Особенности формирования микро- и нанокристаллов оксидов ванадия при газофазном методе синтеза

© О.П. Виноградова, А.И. Сидоров, В.А. Климов*, Е.Б. Шадрин*, А.В. Нащекин*, С.Д. Ханин**, В.Ю. Любимов**

Научно-производственная корпорация "Государственный оптический институт им. С.И. Вавилова",

199034 Санкт-Петербург, Россия

* Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

** Российский государственный педагогический университет им. А.И. Герцена,

191186 Санкт-Петербург, Россия

E-mail: aisidorov@newmail.ru

(Поступила в Редакцию 6 ноября 2007 г.)

Разработан модифицированный метод газофазного синтеза микро- и нанокристаллов оксидов ванадия. Проанализирована морфология полученных кристаллов и влияние на нее условий синтеза. Показано, что разработанный метод позволяет получать стержневидные кристаллы прямоугольного сечения, нитевидные кристаллы, кристаллы с прямоугольной полостью, а также пластинчатые кристаллы и планарные упорядоченные текстуры из ориентированных стержневидных кристаллов. На синтезированных микрокристаллах изучен процесс взаимного обратимого превращения различных оксидов ванадия с помощью окислительных и восстановительных реакций.

PACS: 61.46.Hk, 81.10.Bk

1. Введение

Микро- и наноструктуры из полупроводниковых материалов широко исследуются в последние годы. Интерес к таким структурам определяется возможностью их использования в электронных, оптоэлектронных и механических наноустройствах, а также в качестве катализаторов и химических сенсоров. Протяженные кристаллы в виде нанопроволок, наностержней и нанотрубок в этом плане являются наиболее перспективными, так как обладают ярко выраженной анизоропией механических, электрических и оптических свойств, имеют развитую поверхность. В настоящее время на основе подобных структур уже созданы нанотранзисторы [1,2], полевые эмиттеры электронов [3], светоизлучающие диоды [4] и нанолазеры [5,6], микро- и наноактуаторы и кантилеверы [7,8], химические и биосенсоры, обладающие высокой чувствительностью [9-11]. Микро- и наноструктуры из оксидов ванадия являются весьма перспективными с точки зрения создания новых типов наноустройств. Это обстоятельство связано с тем, что из большого набора оксидов ванадия одни являются металлами, другие находятся в стабильном полупроводниковом состоянии, третьи испытывают обратимый фазовый переход полупроводник-металл (ФППМ) [12,13]. Многие оксиды ванадия обладают ярко выраженными каталитическими свойствами [14], электро-, фото- и термохромными эффектами [15,16]. Наиболее изучены оксиды, в которых ванадий проявляет целочисленную валентность [12]: V₂O₃ с ФППМ при T = 168 K, VO₂ с ФППМ при $T = 340 \,\mathrm{K}$ и V₂O₅, имеющий стабильное полупроводниковое состояние ($E_g = 2.2 \, \text{eV}$). Поликристаллические пленки и наноструктуры из оксидов ванадия используются в электронике и оптике в качестве сред для записи голограмм, электронных и оптических переключателей с быстродействием до 10-200 fs [17], оптических ограничителей [18], газовых сенсоров и электродов для литиевых батарей [19,20]. В настоящее время для синтеза наноструктур из V₂O₅ и VO₂ используются золь-гелевый [21] и газотранспортный методы [22]. Перспективным методом для синтеза наноструктур из оксидов металлов является метод термического разложения паров хлорида металла [23]. В предлагаемой работе описаны модификация данного метода и результаты ее применения для синтеза различных типов микро- и наноструктур из оксидов ванадия.

2. Метод синтеза

В качестве подложек при синтезе использовались слюда, монокристаллический кремний и кварцевое стекло. Синтез проводился при атмосферном давлении на воздухе, а также в атмосфере гелия, азота и водорода с различным парциальным давлением кислорода (50-200 Ра). Исходными реагентами при синтезе являлись хлориды и оксихлориды ванадия, которые получались следующим образом. Эквимолярная смесь порошков пентаоксида ванадия (V2O5) и хлорида натрия (NaCl) нагревалась в керамическом тигле до 700°С. Взаимодействие расплава V₂O₅ с твердофазными частицами NaCl сопровождается образованием ванадатов натрия, а также газообразных хлоридов и оксихлоридов ванадия. Термическое разложение хлоридов и оксихлоридов ванадия в газовой фазе и при осаждении на подложку, нагретую до $t = 500 - 550^{\circ}$ С, с последующим окислением ванадия кислородом приводит к формированию стержневидных

микро- и нанокристаллов оксидов ванадия. Сопутствующим процессом является осаждение на подложку паров ванадатов натрия и формирование из них пластинчатых микрокристаллов. Скорость формирования кристаллов оксидов ванадия зависит от температуры расплава V₂O₅, температуры подложки и, как показано далее, от наличия на подложке предварительно нанесенных тонких пленок, облегчающих зародышеобразование кристаллов и ускоряющих их рост. Продолжительность синтеза составляет 30-40 min. Данный метод позволяет значительно увеличить производительность по сравнению с методом синтеза кристаллов из паров оксидов ванадия. Это подтверждает контрольный эксперимент, в котором микрокристаллы оксида ванадия формировались из паров V₂O₅. Эксперимент показал, что при прочих равных условиях скорость роста кристаллов оксидов ванадия в случае хлоридного метода синтеза возрастает в 50-100 раз.

3. Влияние условий синтеза на морфологические особенности кристаллов

При проведении синтеза на воздухе, а также при парциальном давлении кислорода более 100 Ра на подложке формируются стержневидные микро- и нанокристаллы желто-оранжевого цвета, характерного для V2O5. Толщина кристаллов лежит в пределах 50 nm-30 µm, а длина может достигать 5 mm. При синтезе в гелии, азоте и водороде при парциальном давлении кислорода 50-60 Ра формируются кристаллы черного цвета, также преимущественно стержневидные. Кристаллы имеют в основном прямоугольное сечение, но в ряде случаев оно представляет собой многоугольник с числом граней более четырех (рис. 1, a, b). Толщина таких кристаллов находится в пределах $50 \,\mathrm{nm} - 20 \,\mu\mathrm{m}$, а длина — до 200 µm. В случае высокой скорости роста кристаллов их поверхность становится нерегулярной, сильно развитой, и они вырастают нитевидной формы с изгибами (рис. 1, *c*).

Рост нанокристаллов в описанном методе синтеза протекает, по нашему мнению, за счет двух процессов: часть материала осаждается из газовой фазы прямо на поверхность растущего кристалла, а бо́льшая часть попадает на нее за счет диффузии ванадия и его оксидов по поверхности подложки. Рост нитевидных и стержневидных кристаллов VO₂ происходит вдоль оси [100], которой соответствует максимальная скорость роста [24]. Грани микрокристаллов формируются в основном плоскостями (011) и (011*). Преимущественный рост стержневидных кристаллов V₂O₅ происходит вдоль оси [001] [25].

Ряд оксидов ванадия с высокой степенью окисления имеет вид [12]: $V_2O_5(S) - V_3O_7(S) - V_4O_9(S) - V_6O_{13}(150 \text{ K}) - VO_2(340 \text{ K}) - V_8O_{15}(70 \text{ K})$. В скобках указаны состояние оксида без ФППМ (*S* — полупро-

Рис. 1. Морфология стержневидных кристаллов оксидов ванадия, выращенных из газовой фазы (a, b), и нитевидных кристаллов оксидов ванадия, синтезированных при высокой скорости роста (c). На вставке — нитевидные кристаллы.

водник) либо температура ФППМ для оксидов, обладающих обратимым фазовым переходом. Для выяснения возможности модификации состава полученных в работе нанокристаллов была проведена следующая процедура. Кристаллы, синтезированные при высокой концентрации кислорода, подвергались циклическому отжигу в атмосфере водорода (300°C, 2 h), а после трех таких циклов — двухчасовому отжигу на воздухе при 350°С. В процессе восстановления в атмосфере водорода цвет кристаллов изменялся от оранжевого до черного. При последующем окислении в кислороде кристаллы приобретали желто-коричневый цвет. В промежутках между циклами отжига измерялась зависимость сопротивления

Рис. 2. Зависимость сопротивления стержневидных кристаллов оксидов ванадия от температуры в продольном (*a*) и поперечном (*b*) направлениях. *1* — сразу после синтеза на воздухе, *2* — после восстановления в H₂ при $t = 300^{\circ}$ C (2 h), *3* — после восстановления в H₂ при $t = 300^{\circ}$ C (4 h), *4* — после восстановления в H₂ при $t = 300^{\circ}$ C (6 h), *5* — после окисления на воздухе при $t = 350^{\circ}$ C (2 h).

микрокристаллов от температуры. Измерение сопротивления проводилось на кристаллах толщиной $5-10\,\mu$ m и длиной $2-3\,$ nm вдоль их длинной оси с помощью вольфрамовых микроэлектродов.

На рис. 2, *а* показаны температурные зависимости сопротивления кристалла на разных стадиях восстановительного и окислительного процессов. Из рисунка видно, что исходные кристаллы имеют температурную зависимость сопротивления, характерную для полупроводников (кривая I). Два цикла восстановления в водороде приводят к уменьшению сопротивления и возникновению "металлической" температурной зависимости сопротивления (кривые 2 и 3 соответственно). После третьего цикла восстановления на этой зависимости возникает область скачкообразного изменения сопротивления в температурном интервале $60-70^{\circ}$ С с петлей гистерезиса (кривая 4), что характерно для ФППМ в VO₂.

При последующем окислении кристаллов на воздухе температурная зависимость их сопротивления снова становится чисто "полупроводниковой" (кривая 5).

На рис. 2, b показана температурная зависимость сопротивления микрокристалла, синтезированного в атмосфере гелия при парциальном давлении кислорода 50 Ра. Измерение сопротивления проводилось в поперечном направлении (см. вставку к рис. 2, b). В температурном интервале 60-70°С сопротивление микрокристалла скачкообразно меняется на три порядка, что вместе с характерной петлей термического гистерезиса указывает на наличие ФППМ. Данное обстоятельство служит подтверждением того, что при этих условиях синтезированы нанокристаллы именно диоксида ванадия. Аналогичные температурные зависимости проводимости получены и для кристаллов, синтезированных в атмосфере азота с добавкой кислорода (50 Ра). Кристаллы, выращенные в атмосфере чистого водорода, а также с примесью кислорода (до 50 Ра), имеют характерный "металлический" ход температурной зависимости сопротивления.

Исходя из полученных результатов, можно сделать вывод, что при повышенном парциальном давлении кислорода (более 100 Ра) синтез проходит с формированием кристаллов V2O5. При последующем восстановлении кристаллов в водороде происходят понижение валентности ванадия и последовательная трансформация состава кристаллов в V_3O_7 , V_4O_9 , V_6O_{13} и VO_2 , что ясно видно из изменения окраски кристаллов и появления характерной петли гистерезиса на температурной зависимости сопротивления. Существенно отметить, что превращение нанокристаллов V2O5 в нанокристаллы VO2 происходит без их разрушения, несмотря на величину объемных изменений, сопровождающих это превращение, которая составляет более 25%. Последующее окисление позволяет провести обратную процедуру также без разрушения микрокристаллов. Это свидетельствует в пользу предположения о значительной релаксации в процессе восстановления водородом механических напряжений, связанных со скачком плотности при переходе от одного члена ряда Магнели к другому. При проведении синтеза в инертном газе с низким парциальным давлением кислорода (50 Pa) сразу происходит формирование кристаллов непосредственно VO₂, что подтверждается наличием особенностей, характерных для ФППМ. Судя по температурному положению петли гистерезиса, представленной на рис. 2, b, в процессе синтеза не происходит заметного вхождения в решетку диоксида ванадия примеси ванадата натрия, который также испаряется в процессе синтеза и попадает в газовую фазу при использовании предлагаемого метода. Что касается кристаллов, выращенных в атмосфере водорода, то они, вероятно, состоят из оксидов ванадия с еще более низкой степенью окисления: от V₈O₁₅ до V2O3. Об этом свидетельствует металлический ход температурной зависимости их сопротивления в диапазоне температур 20-80°С.

Сравнение формы и ширины петель гистерезиса стержневидных микрокристаллов VO₂, приведенных на рис. 2, а и b, позволяет извлечь дополнительную информацию о морфологии и стехиометричности этих кристаллов, а также о процессе ФППМ в них. Обращает на себя внимание, что протяженность нагревной ветви петли гистерезиса в случае измерений, проводимых вдоль продольной длины стержня, составляет 20°С. Это в 2 раза больше протяженности нагревной ветви при измерениях в поперечном направлении. В случае продольных измерений петля гистерезиса обладает асимметрией. Сравнение абсолютных величин сопротивлений полупроводниковых фаз кристаллов до ФППМ при комнатной температуре (рис. 2, a, кривая 4 и рис. 2, b) указывает на их незначительное отличие друг от друга, несмотря на то что в первом случае измерение проводилось в продольном направлении, а во втором в поперечном. Отсюда следует, что на форму петли гистерезиса и ее температурную протяженность существенное влияние оказывают эффекты, связанные с условиями синтеза и последующей обработки кристаллов. В частности, восстановление в водороде стержневидного кристалла V₂O₅ может приводить к неравномерности его состава и отклонения от стехиометрии в поперечном сечении от периферии к центру. В предельном случае может возникать ситуация, когда стержневидный кристалл имеет оболочку из VO2 с ФППМ и сердцевину из иного оксида ванадия (например, из V₆O₁₃, находящегося в рассматриваемом диапазоне температур в металлической фазе) либо из VO₂ с нарушенной по кислороду стехиометрией и пониженной благодаря этому температурой фазового перехода в металлическое состояние. Подобные эффекты наблюдаются, в частности, при окислении поликристаллических пленок VO₂ [26]. Это может служить причиной понижения общего сопротивления кристалла при комнатной температуре. Наличие в стержневидном кристалле не одной, а нескольких фаз ряда Магнели, не создавая механических напряжений при их синтезе, может приводить к возникновению дополнительных механических напряжений при фазовом переходе полупроводниковой фазы в металлическую и обратно. Это вызывает искажение формы петли гистерезиса, ее низкотемпературный сдвиг и увеличение протяженности ее ветвей. Кроме того, кристалл в продольном направлении может состоять из доменов, различающихся по направлению моноклинного искажения при ФППМ [27], что также приводит к увеличению протяженности ветвей петли гистерезиса. Изучение влияния каждого из факторов, перечисленных выше, на формирование петли гистерезиса является важной задачей в прикладном плане, так как открывает перспективу создания нано- и микрокристаллов оксидов ванадия с заданными параметрами ФППМ.

Материал подложки (слюда, монокристаллический кремний, кварцевое стекло) не оказывает заметного влиряния ни на скорость роста микрокристаллов оксидов ванадия, ни на их форму. Оказалось, однако, что наличие

Рис. 3. Нитевидные кристаллы V_2O_5 , выращенные на слюде с тонкой пленкой V_2O_5 .

на подложке центров зародышеобразования приводит к появлению новых морфологических типов кристаллов, а также существенно влияет на их концентрацию. При выращивании нанокристаллов V_2O_5 готовые центры зародышеобразования в наших экспериментах обеспечивались предварительным нанесением на подложку тонкой (менее $0.5\,\mu$ m) пленки V_2O_5 . Оказалось, что на тех участках подложки, на которые предварительно наносился слой V_2O_5 , концентрация синтезированных кристаллов в десятки раз выше, чем на чистых участках подложки.

На рис. З показаны нитевидные микрокристаллы V_2O_5 , выращенные на тонком слое V_2O_5 , нанесенном на подложку из слюды. Из рисунка видно, что в этом случае поверхность плотно заполняется нитевидными микрокристаллами V2O5 толщиной 0.3-1 µm и длиной 100-200 µm. В связи с высокой скоростью роста эти нитевидные микрокристаллы обладают неровной поверхностью (рис. 1, с) и часто имеют изгибы. На наш взгляд, большая скорость роста кристаллов в этом случае объясняется не только отсутствием барьера зародышеобразования, но и наличием процесса коалесценции, который будет приводить к быстрому растворению мельчайших зерен поликристаллической пленки и росту за их счет стержнеобразных и нитевидных кристаллов. При этом материал растворяющихся зерен будет достигать поверхности нитевидного микрокристалла как за счет диффузии по поверхности пленки, так и за счет перехода ванадия с поверхности пленки в газовую фазу с последующей конденсацией на гранях растущих кристаллов.

В том случае, если слой V_2O_5 покрывает микроскопичекий участок подложки, на нем формируются кристаллы оксидов ванадия в виде "куста" (рис. 4). Аналогичные структуры возникают на подложках с предварительно нанесенными тонкими планарными микрокристаллами ванадатов натрия или калия. Отсюда следует, что предварительная обработка поверхности подложки пентаоксидом ванадия или ванадатами щелочных металлов

Рис. 4. Стержневидные кристаллы V_2O_5 , выращенные на планарных микрокристаллах V_2O_5 и ванадата натрия на подложке из слюды.

Рис. 5. Планарные текстуры из стержневидных кристаллов V_2O_5 на подложке из слюды, предварительно обработанной водным гелем V_2O_5 .

приводит к образованию центров зародышеобразования, ускоряющих формирование и рост кристаллов.

При предварительной обработке подложки из слюды водным раствором V2O5 на ней могут быть сформированы упорядоченные планарные текстуры из стержневидных кристаллов V2O5 прямоугольного сечения (рис. 5). Толщина кристаллов в этом случае составляет 1-5 µm, длина — до 200 µm. Угол между двумя основными направлениями ориентации кристаллов равен $\sim 60^\circ$, а период составляет $1-5\,\mu m$. Образование текстур может быть вызывано следующими причинами. Водные гели V2O5 могут образовывать нематическую жидкокристаллическую мезафазу, в которой комплексы $(V_2O_5-OH)_n$ образуют ленты длиной $100-200\,\mu m$ и шириной до 10 µm [27,28]. При высыхании на кристаллической подложке (слюда) такие ленты могут располагаться упорядоченно и в процессе проведения дальнейшего синтеза будут служить темплатами для образования планарно-ориентированных стержневидных кристаллов V₂O₅.

В методе синтеза, использованном в наших экспериментах, на подложке кроме оксидов ванадия фор-

мируются планарные микрокристаллы ванадата натрия. Выше было показано, что такие кристаллы также служат центрами зародышеобразования кристаллов оксидов ванадия. Эксперименты показали, что микрокристаллы ванадата натрия и калия оказывают существенное влияние и на морфологию синтезируемых кристаллов оксидов ванадия. В зависимости от скорости поступления "строительного" материала и температуры подложки на кристаллах ванадата натрия могут вырастать либо группы кристаллов в форме "кустов", либо отдельные кристаллы, форма которых определяется формой послужившего зародышем кристалла ванадата натрия. На рис. 6, *а* показан участок подложки с кристаллами вана-

Рис. 6. Участок подложки с планарными микрокристаллами ванадата натрия и полым стержневидным кристаллом VO₂ (a) и полые стержневидные кристаллы VO₂, синтезированные на микрокристаллах ванадата натрия (b, c).

Рис. 7. Пластинчатый микрокристалл VO₂.

дата натрия, имеющими форму плоских многогранников, и вертикальным стержневидным кристаллом VO_2 , который сформировался на пластине ванадата натрия. Поперечное сечение кристалла имеет сложную форму, которая повторяет форму кристалла-затравки. Кроме того, кристалл VO_2 имеет внуреннюю продольную полость, наличие которой указывает на то, что зарождение и рост кристалла в данном случае происходят в основном за счет атомов ванадия, диффундирующих по поверхности подложки к боковым поверхностям кристалла-затравки. Подобный механизм роста имеет место, например, при формировании полых стержневидных кристаллов ZnO [29,30] и InN [31].

В наших экспериментах были синтезированы полые стержневидные кристаллы V_2O_5 и VO_2 . Длина таких кристаллов составляла $100-200\,\mu$ m, толщина — $10-30\,\mu$ m. Толщина стенок кристалла была равна $1-3\,\mu$ m. Для кристаллов правильной прямоугольной формы (рис. 6, b) соотношение сторон прямоугольника варьировалось от 1:1 до 1:3. В кристаллах, имеющих сечение правильного многоугольника, форма сечения внутренней полости, как правило, отличалась от формы внешнего поперечного сечения кристалла (рис. 6, c).

На рис. 7 представлено изображение микрокристалла VO₂, имеющего форму тонкой пластины. Кристаллы данной формы были обнаружены нами только для случая синтеза VO₂ в атмосфере инертного газа с малой добавкой кислорода. Такие кристаллы имеют длину до $500\,\mu m$, ширину $10-30\,\mu\text{m}$ и толщину $50-200\,\text{nm}$. При толщине менее 100 nm они полупрозрачны в видимой области спектра. Возможной причиной образования пластинчатых кристаллов, на наш взгляд, является относительно низкая температура синтеза кристаллов диоксида ванадия. Как говорилось выше, температура синтеза во всех случаях была 500-550°С. Однако, согласно классическим представлениям [32], доля плоскостей в равновесной форме кристаллов уменьшается с ростом отношения температуры синтеза T_s к температуре плавления T_m кристалла. Для V₂O₅ и VO₂ это отношение (T_s/T_m) равно 0.87 и 0.43 соответственно.

4. Заключение

В работе продемонстрирована эффективность модифицированного газофазного метода синтеза нано- и микрокристаллов окислов ванадия из хлоридов и оксихлоридов ванадия. Показана принципиальная возможность создания стержнеобразных нано- и микрокристаллов оксидов ванадия с различной валентностью. Эта возможность реализована подбором условий синтеза, а также дополнительной обработкой микрокристаллов в окислительной или восстановительной атмосферах. Установлено, что такие катализаторы зародышеобразования кристаллов, как пентаоксид ванадия и ванадаты щелочных металлов, позволяют расширить спектр формообразования кристаллов. В частности показано, что с их использованием могут быть синтезированы прямоугольные полые микрокристаллы VO₂, пластинчатые микрокристаллы, а также упорядоченные текстуры из микростержней оксидов ванадия.

Полученные результаты представляют практический интерес для создания нано- и микрокристаллических компонентов с обратимым фазовым переходом полупроводник-металл, которые могут быть использованы в устройствах микро- и оптоэлектроники, а также для синтеза структурированных пленок и пленок с развитой поверхностью из оксидов ванадия, которые находят применение в катализе, при создании химических сенсоров и электродов для литиевых батарей.

Список литературы

- X.F. Duan, C.M. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman. Nature **425**, 247 (2003).
- [2] B. Sum, H. Sirrighaus. Nano Lett. 5, 2408 (2005).
- [3] J. Bao, M.A. Zimmler, F. Capasso, X. Wang, Z.F. Ren. Nano Lett. 6, 1719 (2006).
- [4] J. Bao, M.A. Zimmler, F. Capasso, X. Wang, Z.F. Ren. Nano Lett. 6, 1719 (2006).
- [5] H.Y.Yang, S.P. Lan, S.F. Yu, M. Tanemura, T. Okita, H. Hatano, K.S. Teng, S.P. Wilks. Appl. Phys. Lett. 89, 081 197 (2006).
- [6] A.B. Djurisic, W.M. Kwok, Y.H. Leung, W.K. Chan, D.L. Philips, M.S. Lin, S. Gwo. Nanotechnol. 17, 244 (2006).
- [7] A. Sampathkumar, T.W. Murray, K.L. Ekinci. Appl. Phys. Lett. 88, 223 104 (2006).
- [8] K.L. Ekinci. Small. 1, 786 (2005).
- [9] A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y. Ding, Z.L. Wang. Appl. Phys. Lett. 88, 203 101 (2006).
- [10] Y. Chen, C.L. Zhu, G. Xiao. Nanotechnol. 17, 4537 (2006).
- [11] A. Dorfman, N. Kumar, J. Hahm. Langmuir 22, 4890 (2006).
- [12] W. Bruckner, H. Opperman, W. Reichelt, J.I. Terukow, F.A. Tschudnowski, E. Wolf. Vanadiumoxide. Akademie-Verlag, Berlin (1983). 252 p.
- [13] А.А. Бугаев, Б.П. Захарченя, Ф.А. Чудновский. Фазовый переход полупроводник-металл и его применение. Наука, Л. (1979). 183 с.
- [14] L.C.W. Backer, D.C. Glick. Cem. Rev. 98, 3 (1998).

- [15] P.J. Hagrman, R.C.O. Finn, J. Zubeita. J. Solid State Sci. 3, 745 (2001).
- [16] F. Guinneton, J.-C. Valmalette, J.-R. Gavarri. Opt. Mater. 15, 111 (2000).
- [17] M. Rini, A. Gavalleri, R.W. Schoenlein, R. Lopez, L.X. Feldman, R.F. Haglung, jr., L.A. Boatner, T.E. Haynes. Opt. Lett. 30, 558 (2005).
- [18] О.Б. Данилов, О.П. Михеева, А.И. Сидоров, В.А. Климов, С.А. Тульский, Е.Б. Шадрин, И.Л. Ячнев. ЖТФ 73, 1, 79 (2003).
- [19] C.H. Leroy, M.-F. Achard, O. Babet, N. Steunou, P. Masse, J. Livage, L. Binet, N. Brun, R. Backov. Chem. Mater. 19, 3988 (2007).
- [20] C.K. Chan, H. Peng, R.D. Tweste, K. Jarausch, X.F. Zhang, Y. Cui. Nano Lett. 7, 490 (2007).
- [21] S.J. Park, J.S. Ha, Y.J. Chang, G.T. Kim. Chem. Phys. Lett. 390, 199 (2004).
- [22] Z.R. Dai, Z.W. Pan, Z.L. Wang. Agv. Func. Mater. 19, 9 (2003).
- [23] H.-X. Zhang, J.-P. Ge, J. Wang. Nanotechnol. 17, 5253 (2006).
- [24] B.S. Guiton, Q. Gu, A.L. Pieto, M.S. Gudiksen, H. Park. J. Am. Chem. Soc. 127, 498 (2005).
- [25] R. Ostermann, D. Li, Y. Yin, J.T. McCann, Y. Xia. Nano Lett. 6, 1297 (2006).
- [26] Р.А. Алиев, В.Н. Андреев, В.М. Капралова, В.А. Климов, А.И. Соболев, Е.Б. Шадрин. ФТТ 48, 874 (2006).
- [27] J. Livage. Coordin. Chem. Rev. 190-192, 391 (1999).
- [28] J. Wu, Q. Gu, B.S. Guiton, N.P. de Leon, L. Ouyang, H. Park. Nano Lett. 6, 2313 (2006).
- [29] J.S. Jeong, J.Y. Lee, J.H. Cho, H.J. Suh, C.J. Lee. Chem. Mater. 17, 2752 (2005).
- [30] S.L. Mensah, V.K. Kayastha, I.N. Ivanov, D.B. Geohegan, Y.K. Yap. Appl. Phys. Lett. 90, 113 108 (2007).
- [31] H.Y. Xu, Z. Lim, X.T. Zang, S.K. Hark. Appl. Phys. Lett. 90, 113 105 (2007).
- [32] Дж. Кристиан. Теория превращений в металлах и сплавах. Мир, М. (1978). 806 с.