¹⁹ Теплоемкость купратов $Ln_2Cu_2O_5$ (Ln = Tb-Lu)

© Л.Г. Чумилина, Л.Т. Денисова, В.М. Денисов

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 23 ноября 2013 г.)

Проведен анализ связи теплоемкости купратов тяжелых лантанидов с особенностями их структуры. Показано, что значения удельной теплоемкости закономерно изменяются в зависимости от радиуса иона Ln^{3+} и глобального индекса нестабильности *G*II в пределах соответствующих тетрад (Tb–Ho, Er–Lu).

1. Введение

Для понимания природы высокотемпературной сверхпроводимости проводятся исследования не только самих высокотемпературных сверхпроводников, но и близких к ним по кристаллической структуре и составу соединений, не являющихся сверхпроводниками [1]. К подобным материалам относятся оксидные соединения, образующиеся в системах CuO- Ln_2O_3 . Оксиды легких лантанидов образуют с CuO соединения Ln_2CuO_4 , а оксиды тяжелых — $Ln_2Cu_2O_5$ [2–5].

При обсуждении свойств редкоземельных элементов (РЗЭ) учитывают существование тетрад- (или W-эффекта), выделяя при этом четыре группы РЗЭ (La-Nd, Pm-Gd, Gd-Ho, Er-Lu) [6]. Поскольку оксиды РЗЭ образуют с CuO разные соединения: Ln₂CuO₄ (La-Gd) и Ln₂Cu₂O₅ (Gd-Lu) [2-5], рассмотрим для второго типа соединений только третью (Тb-Но, исключая Gd) и четвертую (Er-Lu) тетрады. При этом примем во внимание, что соединения Ln₂Cu₂O₅ (так называемые "голубые фазы" [5]) кристаллизуются в орторомбической пространственной группе *Pna*2₁ [2,4,5,7]. Последнее очень важно, так как многие свойства соединений Ln₂Cu₂O₅ рассматривают в связи с ионным радиусом Ln³⁺ (параметры ячейки, объем элементарной ячейки, термодинамические свойства: энергия Гиббса, энтальпия, энтропия) [4,5].

Для соединений $Ln_2Cu_2O_5$ имеются данные по структуре [4,5,8,9], магнитным [1,7,9,10] и термодинамическим свойствам [4,11–13]. В то же время сведения о теплоемкости всех этих соединений имеются только для низких температур [14,15]. Поскольку теплоемкость является характеристикой кристалла, связанной с особенностями его состава и структуры, цель настоящей работы — получение данных по высокотемпературной теплоемкости купратов $Ln_2Cu_2O_5$ (Ln = Tb-Lu).

2. Эксперимент

Измерение теплоемкости купратов $Ln_2Cu_2O_5$ проводилось методом дифференциальной сканирующей калориметрии в платиновых тиглях на приборе STA 449 С Jupiter (NETZSCH). Методика измерения теплоемкости C_p подобна описанной в [16]. Интервал температур исследования выбран на основе проведенного термического анализа (DTA) с использованием STA 449 С Jupiter.

Поскольку соединения $Ln_2Cu_2O_5$ плавятся инконгруэнтно (см., например, [8]), образцы для исследований получены методом твердофазного синтеза подобно тому, как это было сделано при синтезе Tb₂Cu₂O₅ [17] и Dy₂Cu₂O₅ [18]. Контроль полученных образцов проводился при помощи рентгенофазового анализа (X'Pert Pro фирмы Panalytical) с использованием излучения Cu K_{α} . При комнатной температуре образцы имели параметры решетки, совпадающие с данными других авторов.

Обработка экспериментальных результатов проводилась с помощью пакета анализа NETZSCH Proteus Thermal Analysis и программного инструмента Systat Sigma Plot 12.

3. Результаты и их обсуждение

На рис. 1 приведены данные по влиянию температуры на удельную теплоемкость C_p^0 купратов $Ln_2Cu_2O_5$ третьей тетрады. Для того чтобы не учитывать различие молярных масс для этих купратов, теплоемкость приведена в единицах $J \cdot g^{-1} \cdot K^{-1}$. Можно видеть, что для этих соединений значения C_p^0 с ростом температуры закономерно увеличиваются, а на зависимостях $C_p^0 = f(T)$ нет различного рода экстремумов. Кроме того, в пределах этой тетрады теплоемкость купратов $Ln_2Cu_2O_5$ закономерно уменьшается в ряду Tb₂Cu₂O₅-Dy₂Cu₂O₅-Ho₂Cu₂O₅.

На рис. 2 приведены те же данные для купратов $Ln_2Cu_2O_5$ четвертой тетрады. В этом ряду из общей тенденции изменения C_p^0 в ряду Er-Tm-Yb-Lu выпадает соединение $Er_2Cu_2O_5$. Можно предположить, что это явление связано с тем, что подобным образом изменяется теплоемкость для оксидов Er_2O_3 , Tm_2O_3 , Yb_2O_3 и Lu_2O_3 [19–21].

На рис. З показано изменение стандартной теплоемкости C_p^0 соединений $Ln_2Cu_2O_5$ в зависимости от радиуса иона Ln^{3+} . Можно видеть, что в пределах третьей и четвертой групп значения C_p^0 с ростом радиуса иона

Рис. 1. Температурная зависимость удельной теплоемкости $Tb_2Cu_2O_5(1)$, $Dy_2Cu_2O_5(2)$ и $Ho_2Cu_2O_5(3)$. Точки — экспериментальные данные, линии — аппроксимирующие кривые.

Рис. 2. Влияние температуры на удельную теплоемкость $Er_2Cu_2O_5$ (1), $Tm_2Cu_2O_5$ (2), $Yb_2Cu_2O_5$ (3) и $Lu_2Cu_2O_5$ (4). Точки — экспериментальные данные, линии — аппроксимирующие кривые.

закономерно увеличиваются. Заметим, что систематическое изменение параметров решетки и объема ячейки в соединениях $Ln_2Cu_2O_5$ при замене редкоземельных элементов отмечено авторами работы [5]. В элементарной ячейке $Ln_2Cu_2O_5$ атомы меди имеют квадратную пирамидальную координацию с искаженным четырехугольником в основании. Наблюдается постепенное расширение октаэдров LnO_6 и систематическое удлинение апикального расстояния Cu–O в CuO₅-полиэдрах с увеличением размера иона Ln^{3+} . Не исключено, что с этим связан и наблюдаемый нами эффект (рис. 3). Величины C_p^0 для этих соединений получены нами, а значения радиусов r^{3+} соответствующих ионов взяты из работы [22]. На рис. 3 приведены также подобные данные для оксидов лантанидов. На основании представленных результатов можно заключить, что зависимости $C_p^0(Ln_2Cu_2O_5) = f(r^{3+})$ и $C_p^0(Ln_2O_3) = f(r^{3+})$ имеют подобный вид. Необходимые значения $C_p^0(Ln_2O_3)$ взяты нами из работ [19,20].

В ряде работ для изучения стабильности кристаллической структуры неорганических соединений использовалось правило суммы валентностей, в котором принято, что сумма валентных связей (s_{ij}) вокруг каждого иона должна быть равна его формальной валентности [4,5,23]. Для идеального кристалла $V_i = \sum_i s_{ij}$. Величина s_{ij} определяется на основании полуэмпирического выражения, которое связывает s_{ij} и длину связи $R_{ij}(Å)$ между ионами i и j

$$s_{ij} = \exp\left[(R_0 - R_{ij})/0.37\right],$$
 (1)

где R_0 является постоянной характеристикой типа связи.

По данным [4] координационное окружение обоих ионов Ln^{3+} и Cu²⁺ в Ln_2 Cu₂O₅ сильно искажено, что приводит к нарушению правила суммы валентностей. Так, согласно [5], суммы валентных связей для Cu²⁺ дают значение 1.8, что несколько ниже теоретического значения, равного 2. Было сделано предположение, что это связано с эффектом Яна–Теллера для ионов Cu²⁺. В то же время сумма валентных связей для лантанидов остается почти постоянной и близкой к 3.

Для количественной оценки нестабильности в структуре, основанной на правиле суммы валентностей, в [4,5] использовано соотношение

$$GII = \sqrt{\sum_{i=1}^{N} \left\{ \left(\sum_{j} s_{ij} - V_i \right)^2 \right\} / N}$$
(2)

для "глобального индекса нестабильности" (GII). В уравнении (2) N — число ионов данного типа. В работе [4] рассчитано значение GII для семи купратов типа

Рис. 3. Изменение стандартной теплоемкости соединений $Ln_2Cu_2O_5(1)$ и $Ln_2O_3(2)$ в зависимости от радиуса иона Ln^{3+} .

Рис. 4. Связь стандартной теплоемкости соединений *Ln*₂Cu₂O₅ с глобальным индексом нестабильности (*GII*).

 $Ln_2Cu_2O_5$ ($Ln \equiv Tb-Lu$). Полученные результаты представлены в виде зависимости $GII = f(r^{3+})$. Отмечено, что корреляция между GII и ионным радиусом Ln^{3+} близка к линейной. При этом большим значениям ионного радиуса соответствуют большие значения GII. Высокое значение индекса нестабильности означает искажение кристаллической структуры с большим отклонением от правила суммы валентностей. Самое высокое значение GII имеет соединение $Tb_2Cu_2O_5$, а самое низкое — $Lu_2Cu_2O_5$. Поскольку тенденция, предсказанная на основе структурных соображений, близка к полученной из термодинамических данных, было сделано заключение [4], что такие тенденции могут быть использованы для оценки термодинамических свойств бинарных оксидов по структурным данным.

На рис. 4 показана корреляция между значениями C_p^0 , полученными в настоящей работе, и GII [4] для ряда соединений $Ln_2Cu_2O_5$. Видно, что полученные кривые для третьей и четвертой групп имеют такой же вид, как зависимости $C_p^0 = f(r^{3+})$ (рис. 3). Это позволяет предположить, что между значениями C_p^0 и особенностями структуры соединений $Ln_2Cu_2O_5$ действительно имеется взаимосвязь.

4. Заключение

Методом дифференциальной сканирующей калориметрии исследована температурная зависимость теплоемкости соединений *Ln*₂Cu₂O₅ (Tb–Lu).

Установлено, что имеется подобие зависимостей удельной теплоемкости от ионного радиуса (Ln^{3+}) и глобального индекса нестабильности (GII) как для купратов редкоземельных металлов третьей и четвертой тетрад, так и для соответствующих оксидов. Отмечено, что между значениями удельной теплоемкости и особенностями структуры соединений Ln_2Cu_2O5 имеется взаимосвязь.

Список литературы

- Я. Зоубкова, З.А. Казей, Р.З. Левитин, Б.В. Милль, В.В. Мощалков, В.В. Снегирев. Письма в ЖЭТФ 49, 9, 524 (1989).
- [2] П.А. Арсеньев, Л.М. Ковба, Х.С. Багдасаров, Б.Ф. Джуринский, Б.И. Покровский, Ф.М. Спиридонов, В.А. Антонов, В.В. Илюхин. Соединения редкоземельных элементов. Системы с оксидами элементов I–III групп. Наука, М. (1983). 280 с.
- [3] И.С. Шаплыгин, Б.Г. Кахан, В.Б. Лазарев. ЖНХ 24, 6, 1478 (1979).
- [4] K.P. Jayadevan, K.T. Jacob. High Temp. Mater. Proc. 19, 6, 389 (2000).
- [5] J.L. Garcia-Munoz, J. Rodriguez-Cervajal. J. Solid State Chem. 115, 324 (1995).
- [6] Ю.Д. Третьяков, Л.И. Мартыненко, А.Н. Григорьев, А.Ю. Цивадзе. Неорганическая химия. Химия элементов. Химия, М. (2001). Т. 1. 472 с.
- [7] Z.A. Kazei, N.P. Kolmakova, R.Z. Levitin, B.V. Mill, V.V. Moshchalkov, V.N. Orlov, V.V. Snegirev, Ja. Zoubkova. J. Magn. Magn. Mater. 86, 124 (1990).
- [8] X. Chen, Y. Ji, J. Liang, X. Cheng, J. Li, S. Xie. J. Alloys Comp. 191, 297 (1993).
- [9] R. Troć, J. Klamut, Z. Bukowski, R. Horyn, J. Stepien-Damm. Physica B 154, 189 (1989).
- [10] М. Баран, Р.З. Левитан, Б.В., Милль, Р. Шимчак. ЖЭТФ 109, 3, 961 (1996).
- [11] K.T. Jacob, T. Mathews, J.P. Hajra. High Temp. Mater. Proc. 12, 4, 251 (1993).
- [12] G.M. Kale, D.J. Fray. J. Electronic. Mater. 24, 12, 1981 (1995).
- [13] M. Kopyto, F. Fitzner. J. Mater. Sci. **31**, 2797 (1996).
- [14] V.V. Moshchalkov, N.A. Samarin, J. Zoubkova, B.V. Mill. Physica B 163, 237 (1990).
- [15] V.V. Moshchalkov, N.A. Samarin, I.O. Grishchenko, B.V. Mill, Y. Zoubkova, J. Magn. Magn. Mater. 90–91, 533 (1990).
- [16] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [17] Л.Т. Денисова, В.М. Денисов, Л.Г. Чумилина, С.Д. Кирик, С.А. Истомин. ФТТ 55, 12, 2484 (2013).
- [18] В.М. Денисов, Л.Т. Денисова, Л.Г. Чумилина, С.Д. Кирик, Н.В. Белоусова. ФТТ 55, 9, 1714 (2013).
- [19] С.П. Гордиенко, Б.В. Феночка, Г.Ш. Виксман. Термодинамика соединений лантаноидов. Наук. думка, Киев (1979). 376 с.
- [20] J. Leitner, P. Chuchvalec, D. Sedmidubsky, A. Stejc, P. Abrman. Thermochim. Acta 395, 27 (2003).
- [21] M. Zinkevich. Progress Mater. Sci. 52, 597 (2007).
- [22] R.D. Shannon. Acta Cryst. A 32, 751 (1976).
- [23] F. Liebau, H.-J. Klein, X. Wang. Z. Krist. 26, 309 (2011).