04

Разлет ударной плазмы в ускоряющем электростатическом поле плоского конденсатора времяпролетного масс-спектрометра

© Н.Д. Семкин, Р.А. Помельников, А.М. Телегин

Самарский государственный аэрокосмический университет им. академика С.П. Королева (Национальный исследовательский университет), 443086 Самара, Россия e-mail: talex85@mail.ru

(Поступило в Редакцию 14 марта 2013 г. В окончательной редакции 20 сентября 2013 г.)

Решена задача о разлете многокомпонентной ударной плазмы в вакуум в электростатическом поле плоского конденсатора, инициируемой ударом высокоскоростной микрочастицы о твердую мишень. Результаты расчета могут быть использованы при разработке пылеударного масс-спектрометра для исследования элементного состава микрометеоритов.

Введение

Исследования физико-химических характеристик метеорного вещества, проводимые различными авторами [1–3], предполагают необходимость решения теоретических и практических задач образования, разлета ударной плазмы, инициируемой высокоскоростным взаимодействием твердых тел, например, микрометеоритов с мишенью пылеударного масс-спектрометра [1,4,5].

В настоящее время, несмотря на использование современного аппарата вычислительной гидродинамики [2,3], при аппаратных масс-спектрометрических исследованиях микрометеоритов целесообразным является решение задачи образования ионов многокомпонентной ударной плазмы на основе использования достаточно простых физических моделей [4,6–8].

Предлагаемая модель расчета основана на использовании уравнений кинетики и влиянии на процессы разлета плазмы ускоряющего электростатического поля пылеударного масс-спектрометра.

Целью настоящей работы является исследование особенностей кинетики ионизации и рекомбинации в пылеударной плазме и влияния на кинетику процессов внешнего электростатического поля.

Физическая модель разлета ударной плазмы

В результате высокоскоростного взаимодействия частицы с мишенью масс-спектрометра на ее поверхности образуется плазменный сгусток. Высокоскоростная частица по сути является источником ионов, образованных в связи с высокой температурой на фронте ударной волны порядка нескольких тысяч градусов [1]. Плазменный сгусток начинает распространяться между мишенью и сеткой в электростатическом поле. Электростатическое поле образовано путем приложения положительного потенциала к мишени и заземления сетки. Схематически процесс представлен на рис. 1. Скорость частицы при столкновении с мишенью не менее 5 km/s. Идеализация эксперимента приводит к физической модели плазменного сгустка постоянной массы, при этом не рассматриваются гидродинамика получения такого сгустка, а также процессы, связанные с передачей энергии от частицы к мишени.

Примем, что в результате взаимодействия частицы и мишени образовался плазменный сгусток, в котором начальные температуры ионов (T_i) и электронов (T_e) совпадают, а скорость границы плазменного сгустка описывается уравнением [4]

$$u = W_i / (1 + \sqrt{\rho_i / \rho_t}), \qquad (1)$$

где W_i — скорость частицы, ρ_i — плотность частицы и ρ_t — плотность мишени.

Время образования плазменного сгустка, за которое происходит перераспределение энергии по сгустку и в промежутке "плазма–мишень", а также время образования ионов определяются

$$t_c = 10^{-9} R_0 \sqrt{A/T_0},\tag{2}$$

где A — атомный вес, R_0 — радиус частицы, T_0 — температура образовавшегося плазменного сгустка, опреде-

Рис. 1. Схематическое изображение разлета ударной плазмы: R_1 — радиус плазменного сгустка в момент начала закалки, R_2 — радиус плазменного сгустка в момент конца закалки, h — расстояние между сеткой и мишенью.

ляемая по формуле

$$T_0 = Gu(n_0/n_f)^{\gamma_{ef}-1},$$
(3)

где $G = \beta^{-1/2} x^{-1/4}$ — коэффициент пропорциональности, β — коэффициент электронной теплоемкости, x безразмерный удельный объем, n_f — концентрация частиц на фронте ударной волны, n_0 — концентрация частиц в плазменном сгустке, $\gamma_{\rm eff}$ — эффективный показатель адиабаты.

В плазменном сгустке учитываются следующие неупругие процессы:

$$A_{k,0} + e \rightarrow A_{k,1} + 2e,$$

$$A_{k,1} + 2e \rightarrow A_{k,0} + e,$$

$$A_{k,1} + e \rightarrow A_{k,0} + h\nu.$$
(4)

Будем считать сгусток оптически прозрачным, так как плазма начинает излучать как черное тело при плотностях электронов $N_e \geq 10^{20} \, {\rm sm}^{-3}$ и линейных размерах больше $\sim 10^{-2} \, {\rm sm}$.

Плазменный сгусток состоит из K_{\max} компонент, концентрация которых c_k удовлетворяет следующим условиям:

$$\sum_{k=1}^{K_{\text{max}}} c_k = 1.$$
 (5)

До момента "закалки", режима без столкновения между собой электронов, ионов, атомов [4], все ионы движутся с одной скоростью в силу трения между собой.

Запишем уравнение кинетики реакции

$$dN_e/dt = Z_{\rm ion} - Z_{\rm rec},\tag{6}$$

где Z_{ion} — число актов ионизаций в 1 sm^3 за 1 s, Z_{rec} — число рекомбинаций в 1 sm^3 за 1 s.

Примем уравнение (6) в виде [5]

$$\begin{cases} dN_e/dt = \sum_{k=1}^{N} c_k (G_{1,k} N_{a,k} N_e - G_{2,k} N_{i,k} N_e), \\ dN_k/dt = \sum_{k=1}^{N} (G_{1,k} N_{a,k} N_e - G_{2,k} N_{i,k} N_e), \end{cases}$$
(7)

где $G_{1,k} = 2(2\pi mk/h)^{3/2} T_e^{3/2} n_e^{-1} G_{2,k} \exp(-I_{k0}/T_e)$ — скорость ионизации, $G_{2,k} = G_{3,k} + G_{4,k}$ — суммарная скорость рекомбинации, $G_{3,k} = 2.7 \cdot 10^{-13} T_e^{-3/4}$ — скорость фоторекомбинации на все уровни, T_e — температура, R — радиус плазменного сгустка, I_{k0} — степень ионизации k-го элемента.

Кулоновское взаимодействие между частицами облегчает ионизацию, вследствие этого необходимо учитывать уменьшенное эффективное значение потенциала ионизации $I_k = I_{k0} - \Delta T$ на значение $\Delta I = 2\sqrt{\pi}e^3\sqrt{n_e/T_e}$ [6].

Учитывая вышеизложенное, выражение для G_{1,k} примет следующий вид:

$$G_{1,k} = 2\left(\frac{2\pi mk}{h}\right)^{3/2} \frac{T_e^{3/2}}{n_e} G_{2,k} \exp\left(-\frac{I_k}{T_e}\right),$$

 $G_{4,k} = \frac{4\pi}{9} \sqrt{2\pi} \frac{e^{10} n_e}{m^{1/2} T_e^{9/2}}$ — скорость тройной рекомбинации.

Введем безразмерную концентрацию электронов $x_e = N_e/N$ и ионов (атомов) $x_i = N_i/N$:

$$\begin{cases} \frac{dx_e}{dt} = x_e N \sum_{k=1}^{N} c_k ((1-x_k)G_{1,k} - G_{2,k}x_k), \\ \frac{dx_k}{dt} = x_e N ((1-x_k)G_{1,k} - G_{2,k}x_k). \end{cases}$$
(8)

Опишем уравнение скорости тройной рекомбинации с учетом безразмерной концентрации электронов

$$G_{4,k} = \frac{4\pi}{9} \sqrt{2\pi} \frac{e^{10} N x_e}{m^{1/2} T_e^{9/2}}.$$
(9)

Пусть в момент времени $t = t_0$ имеется равновесная, многокомпонентная, однозарядная плазма. Температура ионов и электронов определяется уравнениями [7]

$$\begin{cases} \frac{dT_e}{dt} + 2\frac{kT_e}{t} = \frac{\frac{2}{3}E^* + kT_e}{x_e} \left(-\frac{dx_e}{dt}\right) - \frac{T_e - T_i}{\tau_{ei}},\\ \frac{dT_i}{dt} + 2\frac{kT_i}{t} = x_e \frac{T_e - T_i}{\tau_{ei}}.\end{cases}$$

Система уравнений разлетающегося сгустка плазмы с учетом уравнений изменения температуры имеет вид

$$\begin{cases} \frac{dx_e}{dt} = x_e N \sum_{k=1}^{N} c_k ((1-x_k)G_{1,k} - G_{2,k}x_k), \\ \frac{dx_k}{dt} = x_e N ((1-x_k)G_{1,k} - G_{2,k}x_k), \\ \frac{dT_e}{dt} + 2 \frac{kT_e}{t} = \frac{\frac{2}{3}E^* + kT_e}{x_e} (-\frac{dx_e}{dt}) - \frac{T_e - T_i}{\tau_{ei}}, \\ \frac{dT_i}{dt} + 2 \frac{kT_i}{t} = x_e \frac{T_e - T_i}{\tau_{ei}}, \end{cases}$$
(10)

где x_e, x_k — безразмерная концентрация электронов и ионов k-й компоненты соответственно, E^* — энергия рекомбинации на один акт.

$$E^* = I \begin{cases} 4.3 \cdot 10^{-4} N_e^{1/3} T^{-1/2} = \frac{4.3 \cdot 10^{-4} \sqrt[3]{x_e N}}{\sqrt{T}}, \\ \text{если} \quad kT < E^* < E' = \frac{1}{2} kT (2I/kT)^{1/3}, \\ 3.1 \cdot 10^{-4} N_e^{1/6} T^{1/12} = 3.1 \cdot 10^{-4} \sqrt[6]{x_e N} \sqrt{T}, \\ \text{если} \quad E^* > E'. \end{cases}$$
(11)

Примем, что в плазменном сгустке отсутствуют ионы с зарядом больше единицы; между концентрацией ионов и концентрацией нейтральной компоненты одного вида есть взаимосвязь $x_{k,0} = (1 - x_{k,1})$; пренебрежем скоростью ионизации однозарядных ионов, считая ее равной нулю.

Окончательно данные уравнения с учетом принятых ограничений примут вид

$$\begin{cases} \frac{dx_e}{dt} = x_e \sum_{k=1}^{N} c_k ((1 - x_{k,1})G_{1,k,0} - x_{k,1}G_{2,k,1}), \\ \frac{dx_k}{dt} = x_e ((1 - x_{k,1})G_{1,k,0} - x_{k,1}G_{2,k,1}). \end{cases}$$
(12)

Журнал технической физики, 2014, том 84, вып. 5

Найдем скорости ионизации и суммарной скорости рекомбинации для безразмерной концентрации электронов

$$G_{1,k} = 2\left(\frac{2\pi mk}{h}\right)^{3/2} \left(2.7 \cdot 10^{-13} \frac{T_e^{3/2}}{x_e N(t)} + \frac{4\pi\sqrt{2\pi}}{9} \frac{e^{10}}{m^{1/2}T_e^3}\right) \exp\left(-\frac{I_k}{T_e}\right), \quad (13)$$

$$G_{2,k} = 2.7 \cdot 10^{-13} T_e^{-3/4} + \frac{4\pi}{9} \sqrt{2\pi} e^{10} N x_e / m^{1/2} T_e^{9/2}.$$
(14)

Уравнения (13) и (14) после подстановки численных значений запишем в виде

$$G_{1,k} = 6.06 \cdot 10^{21} \left(2.7 \cdot 10^{-13} \frac{T_e^{3/2}}{x_e N(t)} + \frac{8.75 \cdot 10^{-27}}{T_e^3} \right) \\ \times \exp\left(-\frac{I_k}{T_e}\right), \tag{15}$$

$$G_{2,k} = 2.7 \cdot 10^{-13} \frac{1}{T_e^{3/4}} + \frac{8.75 \cdot 10^{-27} N x_e}{T_e^{9/2}}.$$
 (16)

Окончательно система дифференциальных уравнений примет вид

$$\begin{cases} \frac{dx_e}{dt} = x_e \sum_{k=1}^{N} c_k ((1 - x_{k,1})G_{1,k,0} - x_{k,1}G_{2,k,1}), \\ \frac{dx_k}{dt} = x_e ((1 - x_{k,1})G_{1,k,0} - x_{k,1}G_{2,k,1}), \\ \frac{dT_e}{dt} + 2 \frac{kT_e}{t} = \frac{\frac{2}{3}E^* + kT_e}{x_e} (-\frac{dx_e}{dt}) - \frac{T_e - T_i}{\tau_{ei}}, \\ \frac{dT_i}{dt} + 2 \frac{kT_i}{t} = x_e \frac{T_e - T_i}{\tau_{ei}}. \end{cases}$$
(17)

Расширение плазменного сгустка фактически не зависит от температуры и описывается в автомодельном представлении следующим образом:

$$R = R_0 \frac{t}{t_0},\tag{18}$$

где R_0 — начальный радиус сгустка, t_0 — начальное время разлета.

Тогда объем описывается формулой

$$V = V_0 (t/t_0)^3.$$
(19)

Плазменный сгусток при расширении обеспечивает электрический контакт с мишенью, а также на него действует электрический потенциал, создаваемый электростатическим полем (рис. 1). Поэтому данную задачу можно представить как двухэлектродный ленгмюровский зонд, где один электрод представляет собой мишень, второй — внешнюю поверхность плазменного сгустка. Плазменный сгусток поляризуется под воздействием внешнего электростатического поля, приобретая потенциал, для полусферы описываемый выражением

$$\varphi = q/C, \tag{20}$$

где *С* — электрическая емкость полусферы, *q* — нескомпенсированный электрический заряд плазменного сгустка,

$$C = kR, \tag{21}$$

k — коэффициент для нахождения электрической емкости полусферы (равен 0.8453 [8]), *R* — радиус плазменного сгустка.

Тогда ток плазменного сгустка будет равен [9]

$$I = S j_{i_0} \operatorname{th} \left(e(\varphi_1 - \varphi_2) / (2T_e) \right).$$
(22)

Преобразуем уравнение к дифференциальному виду

$$\frac{dq}{dt} = Sj_{i_0} \operatorname{th} \left(e(\varphi_1 - \varphi_2)/(2T_e) \right), \tag{23}$$

где q — электрический заряд плазмы, равный

$$q = e x_e N_0 V_0. (24)$$

Учитывая, что произведение концентрации на объем является величиной постоянной, преобразуем выражение к виду

$$dx_q/dt = (Sj_{i_0}/(eN_0V)) \operatorname{th}(e(\varphi_1 - \varphi_2)/(2T_e)), \quad (25)$$

где e — заряд электрона, N — концентрация частиц в момент времени t_0 , φ_1 — потенциал мишени, φ_2 — потенциал максимально верхней точки полусферы (находится как $\varphi = ER$ (причем радиус плазменного сгустка должен быть меньше расстояния между сеткой и мишенью, т.е. R < h)), j_{i_0} — ионный тепловой ток насыщения $\frac{eN}{4} \langle v_i \rangle$.

Преобразуем выражение $\frac{S_{j_{i_0}}}{eN_0V_0}$ к виду

$$\frac{Sj_{i_0}}{eN_0V_0} = \frac{S}{eN_0V_0} \frac{eN}{4} \langle v_i \rangle = \frac{\pi R_0^2 (t/t_0)^2}{eN_0 \frac{4}{3}\pi R_0^3} \frac{eN_0 (t_0/t)^3}{4} \langle v_i \rangle$$
$$= \frac{(t/t_0)^2}{\frac{4}{3}R_0} \frac{(t_0/t)^3}{4} \langle v_i \rangle = \frac{3}{16} \frac{1}{R_0 (t/t_0)}.$$
(26)

С учетом (26) выражение (25) примет вид

$$\frac{dx_q}{dt} = \frac{3}{16} \frac{1}{R_0(t/t_0)} \operatorname{th}\left(\frac{e(\varphi_1 - \varphi_2)}{2T_e}\right).$$
(27)

С учетом (27) система уравнений (17) примет вид

$$\begin{cases} \frac{dx_e}{dt} = x_e \sum_{k=1}^{N} c_k \left((1 - x_{k,1}) G_{1,k,0} - x_{k,1} G_{2,k,1} \right) \\ - \frac{3}{16} \frac{1}{R_0(t/t_0)} \operatorname{th} \left(\frac{e(ER - \frac{q}{C})}{2T_e} \right), \\ \frac{dx_k}{dt} = x_e \left((1 - x_{k,1}) G_{1,k,0} - x_{k,1} G_{2,k,1} \right), \\ \frac{dT_e}{dt} + 2 \frac{kT_e}{t} = \frac{\frac{2}{3} E^* + kT_e}{x_e} \left(- \frac{dx_e}{dt} \right) - \frac{T_e - T_i}{\tau_{ei}}, \\ \frac{dT_i}{dt} + 2 \frac{kT_i}{t} = x_e \frac{T_e - T_i}{\tau_{ei}}, \\ \frac{dq}{dt} = S j_{i_0} \langle v_i \rangle \operatorname{th} \left(\frac{e(ER - \frac{q}{C})}{2T_e} \right). \end{cases}$$
(28)

Полученная система дифференциальных уравнений позволяет найти степень ионизации химических элементов, входящих в плазменный сгусток, а значит, и количество ионов в зависимости от времени, химического состава, скорости высокоскоростной частицы, напряженности внешнего электростатического поля.

Обсуждение результатов расчета

Особенностью данной системы нелинейных дифференциальных уравнений является ее "жесткость". Собственные значения оказываются в диапазоне $10^{-10} < \lambda < 10^2$ [10]. Это связано с различными физическими процессами, имеющими соответственно сильно отличные характерные времена (скорости разлета, рекомбинации и ионизации), в связи с чем использовался метод Гира (backward differentiation formula "BDF") [10].

В результате решения системы уравнений (28) получены зависимости степени ионизации и зарядов многокомпонентной ударной плазмы, ионизируемой высокоскоростным взаимодействием твердых тел в электростатическом поле плоского конденсатора, как функции времени, скорости и массы частицы, концентрации ионов, а также влияния поля на процессы кинетики в разлетающемся сгустке ударной плазмы.

Для проведения расчетов возьмем химический состав, свойственный для техногенных частиц (преобладание алюминия), естественно микрометеоритных частиц (преобладание кремния, водорода (лед)). Химический состав для техногенной частицы приведен в табл. 1 в строке 1, химический состав для естественной частицы приведен в табл. 1 в строках 2, 3.

Таблица 1. Концентрация химических элементов для анализируемых частиц

Образец	Концентрация химических элементов, %								
	Ka	Н	Al	Fe	Na	Si	0		
1	4	0.05	88.925	5	1	1	0.025		
2	4	0.05	1	5	1	88.925	0.025		
3	0.2	66	0.2	0.2	0.2	0.2	33.3		

Таблица 2. Химический состав естественной частицы (микрометеорита)

Образец	Концентрация химических элементов, %								
	Ka	Н	Al	Fe	Na	Si	0		
1	4	0.05	1	5	1	88.925	0.025		
2	5	0.05	1	5	1	87.925	0.025		
3	3	0.05	1	5	1	89.925	0.025		
4	4	1.42	1	5	1	86.86	0.71		
5	4	0.05	1	1	1	92.925	0.25		

Puc. 2. Степень ионизации химических элементов, входящих в частицу 1, при напряженности электростатического поля 0 и 100 V/sm для $T = 10^{-7}$ s. I -Ka; E = 100 V/sm; 2 -Ka; E = 0 V/sm; 3 -Na; E = 100 V/sm; 4 -Na; E = 0 V/sm; 5 -Al; E = 100 V/sm; 6 -Al; E = 0 V/sm; 7 -Fe; E = 100 V/sm; 8 -Fe; E = 0 V/sm; 9 -Si; E = 100 V/sm; 10 -Si; E = 0 V/sm; 11 -H, O; E = 100 V/sm; 12 -H, O; E = 0 V/sm.

Рис. 3. Степень ионизации химических элементов, входящих в частицу 2, при напряженности электростатического поля 0 и 100 V/sm, для $T = 10^{-7}$ s. 1-12 — обозначения те же, что и на рис. 2.

На рис. 2 представлены степени ионизации химических элементов, входящих в техногенную частицу, в зависмости от скорости частицы.

Таблица 3. Химический состав техногенной частицы (космического мусора)

Образец	Концентрация химических элементов, %								
	Ka	Н	Al	Fe	Na	Si	0		
1	4	0.05	88.925	5	1	1	0.025		
2	5	0.05	87.925	5	1	1	0.025		
3	3	0.05	89.925	5	1	1	0.025		
4	4	1.42	86.86	5	1	1	0.71		
5	4	0.05	92.925	1	1	1	0.25		

Рис. 4. Степень ионизации химических элементов, входящих в частицу 3, при напряженности электростатического поля 0 и 100 V/sm для $T = 10^{-7}$ s. 1-12 — обозначения те же, что и на рис. 2.

Рис. 5. Степень ионизации химимических элементов, входящих в частицу 2, для $T = 5 \cdot 10^{-7}$ s, W = 42 km/s, при напряженности электростатического поля 0 и 100 V/sm. 1-12 — обозначения те же, что и на рис. 2.

Таблица 4. Относительное изменение концентрации химических элементов в естественной частице

Образец	Концентрация химических элементов по отношению к базовой концентрации,							
	Ka	Н	Al	Fe	Na	Si	0	
1	125	100	100	100	100	98.88	100	
2	75	100	100	100	100	101.12	100	
3	100	2840	100	100	100	97.68	2840	
4	100	100	100	20	100	104.5	1000	

На рис. 3–5 представлены относительные изменения степени ионизации химических элементов, входящих в частицу естественного происхождения (табл. 1, строка 2).

По результатам сравнения данных табл. 2, 3 можно сделать вывод, что химический состав микрометеорита

и космического мусора отличается. Данное свойство может быть использовано для определения характера анализируемой частицы.

Используя данные из табл. 2, 4 как исходные данные для расчета, было получено относительное изменение степени ионизации химических элементов, входящих в частицу при изменении их концентрации в частице после закалки при напряженности электростатического поля 100 V/sm (рис. 6, 7).

Рис. 6. Относительное изменение степени ионизации химических элементов, входящих в частицу при изменении их концентрации в частице после закалки при напряженности электростатического поля 100 V/sm для концентрации химических элементов, приведенных в табл. 2, 3: 1 - K; 2 - Na; 3 - Al; 4 - Fe, Si, H, O, 2; 5 - K; 6 - Na, Al, Fe, Si, H, O, 3; 7 - Na, Al, Fe, Si, H, O; 8 - K, 4; 9 - K; 10 - Na; 11 - Al; 12 - Fe, Si, 1.

Puc. 7. Относительное изменение степени ионизации химических элементов, входящих в частицу, при изменении их концентрации в частице после закалки при напряженности электростатического поля 100 V/sm для концентрации химических элементов, приведенных в табл. 4. I - K; 2 - H; 3 - Si; 4 - Fe; 5 - Al; 6 - Na, 2; 7 - H, O; 8 - Fe, Si; 9 - K, Na, Al, 3; 10 - Si, Fe; 11 - H, O, 4; 12 - H, O; 13 - Fe, Si; 14 - Al; 15 - K, Na, 1.

Нами было выполнено моделирование процессов фокусировки в пылеударном масс-спектрометре, проанализированы характеристики масс-спектрометров различных конструкций [11].

Заключение

1. Степень ионизации химических элементов в плазменном сгустке зависит не только от потенциала ионизации химического элемента и величины напряженности внешнего электростатического поля, но и от концентрации химического элемента в частице.

2. С увеличением скорости соударения частицы с мишенью влияние концентрации химического элемента на остаточную степень ионизации плазменного сгустка растет.

3. Уменьшение концентрации "базового" (имеющего концентрацию больше 50%) химического элемента (Al, Fe, Si) с одновременным увеличением концентрации элементов, имеющих меньший потенциал ионизации (K, Na, Li), приводит к уменьшению общего остаточного заряда.

4. Снижение концентрации химических элементов с потенциалом ионизации, меньшим, чем у базового, с одновременным увеличением концентрации базового химического элемента, приводит к увеличению общего остаточного заряда.

5. Изменение концентрации химических элементов с потенциалом ионизации, большим, чем у базового, с одновременным измененим концентрации базового химического элемента, не приводит к существенному изменению общего остаточного заряда.

6. Изменение концентрации химических элементов с потенциалом ионизации, сравнимым с базовым, приводит к незначительному изменению остаточного заряда.

Список литературы

- [1] Ротов С.В., Семкин Н.Д., Воронов К.Е. // ЖТФ. 2001.
 Т. 71. Вып. 1. С. 112–116.
- [2] Сагдеев Р.З., Евланов Е.Н., Зубков Б.В. // Космические исследования. 1987. Т. 25. Вып. 6. С. 840–843.
- [3] Анучина Н.Н., Волков В.И., Евланов Е.Н., Елсуков В.П., Еськов Н.С., Козырев О.М., Политов В.Ю., Петровцев А.В., Прилуцкий О.Ф., Сапожников А.Т., Шинкарев М.К., Шушлебин А.Н. // Космические исследования. 2005. Т. 43. № 5. С. 344–350.
- [4] Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966. 688 с.
- [5] Держиев В.И., Захаров А.Ю. Кинетика ионизации и рекомбинации в разлетающемся плазменном сгустке. М.: Институт прикл. матем. АН СССР, 1978. 45 с.
- [6] Франк-Каменецкий Д.А. Лекции по физике плазмы. М.: Атомиздат, 1968. 286 с.
- [7] Кузнецов Н.М., Райзер Ю.П. // ПМТФ. 1965. № 4. С. 11– 20.

- [8] Иоссель Ю.Я., Кочанов Э.С., Струнский М.Г. Расчет электрической емкости. М.: Энергоиздат, 1981. 288 с.
- [9] Козлов О.В. Электрический зонд в плазме. М.: Атомиздат, 1969. 293 с.
- [10] Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциальноалгебраические задачи. М.: Мир, 1999. 685 с.
- [11] Семкин Н.Д., Родин Д.В., Пияков И.В., Помельников Р.А. // Науч. приборостр. 2012. Т. 22. № 3. С. 13–20.