13

# Работа выхода электрона интерметаллических соединений состава $YNi_{3-x}T_x$ (T – Cu, Fe, Mn; x = 0; 0.5)

© И.И. Коробов, Г.В. Калинников, А.В. Иванов, С.П. Шилкин

Институт проблем химической физики РАН, 142432 Черноголовка, Московская область, Россия e-mail: kgv@icp.ac.ru

### (Поступило в Редакцию 4 июля 2013 г.)

Методом контактной разницы потенциалов в аргоне при 293 К определены значения величин работы выхода электрона литых образцов и прессованных в цилиндрические образцы порошков интерметаллических соединений  $YNi_{3-x}T_x$  (T — Cu, Fe, Mn; x = 0; 0.5). Установлена корреляция между величиной работы выхода электрона и электроотрицательностью элементов, замещающих никель в структуре  $YNi_3$ .

# Введение

Работа выхода электрона (РВЭ)  $\varphi$  является одной из важнейших эмиссионных характеристик поверхности твердого тела, знание величины которой необходимо для понимания механизма реакций, протекающих на поверхности металлических фаз при их контакте с газовой или жидкой средами.

В связи с отсутствием на сегодняшний день законченной теории РВЭ ее значения в основном определяют экспериментально.

В настоящее время метод контактной разности потенциалов (КРП) является наиболее универсальным из всех методов экспериментального определения РВЭ металлических фаз различного химического состава, структуры и природы, не требующий непосредственного воздействия на исследуемый образец тепловых, электромагнитных или иных полей, с помощью которого можно определить общую характеристику эмиссионных свойств поверхности металлической фазы в вакууме или в контролируемой газовой среде [1].

Для большинства индивидуальных металлов величины РВЭ надежно определены [1–4], а для металлических сплавов, содержащих редкоземельные металлы, изучение их эмиссионных свойств находится лишь на начальном этапе.

Интерметаллические соединения (ИМС), содержащие редкоземельные металлы, в силу особенностей электронного строения их 4f-орбиталей обладают уникальными магнитными характеристиками, высокими электрохимическими свойствами, каталитической и эмиссионной активностью, значительной емкостью по водороду и т.д., которые выгодно отличают их от других сплавов [5–7].

Ранее методом КРП проведено определение РВЭ на образцах оксогидрида титана, гидридных фаз системы титан–хром, систем церий–кобальт и LaNi<sub>5-x</sub>T<sub>x</sub> (T — Al, Cu, Fe; x = 0; 1)[8–11].

В настоящей работе методом КРП в аргоне при 293 К определены значения величин РВЭ ИМС  $YNi_{3-x}T_x$  (T — Cu, Fe, Mn; x = 0; 0.5).

## Экспериментальная часть

#### Исходные сплавы

Для приготовления ИМС  $YNi_{3-x}T_x$  (T — Cu, Fe, Mn; x = 0; 0.5) применяли Y чистотой — 99.76, Ni — 99.98, Fe — 99.96, Cu — 99.99, Mn — 99.8 wt.%. Сплавление металлов проводили в электродуговой печи с нерасходуемым вольфрамовым электродом под давлением аргона высокой чистоты ~ 0.2 MPa.

Для получения равновесной структуры изучаемых ИМС их подвергали отжигу в вакуумированных до остаточного давления  $5.0 \cdot 10^{-2}$  Ра кварцевых ампулах при 873 К в течение 400 h с последующей закалкой в воде при 273 К. Для предотвращения взаимодействия сплавов с кварцем их заворачивали в молибденовую фольгу. В качестве геттера остаточного кислорода в ампулах использовали стружку иодидного титана. Содержание кислорода в сплавах не превышало  $5.0 \cdot 10^{-3}$  wt.%. Состав сплавов принимали по расчетной шихте и контролировали химическим анализом на содержание Y, Ni, Cu, Fe, Mn, а также рентгенофазовым анализом (см. таблицу).

Определение РВЭ полученных интерметаллидов YNi<sub>3-x</sub>T<sub>x</sub> было проведено на литых сплавах и на порошках, прессованных в цилиндрические образцы. Для приготовления порошков ИМС указанного состава сплавы подвергали процессу активации, а затем гидридному диспергированию в лабораторной установке высокого давления по методикам [12,13]. Реактор, содержащий навеску интерметаллида, вакуумировали до остаточного давления  $5.0 \cdot 10^{-2}$  Ра при температуре 673 К 3 h для удаления с поверхности образцов адсорбированных газов (кислорода, углекислого газа, азота и т.д.), затем сплавы 5h насыщали водородом под давлением 5.0 · 10<sup>6</sup> Ра при 293 К с последующей десорбцией водорода в вакууме  $5.0 \cdot 10^{-2}$  Ра при 473 К. При этих процессах сплав диспергировался и превращался в порошок. Эти операции повторяли несколько раз, пока величины удельной поверхности порошков и размер кристаллитов не становились постоянными. Полученные

|                                                                    |                                      | -               |                   |                                        |       | -                               |                         |
|--------------------------------------------------------------------|--------------------------------------|-----------------|-------------------|----------------------------------------|-------|---------------------------------|-------------------------|
| Составы YNi <sub>3-x</sub> T <sub>x</sub>                          |                                      | Сингония        | Структурный       | Периоды кристаллической<br>решетки, nm |       | Удельная поверхность <i>S</i> , | Размер<br>кристаллитов, |
| химический, at.%                                                   | фазовый                              |                 | тип               | а                                      | С     | $m^2/g$                         | nm                      |
| Y <sub>0.99</sub> Ni <sub>3.01</sub><br>сплав                      | YNi <sub>3</sub>                     | Ромбоэдрическая | PuNi <sub>3</sub> | 0.4973                                 | 2.440 | $\sim 0.14$                     |                         |
| Y <sub>0.99</sub> Ni <sub>3.02</sub><br>порошок                    | YNi <sub>3</sub>                     |                 |                   | 0.4979                                 | 2.447 | 0.50                            | 36                      |
| YNi <sub>2.49</sub> Cu <sub>0.50</sub><br>сплав                    | YNi <sub>2.5</sub> Cu <sub>0.5</sub> | Ромбоэдрическая | PuNi <sub>3</sub> | 0.5001                                 | 2.449 | $\sim 0.14$                     |                         |
| Y <sub>0.99</sub> Ni <sub>2.49</sub> Cu <sub>0.51</sub><br>рошошок | YNi <sub>2.5</sub> Cu <sub>0.5</sub> |                 |                   | 0.5005                                 | 2.450 | 0.43                            | 49                      |
| Y <sub>0.98</sub> Ni <sub>2.51</sub> Fe <sub>0.49</sub>            | YNi <sub>2.5</sub> Fe <sub>0.5</sub> | Ромбоэдрическая | PuNi <sub>3</sub> | 0.5005                                 | 2.446 | $\sim 0.14$                     |                         |
| Y <sub>0.99</sub> Ni <sub>2.49</sub> Fe <sub>0.52</sub><br>порошок | YNi <sub>2.5</sub> Fe <sub>0.5</sub> |                 |                   | 0.5014                                 | 2.448 | 0.57                            | 44                      |
| Y <sub>0.99</sub> Ni <sub>2.52</sub> Mn <sub>0.51</sub>            | YNi <sub>2.5</sub> Mn <sub>0.5</sub> | Ромбоэдрическая | PuNi <sub>3</sub> | 0.5002                                 | 2.451 | $\sim 0.14$                     |                         |
| Y <sub>0.98</sub> Ni <sub>2.51</sub> Mn <sub>0.50</sub><br>порошок | YNi <sub>2.5</sub> Mn <sub>0.5</sub> |                 |                   | 0.5008                                 | 2.453 | 0.48                            | 47                      |

Результаты аттестации интерметаллических соединений  $YNi_{3-x}T_x$ , где T = Cu, Fe, Mn; x = 0; 0. 5

порошки разгружали из реактора в атмосфере аргона высокой чистоты и прессовали в цилиндрические образцы. Давление прессования  $5.0 \cdot 10^7 \text{ Pa/cm}^2$ . Остаточное содержание водорода в порошках не превышало  $1.0 \cdot 10^{-3}$  wt.%, а кислорода —  $5.0 \cdot 10^{-3}$  wt.%. Давление в системе измеряли образцовыми манометрами класса точности 0.4. В дальнейшей работе использовали порошки YNi<sub>3-x</sub>T<sub>x</sub>, подвергнутые 10 циклам "гидрирование–дегидрирование".

Источником водорода с чистотой не менее 99.999% служил автономный лабораторный генератор водорода, содержащий в качестве рабочего материала гидридные фазы на основе интерметаллидов TiFe и LaNi<sub>5</sub>, принцип действия которого подробно описан в [14,15].

Все последующие работы с полученными металлическими фазами проводили в атмосфере аргона высокой чистоты (ТУ 6-21-12-94).

#### Методы анализа

Определение РВЭ ИМС состава  $YNi_{3-x}T_x$  осуществляли методом КРП при 293 К в среде аргона высокой чистоты на порошках, прессованных в цилиндрические образцы, и литых образцах диаметром 5 mm и высотой 7 mm, торцевые поверхности которых полировали непосредственно перед измерениями. Установка для определения РВЭ подробно описана в [16]. Литые и прессованные образцы каждого состава  $YNi_{3-x}T_x$  загру-

жали в измерительную ячейку попарно. Погрешность измерений РВЭ не превышала  $\pm 0.02 \, \text{eV}$ .

Рентгенографические исследования проводили на дифрактометре АДП-2 (монохроматическое Си $K_{\alpha}$ -излучение). Погрешность определения периодов кристаллических решеток YNi<sub>3-x</sub>T<sub>x</sub> не превышала ±0.0003 nm. Из порошковых дифрактограмм проведена оценка области когерентного рассеяния  $D_{hkl}$  по формуле Шерера (в направлении перпендикулярном плоскости hkl):

$$D_{hkl} = k\lambda/\beta_{hkl}\cos\theta_{hkl},\qquad(2)$$

где k — коэффициент анизотропии, который в нашем случае был принят равным 0.9,  $\lambda$  — длина волны рентгеновского излучения, для  $\lambda_{CuK_{\alpha}} = 1.54178$  Å,  $\theta$  — дифракционный угол и  $\beta$  — полуширина дифракционного пика (в радианах).

Удельную поверхность образцов (S) находили по величине низкотемпературной адсорбции криптона после удаления из твердой фазы летучих примесей в вакууме  $1.3 \cdot 10^{-3}$  Ра при температуре 573 К и рассчитывали по методу БЭТ [17]. Площадь, занимаемую адсорбированной молекулой криптона, принимали равной  $19.5 \cdot 10^{-20}$  m<sup>2</sup>. Относительная погрешность определения не превышала  $\pm 10\%$ .

Содержание водорода и кислорода в сплавах и порошках определяли на CHNS/О-элементном анализаторе "Vario Micro cube". Анализ сплавов на содержание Ni, Cu, Fe, Mn проводили атомно-абсорбционным методом на резонансных линиях 232.0, 324.8, 248.3, 279.5 nm,



РВЭ  $YNi_{3-x}T_x$  (T — Cu, Fe, Mn; x = 0; 0.5): 1 — прессованный образец, 2 — литой образец.

соответственно, с использованием дейтериевого корректора фона. Иттрий определяли прямым комплексонометрическим титрованием трилоном Б в присутствии индикатора–ксиленолового оранжевого при pH = 5-6.

# Результаты и обсуждение

В таблице представлены результаты аттестации полученных соединений (литых и порошкообразных) YNi<sub>3-x</sub>T<sub>x</sub>. Результаты химического и рентгенофазового анализов свидетельствуют об однофазности этих соединений. Периоды кристаллических решеток изучаемых ИМС в пределах ошибки определения не отличаются от литературных значений [18]. Размер кристаллитов, оцененный по формуле (2), находится в пределах 35-50 nm. В то же время эффективные диаметры частиц порошков YNi<sub>3-x</sub>T<sub>x</sub>, рассчитанные из величин их удельной поверхности и плотности, равной  $\sim 7.5 \,\text{g/cm}^3$ , в приближении сферической формы частиц, соответствуют 1.6-1.9 µm. Исходя из представленных данных можно оценить количество кристаллитов в частицах порошков интерметаллических соединений YNi<sub>3-x</sub>T<sub>x</sub> как равное  $\sim 4.5 \cdot 10^4$  кристаллитов в одной сферической частице.

Частичное замещение никеля в структуре  $YNi_3$  на металлы с меньшей электроотрицательностью — Си, Fe, Mn, [19] приводит к снижению PBЭ (см. рисунок). PBЭ прессованных порошков  $YNi_{3-x}T_x$  (1) выше, чем у литых образцов (2), что может быть связано с большей поверхностью прессованных порошков  $YNi_{3-x}T_x$  по сравнению с литыми образцами.

Аналогичная зависимость для РВЭ при замещении никеля на металлы с меньшей электроотрицательностью наблюдалась нами для ИМС структкрного типа CaCu<sub>5</sub> состава LaNi<sub>5-x</sub>T<sub>x</sub> (T — Al, Cu, Fe; x = 0; 1) [11].

#### Заключение

Методом контактной разницы потенциалов в атмосфере аргона высокой чистоты при 293 К определены значения величин РВЭ литых образцов и прессованных в цилиндрические образцы порошков интерметаллических соединений  $YNi_{3-x}T_x$  (T — Cu, Fe, Mn; x = 0; 0.5). Установлена корреляция величин РВЭ с электроотрицательностью металлов, замещающих никель в интерметаллиде  $YNi_3$ .

# Список литературы

- [1] Савицкий Е.М., Буров И.В., Пирогова С.В., Литвак Л.Н. Электрические и эмиссионные свойства сплавов. М.: Наука, 1978. 292 с.
- [2] Бабичев А.П., Бабушкина Н.А., Братковский А.М. и др. Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- [3] Ибрагимов Х.И., Корольков В.А. Работа выхода электрона в физико-химических исследованиях. М.: Интермет Инжиниринг, 2002. 526 с.
- [4] Малов Ю.И., Онищенко А.В., Миронкова Л.И. // Физика металлов и металловедение. 1979. Т. 47. № 4. С. 889–890.
- [5] Kuijpers F.A. // Philips Res. Rep. Suppl. 1973. Vol. 28. N 2. P. 1–102.
- [6] Тейлор К. Интерметаллические соединения редкоземельных металлов. М.: Мир, 1974. 154 с.
- [7] Андриевский Р.А., Тарасов Б.П., Коробов И.И., Шилкин С.П. // ЖНХ. 1996. Т. 41. № 8. С. 1285–1289.
- [8] Малов Ю.И., Фокин В.Н., Фокина Э.Э., Троицкая С.Л., Шилкин С.П. // Журн. неорган. химии. 1994. Т. 39. № 1. С. 15–17.
- [9] Малов Ю.И., Фокин В.Н., Фокина Э.Э., Троицкая С.Л., Шилкин С.П. // Журн. неорган. химии. 1994. Т. 39. № 3. С. 514–516.
- [10] Бурлакова А.Г., Иванов А.В., Шилкин С.П. // ЖТФ. 2011. Т. 81. Вып. 8. С. 156–158.
- [11] Коробов И.И., Калинников Г.В., Иванов А.В., Шилкин С.П.
  // ЖТФ. 2012. Т. 82. Вып. 9. С. 83–86.
- [12] Фокин В.Н., Шилкин С.П., Фокина Э.Э., Мозгина Н.Г. // ЖОХ. 1997. Т. 67. Вып. 5. С. 705–708.
- [13] Семененко К.Н., Шилкин С.П., Бурнашева В.В., Коробов И.И., Волкова Л.С., Говоркова Л.В. // ЖОХ. 1983. Т. 53. Вып. 5. С. 961–966.
- [14] Фокин В.Н., Фокина Э.Э., Шилкин С.П. // ЖОХ. 1996. Т. 66. Вып. 8. С. 1249–1251.
- [15] Fokin V.N., Fokina E.E., Tarasov B.P., Shilkin S.P. // Int. J. Hydrogen Energ. 1999. Vol. 24. N 2–3. P. 111–114.
- [16] Онищенко А.В., Малов Ю.И., Корольков В.А. // Метрология. 1979. № 5. С. 49–53.
- [17] Экспериментальные методы в адсорбции и молекулярной хроматографии / Под ред. А.В. Киселева, В.П. Древинга. М.: Изд. МГУ, 1973. 447 с.
- [18] Бурнашова В.В., Тарасов Б.П. // Журн. неорган. химии. 1984. Вып. 5. С. 1136–1141.
- [19] Соколовская Е.М., Гузей Л.С. Металлохимия. М.: Изд-во. МГУ, 1986. 264 с.