Распределение по размерам и концентрациям рассеивающих рентгеновское излучение центров в отожженном *Cz*-Si

© Н.Н. Новиков, П.А. Теселько, О.В. Михалюк

Киевский национальный университет им. Тараса Шевченко, 01033 Киев, Украина E-mail: peter@univ.kiev.ua

(Поступила в Редакцию 21 июня 2007 г. В окончательной редакции 18 октября 2007 г.)

> Выполнено рентгенодифрактометрическое исследование кинетики распада твердого раствора кислорода в кремнии, выращенном по методике Чохральского (*Cz*-кремнии). Отжиг образцов осуществлялся на протяжении различных промежутков времени при температуре 900°С. Предложена методика обработки рентгенодифрактометрических данных. Получены участки кривых распределения кислородосодержащих преципитатов и дислокационных петель по размерам и концентрациям.

PACS: 61.10.Nz, 61.72.Cc, 61.72.Dd

1. Введение

Центрами рассеяния рентгеновского излучения обычно бывают локальные дефекты (кластеры собственных дефектов и примесные преципитаты) и дислокационные петли. Их деформационные поля являются причиной интенсивного диффузного рассеяния, возникающего при дифракции рентгеновских лучей на достаточно совершенных монокристаллах. Наиболее чувствительными приборами, регистрирующими рассеянное излучение, в настоящее время являются двух- и трехкристальные дифрактометры. Важно, что последние дают возможность экспериментально разделить диффузную и когерентную части отражения с тем, чтобы в последующем, используя динамическую теорию дифракции [1,2], вычислить не только дифракционные, но и непосредственно физические характеристики (размеры, концентрацию) рассеивающих излучение центров. Уже первые попытки применения этой методики для оценки размеров и концентрации включений, возникающих в монокристаллах кремния при их отжиге после имплантации ионов кремния [3] либо в процессе распада твердого раствора кислорода [1,4], указывают на высокую эффективность подобных неразрушающих исследований. Точность полученных результатов при этом оценивалась путем сравнения вычисленных и наблюдаемых электронно-микроскопическими методами размеров дефектов. Заметим, что первоначально авторы ограничивались лишь вычислением некоторых средних размеров и концентраций центров рассеяния в обработанных тем или иным способом образцах [1,3]. В более поздних работах возникла возможность не только дифференцировать дефекты типа кластеров и дислокационных петель, но и установить существование двух типов дефектов [2,5], значительно различающихся по размерам. На наш взгляд, последнее обстоятельство неудивительно, так как в процессах распада и коагуляции частиц выделений закономерно должен присутствовать спектр частиц с некоторым распределением по

размерам, которое легко обнаруживается на электронномикроскопических снимках [3,6]. Таким образом, вероятно, следует рассматривать не наличие, например, двух или трех типоразмеров рассеивающих центров, а возможность существования их распределения по размерам и концентрациям. Подобное распределение должно закономерно проявляться рентгенодифрактометрически. Поэтому целью настоящей работы было его обнаружение и количественное вычисление путем использования трехкристальной рентгеновской дифрактометрии.

2. Образцы, методика и результаты исследований

Для измерений были взяты отожженные при температуре 900° на протяжении 30, 50 и 70 h образцы Cz-кремния с рабочей поверхностью (111), использованные в работе [7]. Трехкристальный рентгеновский дифрактометр при брэгговском симметричном отражении от поверхности образцов СиКа1-излучения работал в режиме 20-сканирования. Следует отметить, что первые попытки вычисления размеров рассеивающих рентгеновское излучение образований и их распределения были выполнены Пателем [8,9] и Ларсоном [10]. Однако в этих работах использовались экспериментальные методы двухкристальной дифрактометрии и измерения интенсивности аномального прохождения рентгеновских лучей, которые не позволяют непосредственно определять долю диффузного рассеяния. Кроме того, для вычислений была использована фактически полукинематическая теория Дедерикса-Кривоглаза [11,12], существенно усовершенствованная в последующие годы [1,2]. В отличие от [7] мы стремились получить по возможности большее количество точек, особенно в области больших углов поворота образцов а. С учетом приведенных в [7] теоретических предпосылок для конкретного типа одноразмерных дефектов (преципитатов или дислокационных петель) отношение интегральных интенсивностей

диффузного и главного пиков дифрактограмм составляет

$$Q = \frac{R_D(\alpha)}{R_M} = \frac{2cm_0 \sin^2 2\theta_{\rm B} j(k_0) \alpha^2}{\mu_0 |\chi_{H_r}|^2},$$
 (1)

где *с* — концентрация рассеивающих центров; $\theta_{\rm B}$ угол Брэгга; μ_0 — коэффициент поглощения; $|\chi_{Hr}|$ — модуль действительной части Фурье-компоненты восприимчивости кристалла χ_{Hr} ; m_0 — постоянная величина, равная в нашем случае 0.169 cm⁻¹. Исходя из приведенных в [12] данных $j(k_0) = B[AR^2\alpha^2 - \ln(R\alpha) - b]$, где *R* — радиус рассеивающих излучение центров в ст, *b* — константа, равная 17.183 (в случае преципитатов) либо 16.835 (в случае дислокационных петель). Величины В и А, если рассеивающими центрами являются преципитаты, равны соответственно 2.32 · 10³⁹ R^{5.4} и $2.081 \cdot 10^{14} \, \text{cm}^{-2}$, а в случае дислокационных петель $4.1036 \cdot 10^{30} R^4$ и $4.252 \cdot 10^{13} \text{ cm}^{-2}$. Все коэффициенты в этих формулах вычислены при условии измерения угловых величин в радианах, а линейных — в сантиметрах. Те же размерности угловых и линейных величин использованы на рисунках. Таким образом, если подставить в выражение (1) входящие в него цифровые данные, при одновременном рассеянии излучения на приципитатах и дислокационных петлях получим

$$\frac{Q}{\alpha^2} = 2.95 \cdot 10^{37} c_d R_d^4 [4.252 \cdot 10^{13} R_d^2 \alpha^2 - \ln(R_d \alpha) - 16.835] + 1.98 \cdot 10^{46} R_p^{5.4} c_p \times \lfloor 2.081 \cdot 10^{14} R_p^2 \alpha^2 - \ln(R_p \alpha) - 17.183 \rfloor.$$
(2)

На этом основании в случае наличия одноразмерных дефектов одного типа нанесенные в координатах $Q/\alpha^2 - \ln \alpha$ экспериментальные данные должны укладываться на прямую, точка пересечения которой с осью абсцисс должна давать радиус, а наклон — концентрацию дефектов. Наличие двух прямых с разными углами наклона на подобных графиках (рис. 1) обычно трактуется как существование рассеяния от дислокационных петель (прямая с бо́льшим углом наклона) и преципитатов.

Мы обратили внимание на то, что оба участка кривых не являются в точности прямыми. Последнее можно было объяснить наличием некоторого распределения рассеивающих центров обоих типов по размерам и по концентрациям. В этом случае выражение (2) должно представлять собой сумму членов с различными размерами дефектов и их концентрациями, т.е.

$$\frac{Q}{\alpha^2} = 2.95 \cdot 10^{37} \sum_i c_{di} R_{di}^4 [4.252 \cdot 10^{13} R_{di}^2 \alpha^2 - \ln(R_{di}\alpha) - 16.835] + 1.98 \cdot 10^{46} \times \sum_k R_{pk}^{5.4} c_{pk} \lfloor 2.081 \cdot 10^{14} R_{pk}^2 \alpha^2 - \ln(R_{pk}\alpha) - 17.183 \rfloor.$$
(3)

Рис. 1. Зависимость Q/α^2 от логарифма угла поворота образцов, прошедших отжиг в течение 50 (1) и 70 h (2). Штриховые кривые — расчет по формуле (1) в случае рассеяния излучения только на кластерах.

Рис. 2. Гистрограмма распределения выявленных экспериментально преципитатов (группа кривых a) и дислокационных петель (группа кривых b) по радиусам. Время отжига, h: 1 - 30, 2 - 50, 3 - 70.

В [7] радиусы определялись по усредненным значениям $\ln \alpha_0$, при которых левая часть уравнения становится нулем. И в этом случае возможно использование такого приема вычислений. Однако экстраполировать на нуль следует прямую, проходящую через каждую пару экспериментальных точек в отдельности. В результате сначала получим набор экспериментальных данных, отвечающих правой, более пологой (кластерной) части кривых. Последнее связано с тем, что выражение $j(k_0)$ для дислокационных петель с размерами около 10^{-4} ст при $\ln \alpha$ около -8.5 уже становится нулевым. Группирование данных по интервалам изменения R, как обычно, дает возможность получить гистограмму распределения выявленных экспериментально преципитатов по размерам (рис. 2).

Рис. 3. Зависимость концентраций дефектов от их размеров. Группа кривых *a* — для преципитатов, группа кривых *b* — для дислокационных петель. Время отжига, h: *I* — 30, *2* — 50, *3* — 70.

Подстановка полученных значений R с учетом их относительного количества в уравнение (3) позволяет вычислить концентрации преципитатов того или иного радиуса, а также суммарную концентрацию выявленных рентгенодифракционным методом локальных дефектов. Полученное распределение концентраций преципитатов в зависимости от их размеров представлено на рис. 3 (слева).

Пользуясь уравнением (3), можно продлить кривую Q/α^2 , соответствующую рассеянию излучения на кластерах, в область малых α (штриховые линии на рис. 1) и вычесть ее из экспериментальной кривой, полученной для данной области. Остальная часть будет отвечать дислокационному рассеянию. Поэтому, проделав аналогичную описанной процедуру вычислений, можно вычислить распределение по размерам и концентрациям дислокационных петель. Эти данные представлены на рис. 2 и 3.

3. Обсуждение полученных результатов

Таким образом, представленный вариант обработки дифрактометрических данных позволил не только вычислить усредненные размеры и концентрации образованных в результате распада твердого раствора кислорода в C_z -кремнии преципитатов и дислокационных петель, но и получить их распределения по размерам и концентрациям. Следует отметить, что усредненные размеры и суммарные концентрации дефектов практически совпадают с величинами, вычисленными нами ранее [7] с помощью более простой методики. Однако полученные распределения дефектов по размерам и концентрациям дают возможность прийти и к некоторым новым интересным, на наш взгляд, выводам. Прежде всего следует отметить, что по мере уменьшения размеров концентрации кластеров резко возрастают, причем рентгенодифракционные данные не дают возможности в данном случае подойти к максимуму концентрационного распределения. Выявляемость центров рассеяния излучения резко сокращается с уменьшением их размеров и при их величине около 10^{-6} ст практически становится нулевой. Это связано с весьма резкой зависимостью интенсивности диффузного рассеяния от размеров рассеивающих центров ($R^4 - R^6$). При температурах отжига менее 1000°С средние размеры преципитатов становятся субмикронными, а низкоразмерная часть распределения, вероятно, не выявляется. Возможно, поэтому в большинстве работ по рентгеновскому исследованию преципитации кислорода в кремнии используются длительные отжиги образцов при температурах около 1100°С [1,5].

Трудно получить и низкоразмерную часть концентрационного распределения дислокаций. Здесь также сказывается зависимость интенсивности рассеяния от размеров петель. При малых размерах последних она невысока, однако выявляемость низкоразмерных дислокационных петель все же выше, чем у кластеров, так как обычно $R_d > R_p$. Поэтому на кривых зависимости концентрации петель от их радиуса четко прослеживается максимум.

Интересно отметить, что с увеличением времени отжига кривые концентрационного распределения кластеров сдвигаются в область больших размеров, что закономерно, однако ведет к несколько неожиданному выводу. А именно, при одинаковых размерах дефектов у образцов, прошедших более длительный отжиг, концентрация кластеров возрастает. Последнее может означать лишь уменьшение со временем числа малоразмерных преципитатов и соответственно сдвиг колоколообразной кривой распределения в сторону больших R.

Следует также обратить внимание на то, что наиболее вероятные размеры дислокационных петель слабо зависят от времени отжига, а их концентрация при этом не только не уменьшается, но достаточно резко возрастает. По нашему мнению, это свидетельствует о том, что образование дислокационных петель при распаде твердого раствора кислорода связано как с процессами коагуляции внедренных атомов кремния, так и с их выдавливанием напряжениями, создаваемыми в окрестности кислородосодержащих преципитатов. Последние же возрастают с увеличением размеров коагуляции.

В заключение необходимо отметить, что точность полученных данных, как обычно при построении гистограмм, резко зависит от числа экспериментальных точек. Гистограмма превращается в кривую распределения лишь при числе последних порядка 100–150. Получить же такое количество точек при разных α очень сложно в связи с относительно малой интенсивностью первичного рентгеновского пучка, что не дает возможности использовать большие углы α поворота образца. Однако даже в нашем случае ограниченного статистического набора точек (порядка 25) совпадение вычисленных по формуле (3) и экспериментальных величин Q/α^2 оказывается удовлетворительным. Это видно из рис. 1, где сплошными кривыми представлены вычисленные теоретические данные.

Список литературы

- В.В. Немошкаленко, В.Б. Молодкин, С.И. Олиховский, Е.Н. Кисловский, Т.А. Грищенко, М.Т. Когут, М.В. Ковальчук, С.И. Харатьян, Г.В. Гринь. Металлофизика 15, 11, 53 (1993).
- [2] E.N. Kislovskii, S.I. Olikhovskii, V.B. Molodkin, E.G. Len, E.V. Pervak. Phys. Stat. Sol. (b) 231, 213 (2002).
- [3] P. Zaumseil, U. Winter, F. Cembali, M. Servidori, Z. Sourek. Phys. Stat. Sol. (a) 100, 95 (1987).
- [4] В.Б. Молодкин, В.В. Немошкаленко, С.И. Олиховский, Е.Н. Кисловский, О.В. Решетник, И.П. Владимирова, В.П. Кривицкий, В.Ф. Мачулин, И.В. Прокопенко, Дж.Е. Айс, Б.К. Ларсон. Металлофизика и новейшие технологии 20, 11, 29 (1998).
- [5] Е.М. Кисловский, С.И. Оліховський, В.Б. Молодкін, Е.Г. Лень, Т.П. Владімірова. Металлофизика и новейшие технологии 22, 7, 21 (2000).
- [6] H. Bender. Phys. Stat. Sol. (a) 86, 245 (1984).
- [7] Н.Н. Новиков, П.О. Теселько, О.В. Михалюк. ФТТ 49, 208 (2007).
- [8] J.R. Patel. J. Appl. Phys. 44, 3903 (1973).
- [9] J.R. Patel. J. Appl. Cryst. 8, 186 (1975).
- [10] B.C. Larson. J. Appl. Cryst. 8, 150 (1975).
- [11] P.H. Dederichs. Phys. Rev. B 4, 1041 (1971).
- [12] М.А. Кривоглаз. Дифракция рентгеновских лучей и нейтронов в неидеальных кристаллах. Наук. думка, Киев (1983). 408 с.