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The Hall conductivity of graphene
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Sensitivity of the Hall conductivity of graphene plane to gas molecule adsorption is investigated within

the coherent potential approximation for the tight-binding model Hamiltonian. The results show that the Hall

conductivity of system have a limit change when finite triatomic and tetratomic gas molecules adsorb and act as

acceptors or donors.

Carbon nanotubes (CNTs) is one of the promising

nanoscale molecular sensors used to detect gas molecules

with fast response time and high sensitivity [1–3]. Si-

milar to CNT, graphene based device is the first truly

2D material and a promising candidate for gas sensing

applications [4–13]. Recently, a graphene sample has been

used as a very sensitive possibility of detecting individual

H2O, CO, NO2 and NH3 molecules [6]. The working

principle of graphene devices as gas sensors is based on

the changes of their electrical conductivity. The change of

conductivity could be attributed to the changes of charge

carrier concentration in the graphene, therefore a little

change of carrier concentration can cause a notable variation

of electrical conductivity. Hence the sensor property could

be based on changes in the conductivity due to adsorbed

molecules on the graphene sheet that act as acceptors

or donors [4–14]. In this work, using the tight-binding

approach, Green’s function technique and the coherent

potential approximation (CPA), we consider the system

under a weak magnetic field perpendicular to the graphene

plane. In the limit of a weak magnetic field, the Hall

conductivity of quantum transport theory agrees with the

Boltzmann result [13-16]. We present the sensitivity of the

Hall conductivity of system to finite triatomic and tetratomic

(in the general form denoted by XY2 and XY3 respectively)
gas molecule adsorption in the Boltzmann transport theory,

when XY2 acts as acceptors and XY3 acts as donors. These

are similar to NO2 and NH3 adsorption.

Let us consider the Hamiltonian of system as a random

tight-binding model,

H = −
∑

i j αβ

tαβi j cα†
i cβ

j +
∑

iα

(εαi − µ)n̂αi , (1)

where α and β refer to the Am or Bm sites inside of the

graphite Bravais lattice unit cell. Here m = 1, 2, 3 and 4

used for triatomic gas adsorption and m = 1, 2, 3, 4 and

5 used for tetratomic gas adsorption. We note that each

Bravais lattice site includes two nonequivalent sites that are

indicated by A1 and B1 (Fig. 1). Also cα†
i (cα

i ) is the

creation (annihilation) operator of an electron on Bravais

lattice site i , tαβi j ’s are the usual hopping integrals between
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the sub-sites α and β in the Bravais lattice unit cell i
and j , n̂αi = cα†

i cα
i is the number operator, µ is chemical

potential and εαi is the random on-site energy for sub-site α

in the Bravais lattice unit cell. We work in units where

me = e = c = ~ are set equal to unity.
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Figure 1. A schematic of graphene sheet. The light dashed

lines illustrate the Bravais lattice unit cell. Each cell includes

two nonequivalent sites, which are denoted by A1 and B1. a1

and a2 are the primitive vectors, |a1| = |a2| = a = a0

√
3 where

a0 = acc = 1.42 Å. Also figure illustrates general form of two

triatomic gas molecule adsorption.

Using the Eq. (1) and the Green’s function technique, the

equation of motion for the electrons can be written as,

∑

l

[(EI− εi + µI) δi l + ti l ]G(l , j ;E) = Iδi j , (2)

where G(l , j ;E) is the random Green’s function matrix and

E = E + ı0+ . Because of the existence eight atoms and

ten atoms in the Bravais lattice unit cell for adsorption

of triatomic and tetratomic gas molecules, the Green’s

function needs to be written as 8× 8 and 10× 10 matrixes

respectively.

Since in the Eq. (2) the random Green’s function matrix,

G(i , j ;E), could not be calculated exactly, it should be

expanded in terms of clean system Green’s function matrix,

G
0(i , j ;E), and random potential [15],

G(i , j ;E) = G
0(i , j ;E) +

∑

ll ′

G
0(i , l ;E)Vll ′G(l ′, j ;E),

(3)
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where G
0(i , j ;E) is given by,

G
0(i , j ;E) =

nc

N

∑

k

eik·ri j (EI− ǫk)
−1

, (4)

where nc is number of atoms of a Bravais lattice site,

k = kxex + kyey is a two-dimensional wave vector, ri j ’s are

three vectors that connect a A1 (B1) site to it’s nearest neigh-

bor sites, ǫk is the Fourier transformation of ti l and {ex, ey}
are unit vectors in xy graphene plane. Also, the random

potential matrix, Vll ′ , is defined by, Vll ′ = εl δll ′ + δtll ′ and

δtll ′ = tll ′ − t0ll ′ is hopping integral matrix deviation with

respect to clean system. For adsorption of triatomic gas

molecules, if in the random potential matrix, hopping to

the nearest neighbors is allowed and if the molecules are

adsorbed by A1 and B1 sub-sites, the nonzero elements of

random potential matrix can be defined by,

δtA1A2

〈i j 〉 = δtA2A1

〈i j 〉 = δtB1B2

〈i j 〉 = δtB2B1

〈i j 〉 ≡ δ1, (5)

δtA1A3

〈i j 〉 = δtA3A1

〈i j 〉 = δtA1A4

〈i j 〉 = δtA4A1

〈i j 〉 = δtB1B3

〈i j 〉

= δtB3B1

〈i j 〉 = δtB1B4

〈i j 〉 = δtB4B1

〈i j 〉 ≡ δ2, (6)

δtA2A3

〈i j 〉 = δtA3A2

〈i j 〉 = δtA2A4

〈i j 〉 = δtA4A2

〈i j 〉 = δtB2B3

〈i j 〉

= δtB3B2

〈i j 〉 = δtB2B4

〈i j 〉 = δtB4B2

〈i j 〉 ≡ δ3, (7)

δtA3A4

〈i j 〉 = δtA4A3

〈i j 〉 = δtB3B4

〈i j 〉 = δtB4B3

〈i j 〉 ≡ δ4. (8)

Also we define ε1 as different between on-site energies

of host carbon atom and adsorbed gas X atom and ε2 as

different between on-site energies of X atom and Y atoms.

The chemical potential takes, µ = 0, which is corresponding

to contribution of one electron per carbon atom in the

graphene system. Just nearest neighbors hopping are al-

lowed and neglected others, so the nonzero elements of hop-

ping matrix can be written as, tA1B1

〈i j 〉 = tB1A1

〈i j 〉 ≡ t ≃ 2.7 eV.

The Dyson equation for the average Green’s function

corresponding to Eq. (3) can be written as,

Ḡ(i , j ;E) = G
0(i , j ;E)

+
∑

ll ′

G
0(i , l ;E)6(l , l ′;E)Ḡ(l ′, j ;E), (9)

where the self-energy, 6(l , l ′;E), is defined by,

∑

l ′

6(l , l ′;E)Ḡ(l ′, j ;E) =
∑

l ′

〈Vll ′G(l ′, j ;E)〉. (10)

Here, 〈· · · 〉 denotes configurational averaging. The Fourier

transformation of Eq. (9) is as following,

Ḡ(i , j ;E) =
nc

N

∑

k

eik·ri j

{

[

G
0(k;E)

]−1 − 6(k;E)
}−1

,

(11)

where 6(k;E) is the Fourier transformation of the self-

energy.

In general there is no analytical solution for such

random systems, hence it should be solved approximately.

Since the gas molecules are adsorbed randomly by the

graphene’s atoms, the Green’s function in the equation of

motion is random and the local behavior could be different

from whole system behavior, hence we should calculate

configurational average properties. We treat this in the CPA

formalism to take the average over all possible adsorbed

molecule configurations. In the CPA method, inter-site

correlations are neglected and each lattice site is replaced by

an effective site except one, which is called the impurity site

and is denoted by i . Then the self-energy is local and takes

the same value for all sites, 6(i , j ;E) = 6(E)δi j , so the

Eqs. (10) and (11) at impurity site reduce to the following,

6(E)Ḡ(i , i ;E) = 〈Vi i Gimp(i , i ;E)〉, (12)

Ḡ(i , i ;E) =
nc

N

∑

k

{

[

G
0(k;E)

]−1 −6(E)
}−1

. (13)

Using Eqs. (3) and (9), the impurity Green’s function,

Gimp(i , i ;E), relates to the average Green’s function,

Ḡ(i , i ;E), by,

Gimp(i , i ;E) = Ḡ(i , i ;E)

+ Ḡ(i , i ;E) [Vi i −6(E)]Gimp(i , i ;E). (14)

Finally, the new average Green’s function, Ḡ(i , i ;E), is

obtained by taking average over all possible impurity site

configurations,

Ḡ(i , i ;E) = 〈Gimp(i , i ;E)〉. (15)

The Eqs. (3)–(15) should be solved self-consistently to

provide average Green’s function, Ḡ(i , i ;E), in the CPA

approach.

Now we address the question of the Hall conductivity

on the basis of the Kubo formula [17]. When an

electric field is applied to a graphene plane subject to a

perpendicular magnetic field, B = B0ez, a current in the

direction perpendicular to the electric field is observed.

The current is called the Hall current and the Hall

conductivity, σxy, is the ratio of the current to the electric

potential. Our starting for Hall conductivity formula is

from [17], σxy =
∫ +∞

−∞
dE [−∂E f (E)] σxy(E), where f (E)

is Fermi–Dirac distribution function and energy-dependent

Hall conductivity, σxy(E), is given by the Boltzmann

transport equation [18],

σxy(E)=
4B0

3π�

∑

k

{

[

vx(k)2M−1
yy (k) − vx(k)vy(k)M−1

xy (k)
]

×
[

−ℑḠ(k;E)
]3

}

, (16)

here B0 is a weak magnetic field perpendicular to the

graphene plane, � is the total volume of the system
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and vµ is a Cartesian component of the velocity operator

that can be calculated by, vµ = ∂kµE0(k). Also

E0(k) = ± t
{

3 + 2
[

cos(k · ρ1) + cos(k · ρ2)

+ cos(k · ρ3)
]

}
1
2

,

where ρ1, ρ2 and ρ3 vectors are defined by ρ1 = a2,

ρ2 = a1 + a2, ρ3 = a1. We note that the mass operators

are defined by, M−1
yy (k) = ∂kyvy(k) and M−1

xy (k) = ∂kxvy(k)
that calculated as,

M−1
yy (k) = − a2t2

4E0(k)

{

1(k) −
(

t
E0(k)

)2
[

ζ (k) + ξ(k)
]2

}

,

(17)

M−1
xy (k) = −

√
3a2t2

4E0(k)

{

3(k)−
(

t
E0(k)

)2
[

ζ 2(k) − ξ2(k)
]

}

,

(18)
where

ξ(k) = sin(k · ρ1) + sin(k · ρ2),

ζ (k) = sin(k · ρ1) − sin(k · ρ3),

1(k) = 4 cos(k · ρ1) + cos(k · ρ2) + cos(k · ρ3)

and

3(k) = cos(k · ρ2) − cos(k · ρ3).

So the energy-dependent Hall conductivity of system can

be written as,

σxy(E) = σ0
∑

k

{[(

√
3[ξ(k) − ζ (k)]2

E0(k)3

)

×
[

1(k) +

(

t
E0(k)

)2
(

ξ(k) + ζ (k)
)2

]

−
(

ξ(k)2 − ζ (k)2

E0(k)3

)

×
[

3(k) +

(

t
E0(k)

)2
(

ξ(k)2 − ζ (k)2
)

]]

[

−ℑḠ(k;E)
]3

}

,

(19)

here σ0 is a constant value. Also the average Green’s func-

tion, Ḡ(k;E), should be calculated in the CPA formalism

(Eqs. (3)–(15)).
As we mentioned, the gas molecules are adsorbed

randomly by the graphene’s atoms, so the Green’s function

should be calculated in the configurational average method.

By calculation of the average Green’s function in the CPA

based on the tight-binding model, the effects of finite

triatomic and tetratomic gas molecule adsorption on the

Hall conductivity of graphene are studied. To compare our

conclusions with the theoretical and experimental results,

we vary the hopping integral deviations and on-site energies.

Also we set the hopping integral deviations and on-site

energies for two cases of XY2 as charge acceptors and

XY3 as charge donors. Then using by these parameters

we investigate the sensitivity of the Hall conductivity of

system to finite gas molecule adsorption. First we set the on-

site energies and hopping integral deviations, ε1 = −0.15t,

ε2 = −0.12t, δ1 = −0.10t, δ2 = −0.05t, δ3 = +0.10t and

δ4 = +0.05t, when XY2 is identified as charge acceptors.

Fig. 2, b illustrates our results in this case. For small con-

centrations of gas adsorption, c = 0.010 and c = 0.020, we
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Figure 2. Show the energy-dependent Hall conductivity

of graphene, when triatomic gas molecules are adsorbed.

a) — in full range of energy, concentration of gas adsorption is

c = 0.020. The on-site energies and hopping deviations are chosen

to be ε1 = −0.15t, ε2 = −0.12t, δ1 = −0.10t, δ2 = −0.05t,
δ3 = +0.10t and δ4 = +0.05t . b) — concentrations of gas

adsorption are c = 0.010 and c = 0.020. The Hall conductivity

have a change caused by the adsorption of these molecules.
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Figure 3. The energy-dependent Hall conductivity of graphene

when tetratomic gas molecules are adsorbed. The on-site

energies and hopping deviations are chosen to be ε1 = +0.15t,
ε2 = +0.12t, δ1 = +0.10t, δ2 = +0.05t, δ3 = −0.10t and

δ4 = −0.05t . Concentrations of gas adsorption are c = 0.010 and

c = 0.020. The Hall conductivity have a change caused by the

adsorption of these molecules.
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found that the Hall conductivity is sensitive to the adsorption

of these gases. This is consistent with the reported results

for NO2 adsorption [6]. Second we use the on-site energies

and hopping integral deviations, ε1 = +0.15t, ε2 = +0.12t,
δ1 = +0.10t, δ2 = +0.05t, δ3 = −0.10t and δ4 = −0.05t,
while XY3 acts as charge donors. Concentrations of gas

adsorption are c = 0.010 and c = 0.020. Fig. 3 shows

that the Hall conductivity of graphene is sensitive to

the adsorption of these gases. This is similar to NH3

adsorption [6]. In conclusions, we found that when the

adsorbed gas molecules are identified charge acceptors or

charge donors, the Hall conductivity of the graphene have

a limit change caused by the adsorption of these molecules.

Our results are in agreement with the theoretical and

experimental reports for NO2 and NH3 adsorption.
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