Комбинационное рассеяние света в монокристаллах $ZnGa_2Se_4$

© Т.Г. Керимова[¶], И.А. Мамедова, Н.А. Абдуллаев, С.Г. Асадуллаева, З.И. Бадалова

Институт физики им. Г.М. Абдуллаева Национальной академии наук Азербайджана, Az-1143 Баку, Азербайджан

(Получена 29 октября 2013 г. Принята к печати 13 ноября 2013 г.)

Исследованы спектры комбинационного рассеяния света в монокристаллах ZnGa₂Se₄ при 300 K в различных геометриях эксперимента. Наблюдаемые частоты фононов идентифицированы по типам симметрии. Проведено сопоставление частот оптических фононов с конкретными смещениями атомов в элементарной ячейке.

1. Введение

Полупроводниковые соединения $A^{II}B_2^{III}C_4^{VI}$ (A — Zn, Cd; B — In, Ga; C — S, Se, Te), кристаллизующиеся в пространственной группе (пр.гр.) S₄² (тиогаллат), являются кристаллохимическими аналогами соединений $A^{I}B^{III}C_{2}^{VI}$ (A — Cu, Ag; B — In, Ga; C — S, Se, Te) и $A^{II}B^{IV}C_{2}^{V}$ (A — Zn, Cd; B — Si, Ge, Sn; C — As, P, N) со структурой халькопирита (пр. гр. D_{2d}^{12}). Наблюдаемые в этих соединениях двулучепреломление, оптическая активность, яркая фотолюминесценция, высокая фоточувствительность выдвигают их в ряд перспективных материалов для использования в полупроводниковом приборостроении, а соединения $A^{II}B^{IV}C_2^V$, легированные Мп, являются перспективными материалами для спинтроники. Поэтому всестороннее исследование физических свойств этих материалов является актуальной задачей. Особое место принадлежит исследованиям электронных и фононных спектров полупроводниковых соединений, поскольку эти данные важны при объяснении теплоемкости, теплопроводности, оптических свойств, вычислениях зонной структуры, термодинамических параметров и др. В настоящей работе приводятся результаты исследования спектров комбинационного рассеяния света в ZnGa₂Se₄.

Оптические фононы в ZnGa₂Se₄ исследованы в [1,2]. В [1] спектры комбинационного рассеяния света (КРС) исследованы в произвольной геометрии эксперимента. При идентификации оптических фононов по типам симметрии имеются разногласия. В [2] приводятся спектры инфракрасного отражения. Измерения проведены в поляризации параллельно и перпендикулярно тетрагональной оси С. Известно, что для получения полной информации о частотах оптических фононов по типам симметрии необходимы исследования спектров КРС в различных геометриях эксперимента.

В настоящей работе приводятся результаты исследования спектров КРС в различных геометриях эксперимента. Цель настоящей работы — установление соответствия между частотами оптических фононов и конкретными смещениями атомов в элементарной ячейке и получение информации о силовых константах межатомных связей.

2. Получение монокристаллов и методика эксперимента

Монокристаллические образцы ZnGa₂Se₄ были выращены методом газотранспортных реакций. В качестве газа-носителя использовался йод. Выращенные монокристаллы имели форму трехгранных призм с наиболее развитой гранью $(1\overline{1}2)$, с которой тетрагональная ось С составляет угол 37°. Некоторые образцы имели форму пластин с гранями (001), т.е. тетрагональная ось была перпендикулярна плоскости поверхности ху. Пластины имели размеры 5 × 4 × 3 мм, из них готовились образцы в виде параллелепипеда с гранями, ориентированными вдоль кристаллографических осей для проведения измерений КРС в различных геометриях эксперимента. Из рентгенографических исследований вычислены параметры решетки: a = 5.496 Å, c = 10.99 Å, c/a = 2, что согласуется с данными [3]. На рис. 1 приведен пример кристаллической решетки соединений с пр.гр. S₄².

Рис. 1. Кристаллическая решетка соединений, кристаллизующихся в пространственной группе S_4^2 , на примере CdGaSe4.

Спектры КРС были измерены на приборе ДФС-12. В качестве источника возбуждения использовалась линия излучения аргонового лазера с длиной волны 5144.6 Å. В качестве приемника излучения использовался ФЭУ-79, работающий в режиме счета фотонов.

3. Обсуждение результатов

В элементарной ячейке имеется 7 атомов. Поэтому колебательный спектр состоит из 21 моды и описывается характерными для пр. гр. S_4^2 следующими неприводимыми представлениями:

$$\Gamma_{v} = 3A(\text{RS}) + 5B(\text{IR,RS}) + 5E(\text{IR,RS}).$$

В спектрах КРС (RS) разрешены 3 моды симметрии A; 5 мод симметрии B и 5 мод симметрии E разрешены как в спектрах инфракрасного ИК поглощения (IR), так и спектрах КРС (RS). Одна мода симметрии B и одна двукратно вырожденная мода E являются акустическими. На рис. 2 представлены спектры КРС ZnGa₂Se₄ в различных геометриях рассеяния при 300 К. Наблюдаемые частоты фононов идентифицированы по типам симметрии с использованием правил отбора для соответствующих геометрий эксперимента [4]. Результаты исследований приведены в табл. 1. В табл. 1 для сравнения также приведены частоты оптических фононов CdGa₂Se₄ [5], AgGaSe₂ [6], CuGaSe [7].

Рис. 2. Спектры комбинационного рассеяния света в геометрии рассеяния x(zz)y, $x(yy)\bar{x}$, z(xz)y в ZnGa₂Se₄ при 300 К.

Таблица	1. Значения	частот ($(B \ CM^{-1})$	оптических	фононов	в
ZnGa ₂ Se ₄ ,	CdGa ₂ Se ₄ , C	uGaSe ₂ 1	и AgGaS	e_2		

Cup a compute	ZnGa ₂ Se ₄		CdGa ₂ Se ₄	CuGaSe ₂	AgGaSe ₂
Симметрия	ИК спектр [2]	КРС	[5]	[6]	[7]
$B_1(LO)$	278		275	276	272
$B_2(LO)$	246		232		
$B_3(LO)$	200	203.3	198	190	
$B_4(LO)$	136	132	178		
$B_5(LO)$	81	84.2	122		
$B_1(TO)$	255	267	254	250	
$B_2(TO)$	230	229.3	220		
$B_3(TO)$	192	192.2	194	170	
$B_4(TO)$	126		176		
$B_5(TO)$	79	80.5	112		
$E_1(LO)$	275	273.4	274	278	276
$E_2(LO)$	245	248.8	242		
$E_3(LO)$	200	203.3	180	196	160
$E_4(LO)$		118.3	103		112
$E_5(LO)$	82	80.5	67		73
$E_1(TO)$	250	253	250	254	
$E_2(\mathrm{TO})$	236		236		238
$E_3(\mathrm{TO})$	190	193.4	174	178	
$E_4(\mathrm{TO})$		114	102		
$E_5(\mathrm{TO})$	80	80.5	66		
$\overline{A_1}$		134.7	145		
A_2		159.3	185		179
A_3		194	204		

При сравнении высокочастотных мод в ряду соединений CdGa₂Se₄ [5], ZnGa₂Se₄, AgGaSe₂ [6], CuGaSe₂ [7] видно, что величины этих мод практически совпадают и не зависят от массы элементов I и II групп таблицы Менделеева. Следовательно, эти частоты связаны со смещениями атомов анионной подрешетки относительно трехвалентных катионов (Ga). Действительно, из анализа симметризованных смещений атомов в элементарной ячейке [8] (рис. 3) видно, что при синфазном смещении атомов анионной подрешетки вдоль оси z и в плоскости ху создается значительный дипольный момент. Таким образом, фононы симметрии В1, В2 и E₁, E₂ связаны с колебаниями диполя (2Ga-4Se). Из вышеизложенного следует, что силовая константа связи (Ga-Se) имеет такое же значение, как в CdGa₂Se₄, и равна $0.63 \cdot 10^5$ дин \cdot см⁻¹ [9].

Следующие частоты B_3, B_4 и E_3, E_4 , так же как в случаях CdGa₂S₄ и CdGa₂Se₄ [10], связаны со смещениями атомов анионной подрешетки относительно двухвалентных катионов Zn (диполь Zn-4Se). Модифицируя предложенную в [1] формулу для частот колебаний ν диполя (Zn-4Se), запишем ее в следующем виде:

$$\nu^2 = \frac{k}{m_C} \left(1 + \frac{4m_C}{m_A} \right). \tag{1}$$

В выражении (1) *k* — силовая постоянная, *m_C* — масса аниона, *m_A* — масса двухвалентного катиона.

Рис. 3. Симметризованные смещения атомов в элементарной ячейке соединений, кристаллизующихся в пространственной группе $S_{4,}^2$ на примере CdGa₂Se₄.

Используя это соотношение, для отношения частот $v(\text{ZnGa}_2\text{Se}_4)/v(\text{CdGa}_2\text{Se}_4)$ мы получили значение 1.24. Отношения частот B_3, B_4 и E_3, E_4 в этих соединениях равны 1.1–1.2. Последнее свидетельствует о том, что эти частоты обусловлены колебаниями диполя (Zn–4Se). Низкочастотные моды B_5 и E_5 , по-видимому, связаны со смещениями атомов Zn.

В табл. 2 приведены значения длин межатомных связей, вычисленные по [11].

Из-за отсутствия тетрагонального сжатия длины межатомных связей A-C и B-C в $ZnGa_2Se_4$, в отличие от $CdGa_2S_4$ и $CdGa_2Se_4$, имеют одинаковые значения. Поэтому можно предполагать, что силовые константы связей A-C и B-C в $ZnGa_2Se_4$ также имеют одинаковые значения. Этот вывод находится в согласии с результатами вычислений [12].

Анализ симметризованных смещений атомов в элементарной ячейке показал, что неполярные моды симметрии A должны наблюдаться при смещениях атомов анионной подрешетки вдоль кристаллографических осей x, y, z [8]. Действительно, как видно из рис. 2, в геометрии x(zz)y наибольшей интенсивностью обладают спектральные линии, соответствующие частотам 134.7, 159.3 и 194 см⁻¹. В этой же геометрии эксперимента наблюдаются фононы с частотами 73 и 229.3 см⁻¹. Значение частоты фонона 229.3 см⁻¹ по величине близко к значениям 230 см⁻¹ B_2 (TO) в ZnGa₂Se₄ и 220 см⁻¹

Таблица 2. Значения параметров решетки и длины межатомных связей А-С, В-С в CdGa₂S₄, CdGa₂Se₄ и ZnGa₂Se₄

Соединение	<i>a</i> , Å	<i>c</i> , Å	c/a	А–С, Å	B–C, Å
$\begin{array}{c} CdGa_2S_4\\ CdGa_2Se_4\\ ZnGa_2Se_4 \end{array}$	5.55	10.19	1.834	2.519	2.207
	5.574	10.756	1.873	2.44	2.33
	5.485	10.97	2.00	2.375	2.375

 $B_2(TO)$ в CdGa₂Se₄. Поэтому можно предположить, что наблюдаемый фонон с частотой 229.3 см⁻¹ имеет симметрию $B_2(TO)$.

В геометрии рассеяния $x(yy)\bar{x}$ (рис. 2) должны наблюдаться фононы симметрии A, B(LO) и B(TO). В этой геометрии рассеяния наблюдается фонон с частотой 267.1 см⁻¹, близкой по величине к частотам $B_1(LO)$ и $B_1(TO)$. В этой же геометрии рассеяния наблюдаются фононы с частотами 114, 76.8 и 63.6 см⁻¹. Фонон с частотой 114 см⁻¹ идентифицирован как фонон симметрии $E_4(TO)$.

В геометрии рассеяния z(xz)y и $x(yz)\bar{x}$ (рис. 2) должны наблюдаться двукратно вырожденные фононы E(LO), E(TO). Идентификация частот приведена в табл. 1.

В этой геометрии рассеяния, так же как в случаях x(zz)y и $x(yy)\bar{x}$, наблюдается дополнительная мода 74.6 см⁻¹. Как видно из изложенного, наряду с частотами, разрешенными для соответствующих геометрий эксперимента, наблюдаются дополнительные частоты. Наблюдение частот, запрещенных правилами отбора для соответствующих геометрий эксперимента в нецентросимметричных кристаллах, обусловлено наличием двулучепреломления.

Вообще, моды, активные в спектрах комбинационного рассеяния света, могут быть идентифицированы независимо и однозначно при исследовании спектров КРС в различных геометриях эксперимента. Однако на практике этого достичь очень сложно. Как видно из рис. 2, некоторые моды типа А, В и Е наблюдаются в геометриях эксперимента, где они должны быть запрещены, с различной интенсивностью. Это объясняется тем, что из-за двулучепреломления имеет место деполяризация. В одноосных кристаллах ZnGa₂Se₄ (пр. гр. S_4^2) двулучепреломление приводит к тому, что даже при незначительной ошибке в ориентации кристалла в определенных геометриях эксперимента в спектрах КРС наряду с модами, соответствующими поляризации возбуждающего луча, регистрируются также моды, возникающие за счет двулучепреломления. Поэтому в одном и том же спектре могут наблюдаться фононы симметрии А, В и Е. При этом интенсивность этих линий определяется как силой осциллятора этих колебаний, так и интенсивностью обыкновенного и необыкновенного лучей.

4. Заключение

На основании анализа симметризованных смещений атомов в элементарной ячейке и кристаллохимическую близость соединений, кристалллизующихся в структуре тиогаллата (пр. гр. S_4^2) и халькопирита (пр. гр. D_{2d}^{12}), показано, что высокочастотные моды B_1, B_2 и E_1, E_2 обусловлены смещениями атомов анионной подрешетки относительно трехвалентных катионов Ga (диполь (2Ga-4Se)). Моды симметрии B_3, B_4 и E_3, E_4 связаны со смещениями атомов анионной подрешетки относительно двухвалентных катионов Zn (диполь Zn-4Se). Показано, что силовые константы межатомных связей A-C и B-C имеют близкие значения.

Список литературы

- [1] P.P. Lottici, C. Razzetti. Solid State Commun., 46, 681 (1983).
- [2] A. Eifler, G. Krauss, V. Riede, V. Krämer, W. Grill. J. Phys. Chem. Sol., 66, 2052 (2005).
- [3] H. Hhan, G. Frank, W. Klinger, A. Stoerger, S. Stoerger. Anorg. Allgem. Chem., 279, 241 (1955).
- [4] R. Bacewicz, Y.P. Lottici, R. Rozetti. J. Physica C: Sol. St. Phys., 12, 3603 (1979).
- [5] Т.Г. Керимова, Р.Х. Нани, Э.Ю. Салаев, В.Я. Штейншрайбер. ФТТ, 21, 1961 (1979).
- [6] I.V. Bondar, A.G. Karoza, G.F. Smirnova. Phys. Status Solidi B, 84, K65 (1977).
- [7] J.P. van der Ziel, A.E. Meixner, H.M. Kasper, J.A. Ditzenberger. Phys. Rev. B, 9, 4286 (1974).
- [8] Т.Г. Керимова. Докл. АН АзССР, 35, 33 (1979).
- [9] Т.Г. Керимова, А.Ш. Хидиров, Э.Ю. Салаев, В.Я. Штейншрайбер. ФТТ, 27, 1570 (1985).
- [10] Т.Г. Керимова, Н.А. Абдуллаев, И.А. Мамедова, З.И. Бадалова, Р.А. Гулиев, R. Paucar, K. Wakita, Н.Т. Мамедов. ФТП, 47, 751 (2013).
- [11] S.C. Abrahams, U.I. Bernstein. J. Chem. Phys., 55, 796 (1974).
- [12] P.P. Lottici, G. Antonioni, C. Razzetti. J. Phys. Chem. Sol., 49, 1057 (1988).

Редактор Л.В. Шаронова

Raman scattering in ZnGa₂Se₄ single crystals

T.G. Kerimova, I.A. Mamedova, N.A. Abdullayev, S.Q. Asadullayeva, Z.I. Badalova

Institute of Physics, Azerbaijan National Academy of Sciences, Az-1143 Baku, Azerbaijan

Abstract Raman spectra of $ZnGa_2Se_4$ single crystals in various experimental geometries at 300 K have been investigated. The observed phonon frequencies were identified analysis the symmetry using. The comparison of optical phonon frequences with atoms displacements in the unif cell was given.