. 2. Фокусировка методом Брэгга–Брентано.

Рис. 3. Схемы сходящегося пучка.

стью $\sim 1-3$ kW (рис. 2, *a*). Создание линзой расходящегося рентгеновского излучения на выходе от торца линзы (рис. 2, *b*) реализует метод Брэгга–Брентано с использованием рентгеновской трубки на 2 порядка меньшей мощности (рис. 2).

Использование поликапиллярной линзы для формирования сходящегося пучка рентгеновских лучей с углом сходимости $\sim 1.5^{\circ}$ дает возможность разработать новую рентгенооптическую схему для создания рентгеновских компараторов, позволяющих проводить [4]:

а) контроль соответствия ориентации поверхности монопластины, ориентации базовой кристаллографической плоскости, схема съемки $\Theta-\Theta$,

б) неразрушающий метод контроля качества поверхности монокристаллических пластин,

в) локальный контроль упругих деформаций в монокристаллических объектах.

Ранее сходящийся пучок рентгеновских лучей достигался отражением от изгибного монокристалла с использованием рентгеновской трубки большой мощности. На рис. 3 представлена прежняя схема (a) и рентгенооптическая схема дифрактометра-компаратора с использованием поликапиллярной линзы (b), повышающей интенсивность пучка более чем на два порядка (рис. 3).

Использование протяженного фокуса поликапиллярной линзы для получения схемы параллельного пучка

Для проверки предложенной теории на базе имеющегося в распоряжении гониометрического устройства с возможностью вращения образца для снятия дифрактограм вращения был создан экспериментальный стенд. Особенностью стенда является возможность совместного перемещения рентгеновского источника и поликапиллярной линзы вдоль оптической оси.

Съемка дифрактограм производилась с использованием трех основных схем: сходящийся пучок, параллельный пучок (метод Дебая–Шеррера) и расходящийся пучок (метод Брэгга–Брентано). Зная величину протяженной области фокусного пятна поликапиллярной линзы и имея возможность перемещать систему рентгеновский источник–линза вдоль оптической оси, получаем дифракционные рефлексы любого из трех методов, в том числе и реализацию микродифракции.

Дифракционная картина на сходящемся пучке (рис. 4) производилась на монокристалле Si (004).

На рис. 5 и 6 представлены спектры, полученные на протяженном участке фокуса поликапиллярной линзы.

Сравнивая полученные углы дифракции 2θ с табличными значениями, приходим к выводу о том, что исследуемые образцы представляют собой поликристаллы Al_2O_3 и Pb.

Рис. 4. Съемка монокристалла Si на сходящемся пучке.

Рис. 5. Съемка поликристалла Al₂O₃ на протяженном участке фокуса.

Рис. 6. Съемка поликристалла Рb на протяженном участке фокуса.

Рис. 7. Съемка поликристалла Рb на расходящемся пучке.

На рис. 7 представлена дифракционная картина, полученная на расходящемся пучке от поликристалла Pb.

Съемка на расходящемся пучке производится по схеме θ (образец)– 2θ (детектор) с использованием ПЧД, который в отличие от сцинтилляционного детектора обладает достаточно широким окном и необходимости в перемещении детектора нет.

Результаты дифракционных картин, представленных на рисунках наглядно доказывают возможность использования протяженной области фокуса поликапиллярной рентгеновской линзы в схемах параллельного пучка.

Заключение

На основании проведенных экспериментальных исследований, впервые подтверждена реализация всех вышеуказанных рентгенооптических схем дифрактометрии на базе одной поликапиллярной линзы. Это позволяет создать рентгеновский дифрактометрический комплекс для использования как в научно-исследовательских лабораториях, так и на промышленных предприятиях, занимающихся как неорганическими материалами, так и монокристаллами.

- [1] Блохин М.А. Физика рентгеновских лучей. М. Гостехиздат, 1957. 518 с.
- [2] Бокий Г.Б., Порай-Кошиц М.А. Рентгеноструктурный анализ. М.: МГУ, 1964. Т. 1. 489 с.
- [3] Ibraimov N.S., Mozhaev A.V., Likhushina E.V., Mikhin O.V. Kumakhov optics use in reflectometry. Proceedings of SPIE. 2001. Vol. 4765. P. 128–131.
- [4] Ibraimov N.S., Likhushina E.V., Mikhin O.V. Monocrystal diffractometer-comparator. Proceedings of SPIE. 2001. Vol. 4765. P. 202–206.