13

Поляризация электронным зондом керамики феррониобата свинца, модифицированной литием и марганцем, и сопутствующие поляризованному состоянию эмиссионные явления на ее поверхности

© С.И. Шевцова, А.В. Павленко, А.Т. Козаков, Л.А. Резниченко, А.В. Никольский, Л.А. Шилкина

Научно-исследовательский институт физики Южного федерального университета, 344090 Ростов-на-Дону, Россия e-mail: snigela@yandex.ru

(Поступило в Редакцию 14 мая 2013 г.)

В керамических образцах феррониобата свинца (PFN), модифицированного сверх стехиометрии на стадии синтеза 1 mass% карбоната лития (PFNL) и 1 mass% оксида марганца (PFNM), электронным зондом (ЭЗ) сформировано поляризованное состояние. Показано, что поляризация ЭЗ в случае PFNL является более эффективной по сравнению с традиционно используемым методом "горячей" поляризации. Обсуждены причины наблюдаемых эффектов и в том числе повышенной электронной эмиссии из облученных локальных участков поверхности изученных керамик.

Введение

Эмиссионные свойства заряженных поверхностей поляризованных диэлектриков, электретов и сегнетоэлектриков (СЭ) привлекают к себе внимание исследователей уже несколько десятилетий [1-7]. Вклад в изучение зарядовых состояний материалов СЭ вносят работы, связанные с облучением поверхности. Так, методы растровой электронной микроскопии, реализуемые при облучении поверхности электронным зондом (ЭЗ), оказались удобными для наблюдения за процессами переключения поляризации и формирования зарядовых состояний на поверхности доменов, а также их динамикой [3-6]. Исследования электронной эмиссии (ЭЭ) с поверхностей СЭ-электретов, возбужденной с помощью мягкого рентгеновского излучения $(h\nu \approx 3 \, {\rm keV})$, показали [7,8], что в этом случае большую роль играет потенциальный рельеф определенной формы, сформированный на некоторой глубине от поляризованной поверхности. Как отмечено в работе [9], поляризованное состояние в диэлектриках и сегнетоэлектриках может не только исследоваться, но и формироваться с помощью ЭЗ. Однако в [9] исследования выполнены, в основном, на монокристаллах классических сегнетоэлектриков простого химического состава с крупной доменной структурой (LiNbO₃, BaTiO₃ и др.), и не ясно, можно ли использовать предложенную методику поляризации ЭЗ в керамических сегнетоэлектриках в том числе в других, более сложных составов.

В связи с этим представляется актуальным установить возможность создания поляризованного состояния в керамиках на основе сложных оксидов, сочетающих СЭ и магнитные подсистемы, что и стало целью настоящего исследования.

Объекты. Методы получения и исследования образцов

Объектами исследования явились керамики феррониобата свинца чистого, $PbFe_{1/2}Nb_{1/2}O_3$ (PFN), а также модифицированного 1 mass% оксида марганца (PFNM) и карбоната лития (PFNL), вводимых сверх стехиометрии основного состава на стадии синтеза.

Синтез образцов осуществляли методом твердофазных реакций из оксидов PbO, Fe₂O₃, Nb₂O₅, MnO₂ и карбоната Li₂CO₃ высокой степени чистоты (ч, чда) обжигом в две стадии с промежуточным помолом при температурах $T_1 = T_2 = 1123$ К и временах выдержки $\tau_1 = \tau_2 = 4$ h. Режим спекания керамических заготовок составил 1373 (PFN), 1353 (PFNL) и 1373 К (PFNM) в течение 2.5 h. Электроды наносили двукратным вжиганием серебросодержащей пасты при температуре 1073 К в течение 0.5 h.

"Горячую" поляризацию (ГП) образцов проводили в постоянном электрическом поле при высокой температуре. Образцы загружали в камеру с полиэтиленсилоксановой жидкостью ПЭС-5 при T = 300 К. В течение 0.5 h плавно поднимали температуру до 393 К и увеличивали постоянное электрическое поле от 0 до 4 kV/mm. В этих условиях образцы выдерживали ~ 0.5 h и затем охлаждали под полем до комнатной температуры. Поляризацию облучением ЭЗ выполняли сфокусированными электронами с перемещением по площади 4×4 mm² со скоростью ~ 0.13 mm/s (энергия электронов $E_b = 25$ keV, время облучения τ — 0.25 h, ток зонда I_b — от 60 до 150 nA) на растровом электронном микроскопе Камебакс-микро. Дозу облучения варьировали током зонда.

Исследование микроструктуры и элементного состава объектов выполнено на модернизированном растровом

Рис. 1. Фрагменты микроструктур керамик PFN (*a*), PFNM (*b*) и PFNL (*c*) (шлиф, полировка и травление). Изображения во вторичных электронах. *d* — скол керамики PFNL с включением оксида железа (темные кристаллы). Маркеры на фрагментах 10 µm.

электронном микроскопе Камебакс-микро с WDS аналитической системой. Измерения электрофизических параметров ($\varepsilon/\varepsilon_0$, $\varepsilon_{33}^T/\varepsilon_0$ — относительной диэлектрической проницаемости неполяризованных и поляризованных образцов соответственно, tg δ — тангенса угла диэлектрических потерь, $|d_{31}|$ и d_{33} — пьезомодулей, K_p — коэффициента электромеханической связи планарной моды колебаний, Q_m — механической добротности) исследуемых керамик при комнатной температуре проводили в соответствии с ОСТ 11 0444-87 с помощью прецизионного анализатора импеданса Wayne Kerr 6500 В и измерителя YE2730A d_{33} METER.

Экспериментальные результаты и обсуждение

Рентгенографически установлено, что полученные керамические образцы однофазны, практически беспримесны и при комнатной температуре имеют ромбоэдрическую (Рэ) структуру.

На рис. 1 приведены фрагменты изображений зеренных структур исследуемых керамик. Видно, что объектам свойственна однородная микроструктура, состоящая из кристаллитов, имеющих форму неправильных многогранников с преимущественно плоскими гранями. Средний размер зерна в PFN составил 4–6 μm, в PFNM — 4–8 μm, в PFNL — 10–16 μm. ЭЗ-микроанализ показал наличие (менее 1%) во всех исследуемых составах кристаллов оксида железа размером 1-2 µm, локализованных в межзеренном пространстве основной фазы (рис. 1, *d*, выделено окружностью). В случае PFNL выявлено наличие "двойных" границ и межкристаллитных прослоек толщиной $\sim 0.3 \,\mu m$ (рис. 1, *d*, выделено штриховой линией), не идентифицируемых в остальных составах. Анализ сколов исследуемых объектов показал, что разрушения в PFN проходят как по зернам, так и по их границам, что может свидетельствовать о близости "прочностей" межзеренных границ и самого зерна, в то время как в PFNL — преимущественно по межзеренным границам, что свидетельствует о более высокой по сравнению с границами и межкристаллитными прослойками прочности зерен, а в PFNM — только по зерну, что говорит о росте прочностных характеристик границ зерен по отношению к их внутризеренным областям.

Наблюдаемое изменение керамических характеристик PFN после модифицирования, вероятно, является следствием изменения характера спекания керамик: от твердофазного (PFN) \rightarrow к спеканию с участием жидкой фазы (ЖФ) (PFNL, PFNM) [10–12]. Источник ЖФ в первом случае — Li₂CO₃ с низкой температурой плавления [11], во втором — оксид Mn [12], участвующие в реакциях образования конечных продуктов. Судя по тому, что в PFNL резко усиливается рост зерен и наблюдается появление межкристаллитной прослойки, можно предположить, что Li-содержащие ЖФ преиму-

	Метод по- ляризации	$\varepsilon/\varepsilon_0$	$\varepsilon_{33}^T/\varepsilon_0$	tgδ	tg _{nn} δ	K_p	Q _m	d ₃₁ , pC/N	<i>d</i> ₃₃ , pC/N
PEN	ГП	2926	2740	0.050	0.048	0.12	222	34	81
PFNL	Э3	3041	2257	0.019	0.010	0.33	230	91	289
	ГП	3151	2235	0.024	0.017	0.30	262	82	230
PFNM	Э3	3070	2567	0.021	0.018	0.20	233	58	204
	ГП	3145	2712	0.041	0.026	0.20	223	59	150

Основные электрофизические характеристики поляризованных керамик PFN, PFNL и PFNM

щественно выполняют роль транспортной среды, благоприятствуя массопереносу, диффузии в процессе рекристализационного спекания. В случае с Мп наблюдаем усиление "спайности" зерен, что может быть следствием в большей степени проявления "цементирующей" роли Мп-содержащих ЖФ.

В керамиках PFNM и PFNL облучением ЭЗ при $I_b = 60 \,\mathrm{nA}$ сформировано поляризованное состояние, что проявилось в возможности регистрации соответствующих пьезоэлектрических откликов. В PFN пьезоотклик отсутствовал и при увеличении дозы облучения в 2.5 раза (до 150 nA). В таблице приведены основные электрофизические характеристики исследуемых объектов, поляризованных для сравнения методами ГП и ЭЗ. Видно, что независимо от способа после поляризации во всех случаях наблюдается снижение относительной диэлектрической проницаемости по сравнению с $\varepsilon/\varepsilon_0$ неполяризованных образцов, что характерно как для Nb-содержащих материалов [13], так и для сегнетомягких Рb-содержащих керамик с Рэ-структурой [14]. Введение модификаторов привело к росту в 1.5-2.0 раза значений K_p , $|d_{31}|$ и d_{33} , сохранению Q_m на том же уровне, снижению $\varepsilon_{33}^T/\varepsilon_0$ и tg_{nn} δ . Такое поведение пьезоэлектрических параметров в Li- и Мп-содержащих материалах прежде всего является следствием лучшей технологичности модифицированных керамик, что проявилось в снижении и оптимальной Т, и увеличении удельного сопротивления ρ (при комнатной температуре в PFN $\rho = 2.9 \cdot 10^7 \,\Omega \cdot m$, PFNM — $7.2 \cdot 10^9 \,\Omega \cdot m$, PFNL — $2.6 \cdot 10^{10} \,\Omega \cdot m$). Электрофизические характеристики керамик PFNL и PFNM, поляризованных ЭЗ, в большинстве случаев сопоставимы, а в некоторых имеют более высокие значения (например, K_p , $|d_{31}|$ и d_{33} в PFNL), чем параметры объектов, поляризованных методом ГП. Это позволяет говорить о достаточно высокой эффективности метода поляризация ЭЗ и в случае керамических материалов.

Методы поляризации, используемые в настоящей работе, отличаются по своей физической природе. Можно предположить, что в случае воздействия ЭЗ с энергией $E_b = 25 \text{ keV}$ в образцах создается более высокое электрическое поле, чем при ГП при значении постоянного электрического поля 4 kV/mm. Отметим, что в керамиках PFNM и PFNL в участках, поляризованных ЭЗ, наблюдается повышенная эмиссия вторичных электронов. При этом в режимах работы зонда $E_b = 25$ keV, $I_b = 0.1-5.0$ nA и $S = 1-400 \,\mu\text{m}^2$ в реальном времени наблюдаются рост и стабилизация эмиссии в течение 1-10 s облучения. При уменьшении I_b можно визуально наблюдать яркие пятна на облученной поверхности (рис. 2, 3). Дальнейшее облучение объекта после стабилизации эмиссии электронов в локальном участке поверхности приводило к значительному расширению облучаемого поля (рис. 3).

Усиление эмиссии вторичных электронов с облученного участка поверхности может быть обусловлено целым рядом эмиссионных эффектов: накоплением отрицательных зарядов в ловушках диэлектриков [15], компенсацией роста спонтанного момента при ЭЗ-поляризации [8], пироэлектрическим эффектом [8] и пр. Ограниченное количество характеристик, измеряемых в ходе описанных авторами экспериментов, не позволяет установить, какой тип эмиссии реализуется с поверхности поляризованных СЭ керамик. Можно предположить

Рис. 2. Области повышенной эмиссии вторичных электронов, сформированные ЭЗ-облучением в керамике PFNL. Изображение во вторичных электронах. Маркер 100 μ m.

Рис. 3. Динамика предварительно наведенного пятна эмиссии на сколе керамики PFNL в течение 60 s: маркер 200 μ m.

наличие вклада в общую электронную эмиссию механизмов каждого из них.

Благоприятствовать возникновению вышеперечисленных видов эмиссии может еще один, редко обсуждаемый механизм, детально исследованный методом рентгеновской фотоэлектронной спектроскопии в [7,16-18]. В работах [7,16-18] в поверхность сегнетоэлектрика с электретными свойствами предварительно инжектировался электретный заряд. Взаимодействие поля этого заряда с СЭ откликом приводило к созданию в поверхностном слое максимума электрического потенциала. Электроны, удаляемые из ловушек в материале диэлектрика и/или с энергетических уровней на его поверхности с помощью рентгеновского излучения, ускорялись в поле потенциального склона, обращенного к поверхности. Это поле приводило к значительному усилению электронной эмиссии с поляризованной поверхности по сравнению с неполяризованной. В нашем случае ЭЗ одновременно формировал поляризованное состояние и потенциальный рельеф по глубине образцов, ионизировал в поверхностных слоях большое количество атомов вещества, опустошал ловушки и нагревал приповерхностный слой. Создаваемый при этом поток свободных электронов, направленный к поверхности и усиленный глубинным рельефом потенциала, и приводил к увеличению электронной эмиссии с участков облученных ЭЗ поверхностей.

Выводы

1. Электронным зондом осуществлена поляризация керамик феррониобата свинца, модифицированного литием и марганцем, которая оказалась более эффективной по сравнению с методом горячей поляризации.

2. Рост электронной эмиссии из облучаемых электронным зондом локальных участков поверхности модифицированных керамик обусловлен формированием ее сложной зарядовой структуры.

Заключение

Полученные в настоящей работе результаты целесообразно использовать при создании и исследовании поляризованного состояния в СЭ керамических материалах.

Работа выполнена при частичной финансовой поддержке Министерства образования и науки РФ Г.К. № 16.740.11.0587.

Список литературы

- [1] Селюк Б.В. // Кристаллография. 1974. Т. 19. № 2. С. 221–227.
- [2] Ефашкин Г.В. // Электротехника. 1985. № 7. С. 52-54.
- [3] *Коханчик Л.С., Пономарев Б.К.* // Изв. РАН. Сер. физ. 2005. Т. 69. № 4. С. 454–458.

- [4] Коханчик Л.С., Пономарев Б.К. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2006. № 12. С. 64–69.
- [5] Коханчик Л.С., Пономарев Б.К. // Заводская лаборатория. 2005. Т. 71. № 6. С. 24–29.
- [6] Согр А.А., Бородин В.З. // Изв. АН СССР. Сер. физ. 1984. Т. 48. С. 1086–1089.
- [7] Никольский А.В. Козаков А.Т. // ФТТ. 1997. Т. 39. № 8. С. 1446–1451.
- [8] Коханчик Л.С., Иржак Д.В. // ФТТ. 2010. Т. 52. № 8. С. 1602–1609.
- [9] Гегузин Я.Е. Физика спекания. М.: Наука, 1984. 312 с.
- [10] Резниченко Л.А. Фазовые состояния и свойства пространственно-неоднородных сегнетоактивных сред с различной термодинамической предысторией. Диссертация д.ф.-м.н. Ростов-на-Дону: РГУ, 2002. 461 с.
- [11] Яффе Б., Кук У., Яффе Г. Пьезоэлектрическая керамика / Пер. с англ. М.: Мир, 1974. 288 с.
- [12] Шульман А.Р. Фридрихов С.А. Вторично-эмисиионные методы исследования твердого тела. М.: Наука, 1977. 551 с.
- [13] Резниченко Л.А., Разумовская О.Н., Шилкина Л.А. // Сборник материалов 7-го Междунар. семинара по физике сегнетоэлектриков-полупроводников. Ростов-на-Дону, 1996. С. 149.
- [14] Резниченко Л.А., Разумовская О.Н., Клевцов А.Н. // Сборник тр. Междунар. научно-практической конф. "ПЬЕЗО-ТЕХНИКА-99". Ростов-на-Дону. 1996. С. 268.
- [15] Rosenman G., Shur D., Krasik Ya.E., Dunaevsky A. // J. Appl. Phys. 2000. Vol. 88. N 11. P. 6109–6161.
- [16] Kozakov A.T., Sakhnenko V.P., Novikov I.V. // J. Electron Spectrosc. Rel. Phenom. 2005. Vol. 142. P. 59–66.
- [17] Kozakov A.T., Sakhnenko V.P., Novikov I.V. // J. Electron Spectrosc. Rel. Phenom. 2005. Vol. 142. P. 67–74.
- [18] Козаков А.Т. Физические основы электронной спектроскопии заряженных поверхностей твердых тел. Ростов-на-Дону: Изд-во ЮФУ. 2009. 406 с.