Краткие сообщения

01

Динамическое ван-дер-ваальсово взаимодействие движущегося атома со стенками плоской щели

© Г.В. Дедков, А.А. Кясов

Кабардино-Балкарский государственный университет, 360004 Нальчик, Россия e-mail: gv_dedkov@mail.ru

(Поступило в Редакцию 21 февраля 2013 г. В окончательной редакции 29 мая 2013 г.)

Получено общее выражение для динамической энергии ван-дер-ваальсова взаимодействия нейтрального атома с плоской щелью, стенки которой характеризуются зависящей от частоты диэлектрической проницаемостью. Численно анализируется взаимодействие атомов цезия со стенками металлической (Au) и диэлектрической (SiC) щелей при скоростях $10^4 - 10^7$ m/s. С увеличением скорости атома динамические потенциалы вблизи стенок становятся значительно меньше (по модулю) по сравнению со статическими, но в промежуточной области превосходят их в полтора-два раза в определенном интервале скоростей.

Введение

Прогресс в области синтеза и применений наноструктур, таких как фуллерены, нанотрубки и графеновые оболочки, стимулировал повышенный интерес к вопросам взаимодействия заряженных частиц и рентгеновского излучения с этими и другими материалами при прохождении в наноскопических каналах и щелях [1-3]. При движении нейтральных атомных и наночастиц в таких каналах в большей части сечения взаимодействие со стенками осуществляется за счет силы ван-дерваальса, в которой наряду с не зависящим от скорости вкладом, появляются динамические составляющие, зависящие от скорости частицы. До настоящего времени этим динамическим эффектам не уделялось достаточно внимания. В частности, экспериментальные исследования по взаимодействиям нейтральных атомных пучков с плоскими поверхностями и щелями выполнялись лишь при близких к тепловым скоростям атомов, когда динамические эффекты (как будет показано далее) еще незначительны [4-6].

Целью настоящей работы является расчет динамических потенциалов ван-дер-ваальса между атомом (наночастицей) и стенками плоской наноскопической щели при движении атома параллельно ее стенкам.

1. Теория

Общая теория динамического флуктуационно-электромагнитного взаимодействия (к которому относятся и силы ван-дер-ваальса) нейтральных атомных и наноскопических частиц с плоскими поверхностями была развита в серии наших работ[7]. Следуя развитому методу, будем рассматривать нейтральную сферическую наночастицу, имеющую температуру T_1 и дипольную поляризуемость $\alpha(\omega)$, движущуюся с нерелятивистской скоростью V в плоской вакуумной щели между двумя бесконечно протяженными пластинами (параллельно пластинам). Рис. 1 показывает общий вид рассматриваемой системы и основные геометрические и физические параметры задачи. Диэлектрические проницаемости нижней и верхней пластин $\varepsilon_{1,2}(\omega)$ в общем случае считаются различными, а их температура полагается равной T_2 . Предполагаем также выполнение условий

$$r_0 \ll \min(c/\omega_0, c/\omega_1, c/\omega_2), \quad r_0 \ll \min(z, l-z),$$
(1)

где ω_0 , ω_1 , ω_2 — характерные частоты в спектрах поглощения частицы и пластин соответственно, r_0 радиус частицы, z — расстояние частицы от нижней пластины (рис. 1). Условия (1) позволяют считать частицу точечным диполем и пренебречь запаздыванием электромагнитных взаимодействий. Пренебрежение эффектом запаздывания возможно по той причине, что да-

Рис. 1. Система координат и схема движения частицы.

лее мы рассматриваем наноскопические щели с шириной не более нескольких десятков нанометров.

В рассматриваемом приближении взаимодействие движущейся частицы с флуктуационным электромагнитным полем щели характеризуется нормальной (консервативной) составляющей

$$F_z = \langle \nabla_z (\mathbf{d} \mathbf{E}) \rangle, \tag{2}$$

где $\mathbf{d} = \mathbf{d}^{sp} + \mathbf{d}^{in}$ — суммарный флуктуационный дипольный частицы, состоящий из спонтанной и индуцированной частей, $\mathbf{E} = \mathbf{E}^{sp} + \mathbf{E}^{in}$ — суммарная напряженность электрического поля внутри щели, создаваемая спонтанными и индуцированными флуктуациями, угловые скобки означают полное квантово-статическое усреднение. Все входящие в (2) величины вычисляются в рамках формализма [7] в системе отсчета, связанной с покоящимися пластинами. Результирующая формула для F_z имеет вид [8]

$$F_{z} = -\frac{2\hbar}{\pi^{2}} \iiint d\omega dk_{x} dk_{y} k^{2}$$

$$\times \left\{ \operatorname{Re} \Delta_{12}^{(-)}(\omega) \operatorname{Im} \alpha(\omega + k_{x}V) \operatorname{coth} \frac{\hbar(\omega + k_{x}V)}{2k_{B}T_{1}} \right.$$

$$+ \operatorname{Re} \Delta_{12}^{(-)}(\omega) \operatorname{Im} \alpha(\omega - k_{x}V) \operatorname{coth} \frac{\hbar(\omega - k_{x}V)}{2k_{B}T_{1}} \right.$$

$$+ \operatorname{Im} \Delta_{12}^{(-)}(\omega) \operatorname{Re} \alpha(\omega + k_{x}V) \operatorname{coth} \frac{\hbar\omega}{2k_{B}T_{2}} \right.$$

$$+ \operatorname{Im} \Delta_{12}^{(-)}(\omega) \operatorname{Re} \alpha(\omega - k_{x}V) \operatorname{coth} \frac{\hbar\omega}{2k_{B}T_{2}} \right\},$$
(3)

$$\Delta_{12}^{(\pm)}(\omega) = \frac{\Delta_1(\omega)e^{-2kz} \pm \Delta_2(\omega)e^{-2k(l-z)}}{1 - \Delta_1(\omega)\Delta_2(\omega)e^{-2kl}},$$
 (4)

$$\Delta_{1}(\omega) = \frac{\varepsilon_{1}(\omega) - 1}{\varepsilon_{1}(\omega) + 1}, \quad \Delta_{2}(\omega) = \frac{\varepsilon_{2}(\omega) - 1}{\varepsilon_{2}(\omega) + 1},$$
$$k = \sqrt{k_{x}^{2} + k_{y}^{2}}.$$
(5)

В частном случае покоящейся частицы при нулевой температуре пластин и частицы (V = 0, $T_1 = T_2 = 0$) после выполнения очевидных преобразований в (5) получим [8]

$$F_{z} = -\frac{2\hbar}{\pi} \int_{0}^{\infty} d\omega$$

$$\times \int_{0}^{\infty} dkk^{3}\alpha(i\omega) \frac{\Delta_{1}(i\omega)e^{-2kz} - \Delta_{2}(i\omega)e^{-2k(l-z)}}{1 - \Delta_{1}(i\omega)\Delta_{2}(i\omega)e^{-2kl}}.$$
(6)

Учитывая связь $F_z = -\partial U/\partial z$ между силой F_z и энергией (потенциалом) взаимодействия U(z), можно перейти от (3) к выражению для U(z). В частности, при одинаковых материалах пластин формула для U(z) была впервые получена в [9]. Формула (3) находится в полном согласии с [9] в этом частном случае. В настоящей работе, однако, нас интересует динамическое обобщение формулы (6) при $V \neq 0$. Для этого в формуле (3) сделаем предельный переход к нулевым температурам частицы и стенок щели

$$\operatorname{coth}\left(\frac{\hbar(\omega\pm k_{x}V)}{k_{B}T_{1}}\right) \to \operatorname{sign}\left(\omega\pm k_{x}V\right),$$
$$\operatorname{coth}\left(\frac{\hbar\omega}{k_{B}T_{2}}\right) \to \operatorname{sign}\left(\omega\right). \tag{7}$$

C учетом соотношения $F_z = -\partial U/\partial z$ из (3) и (7) следует

U(V, z, l)

$$= -\frac{\hbar}{2\pi^2} \int_{-\infty}^{+\infty} dk_x \int_{-\infty}^{+\infty} dk_y k \operatorname{Im}\left[i \int_{0}^{\infty} d\xi D(i\xi, z, l)\alpha(i\xi + k_x V)\right] \\ + \frac{2\hbar}{\pi^2} \int_{0}^{\infty} dk_x \int_{0}^{\infty} dk_y k \int_{0}^{k_x V} d\omega D'(\omega, z, l)\alpha''(\omega - k_x V)$$

$$= u^{(0)} + \Delta U, \tag{8}$$

$$D(\omega, z, l) = \frac{\Delta_1(\omega) \exp(-2kz) + \Delta_2(\omega) \exp(-2k(l-z))}{1 - \Delta_1(\omega)\Delta_2(\omega) \exp(-2kl)},$$
(9)

$$\Delta_i(\omega) = \frac{\varepsilon_i(\omega) - 1}{\varepsilon_i(\omega) + 1}, \qquad i = 1, 2.$$
(10)

В формуле (8) одним и двумя штрихами обозначены вещественные и мнимые компоненты соответствующих функций, l и z — ширина щели и расстояние атома от ее левой (для определенности) стенки, индексы 1, 2 нумеруют стенки щели, материалы которых могут иметь различную диэлектрическую проницаемость. При $l \to \infty$ формула (1) переходит в соответствующую формулу для потенциала взаимодействия атома с одиночной пластиной [10], а при V = 0 совпадает с приведенной в [8], поскольку вклад ΔU обнуляется. С увеличением скорости атома именно этот член в формуле (8) становится преобладающим. Отметим еще раз, что формула (8) соответствует нерелятивистскому дипольному приближению флуктуационной электродинамики.

Разлагая в (9) знаменатель в ряд, получим

$$D(\omega, z, l) = \sum_{n=0}^{\infty} \left[\Delta_1(\omega)^{n+1} \Delta_2(\omega)^n \exp\left(-2k(z+l\cdot n)\right) + \Delta_1(\omega)^n \Delta_2(\omega)^{n+1} \exp\left(-2k(-z+l\cdot n+l)\right) \right].$$
(11)

Учет в сумме (1) только нулевого члена соответствует простейшему аддитивному приближению, когда вклады от двух сторон щели суммируются независимо друг от друга. Подставляя (11) в (8), нетрудно выполнить интегрирование по волновому вектору k_y . Для дальнейших

расчетов используем осцилляторную модель атомной поляризуемости

$$\alpha(\omega) = \frac{\alpha(0)\omega_0^2}{\omega_0^2 - \omega^2 - i \cdot 0\omega},$$
$$\alpha''(\omega) = \frac{\pi\alpha(0)\omega_0}{2} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)\right], \quad (12)$$

где ω_0 — характерная частота атомного поглощения, $\alpha(0)$ — статическая поляризуемость. Подставляя (12) в выражение для ΔU , не представляет затруднений также произвести интегрирование по частоте. Поступая таким образом и делая замены переменных интегрирования $\omega = \omega_0 t$, $k_x = x/2l$, $k_y = y/2l$, формулы для $U^{(0)}$ и ΔU приведем к виду, удобному для дальнейшего численного интегрирования, ограничиваясь для простоты однородным материалом стенок щели:

$$U^{(0)} = -\frac{\hbar\alpha(0)\omega_0}{4\pi^2 l^3} \sum_{n=0}^{\infty} Y_n(\lambda,\mu), \quad \lambda = V/2l\omega_0, \quad \mu = z/l,$$
(13)

$$Y_{n}(\lambda,\mu) = \int_{0}^{\infty} \int_{0}^{\infty} dx dt \frac{1+t^{2}-x^{2}\lambda^{2}}{(1+t^{2}-x^{2}\lambda^{2})+4x^{2}t^{2}\lambda^{2}} \Delta(t)^{2n+1} \times \left[f(x(\mu+n))+f(x(-\mu+n+1))\right],$$
(14)

$$f(x) = K_0(x) + K_1(x)/x,$$
 (15)

$$\Delta U = -\frac{\hbar\alpha(0)\omega_0}{8\pi l^3} \sum_{n=0}^{\infty} \int_{1/\lambda}^{\infty} dx x^2 \operatorname{Re}\left[\Delta(x\lambda - 1)^{2n+1}\right] \\ \times \left[f(x(\mu + n)) + f(x(-\mu + n + 1))\right], \quad (16)$$

где $K_{0,1}(x)$ — функции МакДональда, а $\Delta(t)$ получается из (10) путем замены $\omega = \omega_0 t$.

2. Результаты численного расчета

 \propto

Для оценки величины соответствующего динамического эффекта мы провели численные расчеты взаимодействия атомов цезия в основном состоянии $(\alpha(0) = 57 \cdot 10^{-24} \text{ cm}^3, \omega_0 = 1.44 \text{ eV} [11])$ со стенками цели из золота и карбида кремния, аппроксимируя диэлектрические функции этих материалов в стандартном виде

$$\varepsilon(\omega) = 1 - \frac{\omega_p^2}{\omega(\omega + i \cdot \gamma)},$$

$$\varepsilon(\omega) = \varepsilon_{\infty} \left(1 - \frac{\omega_p^2}{\omega(\omega + i \cdot \gamma)} \right).$$
(17)

Значения плазменной частоты ω_p , параметра затухания γ и высокочастотной диэлектрической проницаемости ε_{∞} золота и карбида соответствуют данным [12]. Результаты расчета U(V, z, l) в зависимости от скорости V и относительной коодинаты z/l показаны на рис. 2

Рис. 2. Отношение динамической энергии ван-дер-ваальса к статической для нейтрального атома Cs, движущегося параллельно стенкам металлической щели (Au). Линии 1-4 соответствуют скоростям $V = 10^5$, $5 \cdot 10^5$, $2 \cdot 10^6$, $4 \cdot 10^6$ m/s.

Рис. 3. То же, что на рис. 1 для диэлектрической щели SiC. Линии I-4 соответствуют скоростям $V = 10^5$, $5 \cdot 10^5$, $1 \cdot 10^6$, $4 \cdot 10^6$ m/s.

(щель Au) и рис. 3 (щель SiC). Значения U(v, z, l)нормированы на величину энергии статического взаимодействия (формула (8) при V = 0). Как следует из рисунков, динамические потенциалы существенно отличаются от статических. Для металлической щели вблизи стенок динамические потенциалы значительно ослабляются, но в промежуточных частях канала с увеличением скорости V до $2 \cdot 10^6$ m/s могут превышать статические в полтора раза. При дальнейшем увеличении скорости потенциалы уменьшаются и лишь в центральной части канала близки к статическим. Для щели SiC ход изменения потенциала взаимодействия более сложный. При скоростях атома от 104 до 2 · 10⁶ m/s в промежуточной области щели потенциал возрастает, превышая статические значения более чем в 2 раза. При дальнейшем увеличении скорости потенциал уменьшается по всей ширине канала, а вблизи стенок становится значительно меньше статических значений. Для полноты картины отметим, что на расстояниях от стенок щели порядка межатомных к потенциалу ван-дерваальса должна прибавляться энергия короткодействующего (отталкивающего) взаимодействия со стенками, не учитываемая в наших расчетах. Ее учет приведет к изменению знака результирующего взаимодействия со стенками на малых расстояниях z < 0.4 nm.

В заключении отметим, что в уникальном эксперименте [5] по прохождению пучка атомов натрия внутри плоской щели, образованной пластинами золота, скорости атомов не превышали 10^3 m/s. В этом случае динамические эффекты весьма малы. Как видно из рис. 2, 3, даже при скоростях 10^5 m/s (линии I) динамические потенциалы в большей части канала незначительно отличаются от статических. Тем не менее на расстояниях z/l < 0.1 (в случае металлической щели) динамическое уменьшение взаимодействия достигает 10 раз, и при скоростях $10^4 - 10^5$ m/s эффект может стать заметным. Изменение потенциала взаимодействия, в частности, будет проявляться в зависимости интенсивности прошедшего через щель нейтрального пучка атомов (в основном состоянии) от ширины щели [5].

Список литературы

- [1] Dedkov G.V. // Nucl. Instr. Meth. 1998. Vol. B143. P. 584.
- [2] Artru X., Fomin S.P., Shul'ga N.F., Ispirian K.A., Zhevago N.K. // Phys. Rep. 2005. Vol. 412. P. 89.
- [3] Allison K.F., Miscovic Z.L. // Nanotechnology. 2010. Vol. 21. P. 134017 (1–13).
- [4] Shih A., Parsegian V.A. // Phys. Rev. 1975. Vol. A12.
 P. 835–842.
- [5] Sukenik C.I., Boshier M.G., Cho D., Sadoghdar V., Hids E.A. // Phys. Rev. Lett. 1993. Vol. 70. N 3. P. 560–563.
- [6] Bender H., Courteille Ph.W., Marzok C., Zimmermann C., Slama S. // Phys. Rev. Lett. 2010. Vol. 194. P. 083 201 (1-4).
- [7] Dedkov G.V., Kyasov A.A. // J. Phys. 2008. Vol. 20. N 35.
 P. 354006 (1–10); Surf. Sci. 2010. Vol. 604. P. 561–566; Phys. Solid State. 2009. Vol. 51. P. 3–27.
- [8] Дедков Г.В., Кясов А.А. // Письма в ЖТФ 2007. Т. 33. Вып. 2. С. 8–12.
- [9] Zhou Fei, Spruch L. // Phys. Rev. 1995. Vol. A52. N 1. P. 8–12.
- [10] Dedkov G.V., Kyasov A.A. // Surf. Sci. 2011. Vol. 605. P. 1077-1081.
- [11] Радциг А.А., Смирнов Б.М. Справочник по атомной и молекулярной физике. М.: Атомиздат, 1980. С. 240.
- [12] Handbook of Optical Constants of Solids. Ed. E.D. Palik. NY: Academic, 1985.