Влияние олова на процессы формирования нанокристаллов кремния в тонких пленках аморфной матрицы SiO_x

© В.В. Войтович^{+¶}, Р.Н. Руденко^{*}, А.Г. Колосюк⁺, Н.Н. Красько⁺, В.О. Юхимчук[‡], М.В. Войтович[‡], С.С. Пономарев[‡], А.Н. Крайчинский⁺, В.Ю. Поварчук⁺, В.А. Макара^{*}

⁺ Институт физики Национальной академии наук Украины,
03650 Киев, Украина
* Киевский национальный университет им. Тараса Шевченко (физический факультет),
03680 Киев. Украина

[‡] Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины,

03650 Киев, Украина

(Получена 16 октября 2012 г. Принята к печати 20 февраля 2013 г.)

Исследовано влияние примеси олова на процессы формирования кристаллов кремния наноразмеров в тонких пленках аморфной оксидно-кремниевой матрицы (a-SiO_x, $x \approx 1.15$). Установлено, что примесь олова ускоряет процесс кристаллизации аморфного кремния. После температурной обработки в атмосфере аргона кристаллиты кремния в оксидно-кремниевой матрице с оловом (a-SiO_xSn) имеют меньшие размеры (6-9 нм) по сравнению с крсталлитами в a-SiO_x (≥ 10 нм). Показано, что в a-SiO_xSn объемная доля кристаллической фазы после отжига при температурах 800–1100°C возрастает от 20 до 80%. В то же время в образцах без олова кристаллической фазы составляет 45 и 65% соответственно.

1. Введение

Оксидно-кремниевые пленки (SiO_x) с имеющимися в них нанокристаллами кремния (nc-Si) способны излучать интенсивный свет в видимой и ближней инфракрасной (ИК) областях. Кроме этого, тонкопленочные кремниевые материалы со смешанной (аморфнокристаллической) структурой характеризуются большей стабильностью параметров по сравнению с аморфными структурами [1]. Контролируя соотношение аморфной и кристаллической фаз таких пленок (концентрацию, размеры нанокристаллов кремния), можно управлять их оптическими и электрическими свойствами. Ранее [2] нами было показано, что примесь олова (Sn) в аморфном Si (*a*-Si) значительно снижает температуру его кристаллизации и способствует уменьшению размеров нанокристаллов кремния.

Цель данной работы — исследовать влияние олова на процессы формирования нанокристаллического кремния в тонких пленках оксида кремния.

2. Методика экспериментов

Нами впервые были получены оксидно-кремниевые пленки с оловом (a-SiO_xSn, $x \approx 1.15$) и без олова (a-SiO_x, $x \approx 1.15$) методом термического испарения смеси порошков SiO₂ и монокристаллических Si, Sn на кварцевые и кремниевые подложки. Для первой (контрольной) группы образцов были использованы смесь порошков SiO₂ и монокристаллического Si в соотношении по объему 3 : 1. Вторая группа образцов была получена путем добавления к контрольной смеси SiO₂

и Si порошка Sn (1/100 часть по отношению к монокристаллическому Si). Процесс испарения смеси порошков и осаждения на подложки осуществлялся в вакууме (давление ~ 10^{-4} Па) резистивным методом из танталовой лодочки. Температура подложки при осаждении составляла 150°С. Толщина сформированных пленок, измеренная микроинтерферометром МИИ-4 непосредственно после их осаждения на подложку, составила ~ 500 нм.

Для модификации структурных свойств напыленные пленки подвергались термической обработке в атмосфере аргона в интервале температур 400–1100°С с шагом 100°С. Время термообработки при каждой температуре составляло 30 мин.

Информация о составе (значение индекса стехиометрии x) и структурных особенностях оксидной фазы SiO_x была получена с помощью метода инфракрасной (ИК) спектроскопии. Для этого регистрировались ИК спектры пропускания пленок a-SiO_x и a-SiO_xSn с помощью фурье-спектрометра Spectrum BXII Perkin Elmer в области антисимметричных валентных колебаний Si–O–Si. С использованием известной зависимости между частотой основной полосы колебаний Si–O–Si и значением индекса стехиометрии x [3] для свеженапыленных пленок получена величина $x \approx 1.15$.

Структура осажденной кремниевой пленки после каждого шага отжига исследовалась методом анализа спектров комбинационного рассеяния света (КРС), которые регистрировались при комнатной температуре на спектрометре T-64 000 фирмы Jobin Yvon. Для возбуждения спектров использовалось излучение Ar^+ -лазера с длиной волны 488 нм. Все измерения проводились при комнатной температуре.

[¶] E-mail: vvoitovych@yahoo.com

3. Экспериментальные результаты и их обсуждение

На рис. 1 приведены спектры комбинационного рассеяния света для исходных и термообработанных в диапазоне температур $T_a = 400-1100^{\circ}$ С образцов a-SiO_x (a) и a-SiO_x Sn (b). Из экспериментальных кри-

Рис. 1. Спектры КРС образцов a-SiO_x (a) и a-SiO_xSn (b), исходных (1) и термообработанных при 400 (2), 500 (3), 600 (4), 700 (5), 800 (6), 900 (7), 1000 (8), 1100°C (9). На вставках показаны изменения положения и формы полос, характерных для нанокристаллических кремния.

вых видно, что в исходных и отожженных до температуры $T_a = 900^{\circ}$ С образцах a-SiO_x проявляются линии, характерные для аморфного кремния [2,4]: ТА (~ 145 см⁻¹), LA (~ 305 см⁻¹), LO (~ 365 см⁻¹), ТО (~ 475 см⁻¹). Полоса, характерная для кристаллической фазы (~ 520.5 см⁻¹), появляется лишь в случаях отжига при температурах 1000 и 1100°С [5–7], причем положение максимума полосы от кристаллической фазы с ростом температуры не меняется.

В то же время в образцах *a*-SiO_xSn кристаллическая фаза появляется уже при температуре 800°С. Таким образом, примесь олова существенно расширяет температурный диапазон для формирования и роста нанокристаллического кремния в оксидной матрице. Кроме этого, в *a*-SiO_xSn, отожженном при температуре 800°С, положение максимума линии, характерной для нанокристаллов Si, составляет ~ 515 см⁻¹. С увеличением температуры отжига от 800 до 1100°С наблюдается высокочастотный сдвиг данной линии от 515 до 519 см⁻¹ (рис. 1, *b*, вставка), что свидетельствует об увеличении размеров нанокристаллов.

Отметим, что для исходной пленки без Sn и структур, отожженных в диапазоне температур от 150 до 600°C, в спектрах КРС проявляются бесструктурные широкие полосы в области от 10 до 600 см⁻¹. Как видно из рис. 1, а, данные спектры (кривые 1-4) существенно отличаются от спектра КРС аморфного кремния (рис. 1, а, кривые 5-7). Во-первых, в спектрах не проявляется характерная для аморфного кремния полоса ТО с максимумом в области 470-480 см⁻¹, во-вторых, в спектрах (кривые 1-4) имеются полосы с максимумами в области $570-580 \,\mathrm{cm}^{-1}$. Отметим, что вышеупомянутые кривые не соответствуют также и спектрам SiO_x с $1 \le x \le 2$ (см., например, работы [8,9]). Подобные спектры КРС были получены нами также при формировании пленок распылением SiO на различные типы подложек с последующими отжигами в диапазоне температур от 150 до 700°C (спектры не приводятся). Для пленок, сформированных при высоких температурах отжига (800-1000°С), регистрировался спектр КРС, характерный для аморфного кремния.

Подобные спектральные особенности в области от 10 до $600 \,\mathrm{cm}^{-1}$ проявлялись в спектрах КРС от пленок SiO_x, которые изучались другими авторами [10,11]. В частности, в работе [10] исследовали пленки, сформированные магнетронным распылением мишеней Si и SiO₂, изменяя их массовую долю и варьируя температуру отжига. Наличие подобных спектральных особенностей объясняли проявлением в спектрах плотности фононных состояний, которая теоретически рассчитывалась для 33 и 45 атомных кремниевых кластеров в работе [12].

В работе [11] методом спектроскопии КРС изучались пленки SiO_x, полученные термическим распылением SiO в разреженной атмосфере кислорода. Спектральные особенности в области от 10 до 600 см⁻¹ объясняются формированием сетки колец SiO_x из 8 и 6 атомов. Мы

Рис. 2. Разложение спектра КРС образца a-SiO_xSn, отожкенного при 800°С, на составляющие компоненты, характерные для аморфного и нанокристаллического кремния: I -экспериментальный спектр; 2 -теоретическая кривая I(v); 3 -характерные для аморфного кремния линии ТА (~145 см⁻¹), LA (~305 см⁻¹), LO (~365 см⁻¹), TO (~475 см⁻¹); 4 -полоса, соответствующая нанокристаллическому кремнию (~ 515 см⁻¹).

считаем, что более вероятным объяснением полосы в области $570-580 \text{ см}^{-1}$ является формирование именно сетки тетраэдров $\text{Si}-(\text{O}_2\text{Si}_2)$, $\text{Si}-(\text{O}_3\text{Si})$ и $\text{Si}-(\text{O}_4)$, которые при температуре 700°C разрушаются, и при этом атомы кремния идут на формирование аморфных кластеров.

Для более детального анализа структуры исследуемых пленок (определение изменения соотношения аморфной и кристаллической фаз кремния с температурой отжига, размеров и концентрации нанокристаллического кремния) экспериментальные спектры КРС описывались теоретической зависимостью от частоты суммарного вклада $I(v) = I_A(v) + I_C(v)$ аморфной, $I_A(v)$, и кристаллической, $I_C(v)$, фаз кремния (для примера см. рис. 2),

$$I_A(\nu) = B_A \exp\left[-\frac{8(\nu - \nu_A)^2 \ln 2}{2\Gamma_A^2}\right],\tag{1}$$

$$I_C(\nu) = B_C \int_0^1 \frac{\exp(-q^2 L^2/4) 4\pi q^2 dq}{[\nu - \nu(q)]^2 + (\Gamma_C/2)^2},$$
 (2)

где B_A , B_C — константы, $v_A = 480 \text{ см}^{-1}$, $v_C = 520.5 \text{ см}^{-1}$ — частоты полос оптических фононов аморфного и кристаллического Si, $\Gamma_A = 70 \text{ см}^{-1}$, $\Gamma_C = 3 \text{ см}^{-1}$ их полуширины (ширины на полувысоте) при температуре T = 300 K; q — длина волнового вектора фононов, выраженная в единицах $2\pi/a_0$, где $a_0 = 0.543 \text{ нм}$ — постоянная решетки *c*-Si; v(q) закон дисперсии оптических фононов, который хорошо аппроксимируется в случае кремния зависимостью $v(q) = v_C (1-0.18q^2) [13-19].$

Относительная объемная доля nc-Si в аморфной кремниевой фракции находилась из следующего соотношения [18,20-22]:

1.0

0.8

<u>ي</u>ت 0.6

а

$$f_{\rm nc} = \frac{\int I_C(\nu) d\nu / \int I_A(\nu) d\nu}{\sigma_0 + \int I_C(\nu) d\nu / \int I_A(\nu) d\nu},\tag{3}$$

где $\sigma_0 = \sigma_C/\sigma_A$ — отношение интегральных сечений комбинационного рассеяния в кристаллической, σ_C , и аморфной, σ_A , фазах кремния, выраженное формулой $\sigma_0 = 0.1 + \exp(-d/d_0)$, где d — средний диаметр нано-кристаллов, $d_0 = 25$ нм [17,19].

Относительная объемная доля кремниевых нанокристаллов и их размеры для исследуемых структур, что показано на рис. 3, определялись с помощью формулы (3) в результате описания экспериментальных спектров (рис. 1) формулами (1) и (2). Видно, что после отжига при высоких температурах (1000 и 1100°C) объемная часть кристаллической фазы в пленках a-SiO_xSn больше, чем в образцах без олова на 20–30% (рис. 3, a). При этом объемная доля кристаллической фазы в a-SiO_xSn уже после термообработки при 800°C составляет ~ 25%, а после отжига при 900°C больше, чем в a-SiO_x после термообработки при температуре 1000°C. При этом во всем диапазоне температурной обработ-

Рис. 3. Изменения относительной объемной доли кристаллической фазы кремния $f_{nc}(a)$ и размеров нанокристаллов d(b) в пленках a-SiO_x и a-SiO_xSn в зависимости от температуры отжига.

ки (800–1100°С) размеры кристаллитов кремния в *a*-SiO_xSn пленках растут от 6 до 9 нм соответственно, в отличие от структур *a*-SiO_x, где размеры кристаллитов после термообработки при 1000 и 1100°С не меняются и составляют \geq 10 нм (рис. 3, *b*).

4. Заключение

Установлено, что в образцах a-SiO_xSn кристаллизация аморфных включений кремния происходит при температуре ($T_a = 800^{\circ}$ C), которая существенно ниже, чем в образцах без олова ($T_a = 1000^{\circ}$ С), т.е. наличие в матрице SiO_x незначительной доли атомов олова расширяет температурный диапазон зарождения и роста нанокристаллического кремния. Теоретическое моделирование и анализ спектров комбинационного рассеяния света исследуемых пленок позволили оценить средний размер и относительную объемную долю кристаллической фазы кремния. Установлено, что в образцах с оловом нанокристаллы Si образуются меньших размеров по сравнению с пленками без олова. Объемная часть кристаллической фазы в пленках a-SiO_xSn пленках больше, чем в образцах без олова. На основе сделанных оценок средние размеры кристаллитов кремния в *a*-SiO_xSn составляют 6-9 нм, а в *a*-SiO_x более 10 нм. Таким образом, показано, что легирование оловом оксидно-кремниевих пленок может быть одним из эффективных методов управления их структурными и соответственно оптическими и электронными свойствами.

Список литературы

- A. Shan, E. Vallat-Shauvain, P. Torres, J. Meier, U. Kroll, C. Hof, C. Droz, M. Goerlitzer, N. Wyrsch, M. Vanechek. Mater. Sci. Engin., 69–70, 219 (2000).
- [2] В.В. Войтович, В.Б. Неймаш, Н.Н. Красько, А.Г. Колосюк, В.Ю. Поварчук, Р.М. Руденко, В.А. Макара, Р.В. Петруня, В.О. Юхимчук, В.В. Стрельчук. ФТП, **45**, 1331 (2005).
- [3] M. Nakamura, Y. Mochizuki, K. Usami. Sol. St. Commun., 50, 1079 (1984).
- [4] A.A. Sirenko, J.R. Fox, L.A. Akimov, X.X. Xi, S. Ruvimov, Z. Liliental-Weber. Sol. St. Commun., 113, 553 (2000).
- [5] H. Richter, Z.P. Wang, L. Ley. Sol. St. Commun., **39**, 625 (1981).
- [6] H. Campbell, P.M. Fauchet. Sol. St. Commun., **58** (10), 739 (1986).
- [7] P. Mishra, K.P. Jain. Phys. Rev. B, 64, 073 304 (2001).
- [8] F.L. Galeener. J. Non-Cryst. Sol., 71, 373 (1985).
- [9] Y. Wang, X. Liao, H. Diao et al. Science in China (Ser. A), 45 (10), (2002).
- [10] Y. Kanzawa, S. Hayashi, K. Yamamoto. J. Phys.: Condens. Matter, 8, 4823 (1996).
- [11] E. Monticone, A.M. Rossi, M. Rajterit, R.S. Gonnelli, V. Lacquanitit, G. Amatot. Phil. Mag. B, 80 (4), 523 (2000).
- [12] J.L. Feldman, E. Kaxiras, X.-P. Li. Phys. Rev. B, 44, 8334 (1991).
- [13] L.H. Campbell, P.M. Fauchet. Sol. St. Commun., 58, 739 (1986).

- [14] С.В. Гайслер, О.И. Семенова, Р.Г. Шарафутдинов, Б.А. Колесов. ФТТ, 46, 1484 (2004).
- [15] J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, X. Xie. Appl. Phys. Lett., 69, 200 (1996).
- [16] G. Faraci, S. Gibilisco, P. Russo, A.R. Pennisi, S.L. Rosa. Phys. Rev. B, 73, 033 307 (2006).
- [17] В.Г. Голубев, В.Ю. Давыдов, А.В. Медведев, А.Б. Певцов, Н.А. Феоктистов. ФТТ, **39**, 1348 (1997).
- [18] A.T. Voutsas, M.K. Hatalis, J. Boyce, A. Chiang. J. Appl. Phys., 78, 6999 (1995).
- [19] Н.Е. Маслова, А.А. Антоновский, Д.М. Жигунов, В.Ю. Тимошенко, В.Н. Глебов, В.Н. Семиногов. ФТП, 44, 1074 (2010).
- [20] E. Bustarred, M.A. Hachicha. Appl. Phys. Lett., 52, 1675 (1988).
- [21] V. Paillard, P. Puech, M.A. Laguna, R. Carles. J. Appl. Phys., 86, 1921 (1999).
- [22] R. Tsu, J. Gonzalez-Hernandez, S.S. Chao, S.C. Lee, K. Tanaka. Appl. Phys. Lett., 40, 534 (1982).

Редактор Л.В. Шаронова

Influence of tin on the processes of silicon nanocrystals formation in the thin films of the amorphous SiO_x matrix

V.V. Voitovych⁺, R.M. Rudenko^{*}, A.G. Kolosiuk⁺, M.M. Krasko⁺, V.O. Juhimchuk[‡], M.V. Voitovych[‡], S.S. Ponomarov[‡], A.M. Kraitchinskii⁺, V.Yu. Povarchuk⁺, V.A. Makara^{*}

+ Institute of Physics,

National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine * Taras Shevchenko National University of Kyiv (Faculty of Physics), 03187 Kiev, Ukraine [‡] Laskaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kiev, Ukraine

Abstract Influence of tin impurity on the processes of formation of nanosize crystalline silicon in the thin films of amorphous silicon oxide matrix (*a*-SiO_x, $x \approx 1.15$) is investigated. It is found that the tin impurity accelerates the process of crystallization of amorphous silicon. After temperature treatment in argon atmosphere sizes of silicon nanocrystals in matrix Si oxide with tin (*a*-SiO_xSn) are less (6–9 nm) in comparison to *a*-SiO_x (≥ 10 nm). It has been shown that the fraction of crystalline phase in *a*-SiO_xSn films after annealing at the temperatures of 800–1100°C grows from 20 to 80%. At the same time, in samples without tin the crystal phase of silicon appears only after annealing at the temperatures of 1000 and 1100°C, and the volume fraction of a crystal phase is 45 and 65%, respectively.