18

К теории адсорбции на эпитаксиальном графене: модельный подход

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия

E-mail: Sergei_Davydov@mail.ru

(Поступила в Редакцию 24 января 2014 г.)

Модель адсорбции на эпитаксиальном графене строится в два этапа: сначала определяется плотность состояний монослоя графена, адсорбированного на твердотельной подложке, а затем на образовавшийся эпитаксиальный графен помещается адсорбированный атом. Рассматриваются металлическая и полупроводниковая подложки. Вычисляется переход заряда между адатомом и эпитаксиальным графеном. Оцениваются роли подложки и графенового листа в формировании электронного состояния адатомов.

Работа выполнена при поддержке гранта РФФИ (проект № 12-02-00165а) и государственной финансовой поддержке ведущих университетов РФ (субсидия 074-U01).

1. Введение

Проблема однослойного эпитаксиального графена (ЭГ) [1–4] привлекает внимание исследователей в связи с разработкой планарных приборных структур. При этом важно понять, насколько субстрат изменяет электронный спектр. Адсорбционные свойства ЭГ также интересны как с фундаментальной, так и с прикладной точки зрения. Фундаментальный аспект состоит, например, в ответе на следующие вопросы.

1) В какой мере на адсорбционное состояние адатома влияет слой ЭГ, а в какой — собственно подложка?

2) Как адсорбция изменяет свойства графена?

Адсорбционные свойства свободного однолистного графена были исследованы нами в рамках достаточно простой *М*-модели [5,6]. В настоящей работе для описания адсорбции на ЭГ мы вновь используем модельный подход. При этом модель адсорбции на ЭГ строится последовательно, пошагово: сначала рассматривается однослойный графен, адсорбированный на подложке, потом на образовавшийся ЭГ помещается адсорбированный атом. Затем по отдельности рассматриваются металлическая и полупроводниковая подложки.

2. Общие соотношения

Задача об электронном спектре ЭГ рассматривалась нами ранее (см. работу [7] и ссылки, приведенные в ней). Для соответствующей функции Грина $G_{\rm eg}(\omega, \mathbf{k})$, где $\mathbf{k} = (k_x, k_y)$ — двумерный волновой вектор свободного однослойного графена, было получено выражение

$$G_{\rm eg}^{-1}(\omega, \mathbf{k}) = \Omega - \Lambda_{\rm eg}(\omega) + i\Gamma_{\rm eg}(\omega) \mp tf(\mathbf{k}),$$

$$f^{2}(\mathbf{k}) = 3 + 2\cos(k_{x}a\sqrt{3}) + 4\cos(k_{x}a\sqrt{3}/2)\cos(3k_{y}a/2).$$
(1)

Здесь $\Omega = \omega - \varepsilon_c$, где ω — энергетическая переменная, ε_c — энергия $|p_z\rangle$ -состояния атома углерода;

 $\Gamma_{\rm eg}(\omega) = \pi V_{\rm sg}^2 \rho_{\rm sub}(\omega)$ — полуширина квазиуровня графена, где $V_{\rm sg}$ — матричный элемент взаимодействия субстрат-графен, $\rho_{\rm sub}(\omega)$ — энергетическая плотность состояний подложки; t — матричный элемент взаимодействия $|p_z\rangle$ -состояний ближайших атомов графена, находящихся на расстоянии a; функция сдвига квазиуровня

$$\Lambda_{\rm eg}(\omega) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\Gamma_{\rm eg}(\omega') d\omega'}{\omega - \omega'} d\omega', \qquad (2)$$

где P — символ главного значения; верхний знак относится к π^* -зоне проводимости ($\bar{\Omega} \equiv \Omega - \Lambda_{\rm eg}(\omega) > 0$), нижний знак соответствует валентной π -зоне графена ($\bar{\Omega} < 0$). Далее используем низкоэнергетическую аппроксимацию электронного спектра графена [1], положив

$$\varepsilon_{\pm}(\mathbf{q}) = \varepsilon_c \pm \frac{3}{2} ta |\mathbf{q}|,$$
 (3)

где $\mathbf{q} = \mathbf{K} - \mathbf{k}$, $\mathbf{K} = a^{-1}(2\pi/3\sqrt{3}, 2\pi/3)$ — волновой вектор точки Дирака. Представление (3) справедливо для малых $q = |\mathbf{q}|$. Окончательно получаем

$$G_{\rm eg}^{-1}(\bar{\Omega},q) = \bar{\Omega} + i\Gamma_{\rm eg}(\omega) \mp \frac{3t}{2} \,(aq). \tag{4}$$

Плотность состояний (ПС) ЭГ дается следующим выражением [7]:

$$\rho_{\rm eg}(\omega) = \frac{1}{\pi\xi^2} \bigg[\Gamma_{\rm eg}(\omega) \ln \frac{(\bar{\Omega} \mp \xi)^2 + \Gamma_{\rm eg}^2(\omega)}{\bar{\Omega}^2 + \Gamma_{\rm eg}^2(\omega)} \\
+ 2\bar{\Omega} \bigg(\arctan \frac{\bar{\Omega}}{\Gamma_{\rm eg}(\omega)} - \arctan \frac{\bar{\Omega} \mp \xi}{\Gamma_{\rm eg}(\omega)} \bigg) \bigg], \quad (5)$$

где $\xi \equiv 3taq_B/2$ — энергия обрезания, q_B — вектор обрезания; верхний знак в (5) отвечает зоне проводимости, нижний — валентной зоне.

Перейдем теперь к адсорбции на ЭГ. Из общих соображений функция Грина $G_a(\omega)$ для атома, адсорбированного на ЭГ, может быть записана в виде

$$G_a^{-1}(\omega) = \omega - \varepsilon_a - \Lambda_a(\omega) + i\Gamma_a(\omega).$$
(6)

Здесь ε_a — энергия работающего на переход заряда уровня адатома, $\Gamma_a(\omega) = \pi V_{a/eg}^2 \rho_{eg}(\omega)$ — функция уширения квазиуровня адатома, где $V_{a/eg}$ — матричный элемент взаимодействия адатом–ЭГ; функция сдвига квазиуровня

$$\Lambda_a(\omega) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\Gamma_a(\omega') d\omega'}{\omega - \omega'}.$$
 (7)

ПС на адатоме $\rho_a(\omega)$, отвечающая функции Грина (6), имеет вид

$$\rho_a(\omega) = \frac{1}{\pi} \frac{\Gamma_a(\omega)}{[\omega - \varepsilon_a - \Lambda_a(\omega)]^2 + \Gamma_a^2(\omega)},$$
(8)

а число заполнения адатома n_a при нулевой температуре равно

$$n_a = \int_{-\infty}^{\varepsilon_{\rm F}} \rho_a(\omega) d\omega, \qquad (9)$$

где $\varepsilon_{\rm F}$ — уровень Ферми.

3. Металлический субстрат

В качестве первого примера применения полученных в разделе 2 выражений рассмотрим металлический субстрат, ПС которого ρ_m положим равной константе (приближение бесконечно широкой зоны модели Андерсона [8]). Тогда $\Gamma_{\rm eg}(\omega) = \Gamma_m = \pi V_{g/m}^2 \rho_m = {\rm const}$ и $\Lambda_{\rm eg}(\omega) \equiv \Lambda_m = 0$ ($V_{g/m}$ — матричный элемент взаимодействия графен-металл). В этом случае вместо (5) получаем

$$\rho_{\rm eg}^{m}(\omega) = \frac{1}{\pi\xi^{2}} \bigg[\Gamma_{m} \ln \frac{(\Omega \mp \xi)^{2} + \Gamma_{m}^{2}}{\Omega^{2} + \Gamma_{m}^{2}} + 2\Omega \bigg(\arctan \frac{\Omega}{\Gamma_{m}} - \arctan \frac{\Omega \mp \xi}{\Gamma_{m}} \bigg) \bigg].$$
(10)

Такая ПС и соответствующий переход заряда рассматривались в работах [9,10]. Анализ, проведенный в [9], показал, что выражение (10) может быть аппроксимировано функцией

$$\rho_{\rm eg}^m(\omega) \approx \frac{1}{\pi} \frac{\Gamma_m}{(\omega \mp \omega_{\rm max})^2 + \Gamma_m^2},\tag{11}$$

где мы положили $\varepsilon_c = 0$, верхний знак относится к области $\omega > 0$, нижний — к области $\omega < 0$,

$$\omega_{\max} = \frac{\xi}{2} + \delta,$$

$$\delta \approx \frac{\Gamma_m^2}{4\xi} \left(\frac{4\Gamma_m^2 + \xi^2}{2\Gamma_m \xi} \operatorname{arctg} \left(\frac{\xi}{2\Gamma_m} \right) - 1 \right).$$
(12)

Легко видеть, что при $\beta_m = (\xi/\Gamma_m) \ll 1$ получаем $\omega_{\max} \approx \xi/2$. В случае $\beta_m \gg 1$ имеем $\omega_{\max} \approx (\xi/2) + (\pi\Gamma_m/16)$.

Отметим, что параметр ξ определяет полуширину области линейной зависимости ПС свободного однослойного графена $\rho_g(\omega)$ при отклонениях энергии ω от энергии точки Дирака $\omega_{\rm D} = \varepsilon_c$ (см., например, [5]). Действительно, в низкоэнергетическом пределе имеем (см., например, [7])

$$\rho_g(\omega) = 2 \, \frac{|\omega - \varepsilon_c|}{\xi^2}. \tag{13}$$

Отсюда следует, что $\xi \leq t \sim 3$ eV. Поскольку отношение $\beta_m \sim t/\Gamma_m$, случай $\beta_m \ll 1$ можно трактовать как режим сильной связи атомов графена с подложкой по сравнению с их связью между собой; обратный случай $\beta_m \gg 1$ соответствует режиму слабой связи атомов графена с подложкой.

Так как $\Gamma_a(\omega) = \pi V_{a/eg}^2 \rho_{eg}^m(\omega)$, используя $\rho_{eg}(\omega)$ в форме (11) и соотношение (7), получим

$$\Lambda_a(\omega) = \frac{V_{a/\text{eg}}^2 \Gamma_m}{(\omega_{\text{max}} - |\omega|)^2} \ln \left| \frac{\omega - \omega_{\text{max}}}{\omega + \omega_{\text{max}}} \right|.$$
(14)

Легко показать, что в случае выполнения неравенства $|\omega| \gg \omega_{\max}$ функция сдвига $\Lambda_a(\omega) \approx -2V_{a/eg}^2 \Gamma_m \omega_{\max}/\omega^3$; при обратном неравенстве $|\omega| \ll \omega_{\max}$ имеем $\Lambda_a(\omega) \approx -2V_{a/eg}^2 \Gamma_m \omega/\omega_{\max}^3$.

Перейдем к безразмерным единицам: $x = \omega/\Gamma_m$, $x_{\max} = \omega_{\max}/\Gamma_m$, $e_a = \varepsilon_a/\Gamma_m$, $v = V_{a/eg}/\Gamma_m$. Приведенные функции сдвига $\lambda_a = \Lambda_a/\Gamma_m$, уширения $\gamma_a = \Gamma_a/\Gamma_m$, плотности состояний ЭГ $\bar{\rho}_{eg}^m = \rho_{eg}^m\Gamma_m$ и на адатоме $\bar{\rho}_a = \rho_a\Gamma_m$ равны соответственно

$$\lambda_{a}(x) = \frac{v^{2}}{(x_{\max} - |x|)^{2}} \ln \left| \frac{x - x_{\max}}{x + x_{\max}} \right|,$$

$$\gamma_{a}(x) = \pi v^{2} \bar{\rho}_{eg}^{m}(x), \quad \bar{\rho}_{eg}^{m}(x) = \frac{1}{\pi} \frac{1}{(x - x_{\max})^{2} + 1},$$

$$\bar{\rho}_{a}(x) = \frac{1}{\pi} \frac{\gamma_{a}(x)}{[x - e_{a} - \lambda_{a}(x)]^{2} + \gamma_{a}^{2}(x)}.$$
 (15)

В режиме сильной связи графена с подложкой ($\beta_m \ll 1$) имеем $x_m \approx 0$; в режиме слабой связи графена с подложкой ($\beta_m \gg 1$) имеем $x_m \approx \pi/16$, что также можно считать малой величиной. Поэтому в иллюстративных целях ограничимся случаем $x_{\text{max}} = 0$, что дает $\lambda(x) = 0$.

На рис. 1 представлены типичные зависимости приведенной ПС на адатоме $\bar{\rho}_a$ от безразмерной энергии xдля трех значений параметра v. Наблюдаемые различия для v = 0.5, 1 и 2 объясняются следующим образом. Во-первых, максимальное значение плотности состояний $\bar{\rho}_{a \max} \propto v^{-2}$ (рис. 1). Во-вторых, при $e_a = 0$ максимумы $\bar{\rho}_a(0)$ наблюдаются при $v \leq 1$, минимумы имеют место при v > 1 (рис. 1, a). И наконец, смещение с ростом vмаксимумов $\bar{\rho}_a(x)$ в сторону больших значений x (при $e_a > 0$) (рис. 1, b) связано с поведением положительного корня x^* уравнения $d\bar{\rho}_a(x)/dx = 0$, которому при v < 1можно дать следующую оценку:

$$x^* \approx e_a \left(1 + \frac{v^4}{(e_a^2 + 1)^3} \right).$$
 (16)

Подчеркнем, что условие $v = (V_{a/eg}/\Gamma_m) < 1$ отвечает превалированию взаимодействия субстрата с графеном над взаимодействием адатома с графеном; обратное неравенство (v > 1) свидетельствует о большей роли взаимодействия адатом–графен.

При вычислении числа заполнения n_a адатома прибегнем к дополнительному упрощению, заменив $\gamma_a(x)$ на $\gamma_a^* = \gamma_a(x^*)$. Тогда для v < 1 получим

$$n_a \approx \frac{1}{\pi} \operatorname{arcctg} \frac{e_a - e_{\mathrm{F}}}{\gamma_a^*},$$
 (17)

где $e_{\rm F} = \varepsilon_{\rm F}/\Gamma_m$. С ростом v величина γ_a^* убывает, а число заполнения n_a растет при $e_a < e_{\rm F}$ и убывает при $e_a > e_{\rm F}$.

Рис. 1. Металлический субстрат: зависимость приведенной плотности состояний на адатоме $\bar{\rho}_a$ от безразмерной энергии x при $x_m = 0$ для различных значений $v. a - e_a = 0$ (изображена только правая часть симметричной кривой), $b - e_a = 1$.

Таким образом, с ростом взаимодействия адатом–ЭГ по сравнению с взаимодействием графен–металл переход заряда с адатома в ЭГ для $e_a < e_F$ убывает, а для $e_a > e_F$ увеличивается.

4. Полупроводниковый субстрат

Теперь рассмотрим полупроводниковый субстрат, ПС которого $\rho_{sc}(\omega)$ будем задавать в следующем виде [11]:

$$\rho_{\rm sc}(\omega) = A \begin{cases} \sqrt{\omega - E_g/2}, & \omega > E_g/2, \\ \sqrt{-\omega - E_g/2}, & \omega < -E_g/2, \\ 0, & |\omega| \le E_g/2. \end{cases}$$
(18)

Здесь A — коэффициент, E_g — ширина запрещенной зоны, за нуль энергии принято положение центра запрещенной зоны субстрата.

Как показано в [11], ПС ЭГ $\rho_{\rm eg}^{\rm sc}(\omega)$ дается выражением (5) с заменой $\Gamma_{\rm eg}(\omega)$ на $\Gamma_{\rm sc}(\omega)$ и $\Lambda_{\rm eg}(\omega)$ на $\Lambda_{\rm sc}(\omega)$, причем $\Gamma_{\rm sc}(\omega) = \pi V_{g/\rm sc}^2 \rho_{\rm sc}(\omega)$, где $V_{g/\rm sc}$ — матричный элемент взаимодействия графен—подложка, и

$$\Lambda_{\rm sc}(\omega) = AV_{g/\rm sc}^2 \begin{cases} F_-(\omega), & \omega < -E_g/2, \\ F_-(\omega) - F_+(\omega), & |\omega| \le E_g/2, \\ -F_+(\omega), & \omega > E_g/2, \end{cases}$$
(19)

где $F_{\pm}(\omega) = \pi \sqrt{\pm \omega + E_g/2}.$

Рассмотрим функцию $\rho_{eg}^{sc}(\omega)$ в области энергий $|\omega| < E_g/2$. В этой области функция $\Gamma_{sc}(\omega)$ тождественно равна нулю, так что (5) сводится к выражению

$$\rho_{\rm eg}^{\rm sc}(\omega) = \frac{2\bar{\Omega}}{\pi\xi^2} \left(\arctan \frac{\bar{\Omega}}{s} - \arctan \frac{\bar{\Omega} \mp \xi}{s} \right), \qquad (20)$$

где $\bar{\Omega} = \omega - \varepsilon_c - \Lambda_{\rm sc}(\omega)$, $s = 0^+$. Как показано в [11], значение $\rho_{\rm eg}^{\rm sc}(\omega)$ обращается в нуль при условии выполнения неравенства $|\bar{\Omega}| > \xi$. В области $|\omega| < E_g/2$, где эти неравенства не выполняются, имеем ПС ЭГ вида

$$\rho_{\rm eg}^{\rm sc}(\omega) = \frac{2|\bar{\Omega}|}{\xi^2},\tag{21}$$

что при $\Lambda_{sc}(\omega) = 0$ совпадает с ПС свободного графена $\rho_s(\omega)$, задаваемой формулой (13).

В энергетическом интервале $|\omega| > E_g/2$ функция сдвига

$$\Lambda_{\rm sc}(\omega) = \pi A V_{g/\rm sc}^2 \left[\sqrt{-\omega + E_g/2} - \sqrt{\omega + E_g/2} \right]$$
(22)

принимает минимальное значение, равное $\Lambda_{\rm sc}(0) = 0$, и максимальное значение, равное $\Lambda_{\rm max} = \Lambda_{\rm sc}(\pm E_g/2) = \pi A V_{g/sc}^2 \sqrt{E_g}$. Введем по аналогии с металлической подложкой отношение $\beta_{\rm sc} = \xi / \Lambda_{\rm max}$ и будем именовать случай $\beta_{\rm sc} \ll 1$ режимом сильной связи графена с подложкой, а противоположный случай $\beta_{\rm sc} \gg 1$ — режимом слабой связи. Здесь, как и в разделе 2, $\beta_{\rm sc} \sim t / \Lambda_{\rm max}$

Рис. 2. Полупроводниковый субстрат: зависимость приведенной плотности состояний эпитаксиального графена $\bar{\rho}_{eg}^{sc}$ от безразмерной энергии у при $a \approx 0.37$, $\xi = 2$. a — при w = 1и различных e_c , b — при $e_c = 0$ и ризличных w. Изображена только область энергии, соответствующая валентной зоне.

В первом случае запрещенная зона подложки почти полностью "прорастает" в ЭГ. Во втором случае имеем квазисвободный (quasi-free-standing) ЭГ [11,12], в спектре которого энергетическая щель, наведенная подложкой, отсутствует, но точка Дирака сдвинута из положения $\varepsilon_{\rm D} = \varepsilon_c$, отвечающего свободному однослойному графену, в положение $\varepsilon'_{\rm D} = \varepsilon_c + \Lambda_{\rm sc}(\varepsilon'_{\rm D})$.

Пусть для простоты $\varepsilon_c = 0$, т.е. ε_c совпадает с серединой запрещенной зоны подложки. При этом переход электронов между слоем недопированного графена и полупроводниковой подложкой с собственной проводимо-

стью исключается. Условие отсутствия щели в спектре ЭГ сводится при этом к неравенству $\Lambda_{\max} < (\xi - E_g/2)$. Поскольку $\xi \sim t \approx 3 \text{ eV}$ и для 6H-политипа карбида кремния $E_g/2 = 1.5 \text{ eV}$, при $\Lambda_{\max} < 1.5 \text{ eV}$ щель отсутствует. По оценкам работы [11] коэффициент $A \approx 0.2 \text{ eV}^{-3.2}$, так что $\Lambda_{\max} \approx 1 \text{ eV}^{-1} \cdot V_{g/sc}^2$.

ПС на атоме, адсорбированном на ЭГ, по-прежнему дается выражением (8), где $\Gamma_a(\omega) = \pi V_{a/eg}^{sc} \rho_{eg}^{sc}(\omega)$ и

$$\Lambda_a(\omega) = V_{a/eg}^2 \int_{-\infty}^{\infty} \frac{\rho_{eg}^{\rm sc}(\omega')d\omega'}{\omega - \omega'}.$$
 (23)

Введем безразмерные величины $y = 2\omega/E_g$, $e_c = 2\varepsilon_c/E_g$, $a = A(E_g/2)^{3/2}$, $\xi = 2\xi/E_g$, $w = 2V_{g/sc}/E_g$, $\bar{\rho}_{eg}^{sc}(y) = \rho_{eg}^{sc}(E_g/2)$. Зависимости приведенной ПС ЭГ $\bar{\rho}_{eg}^{sc}$ от безразмерной энергии у представлены на рис. 2 для энергий, соответствующих валентной зоне подложки. Отметим, что функция $\bar{\rho}_{eg}^{sc}(y)$ для $e_c = 0$ симметрична относительно y = 0; функция $\bar{\rho}_{eg}^{sc}(y)$ при y < -1 для $e_c = C$, где C — число, переходит при y > 1 в функцию $\bar{\rho}_{eg}^{sc}(y)$ для $e_c = -C$. На рис. 3 зависимости $\bar{\rho}_{eg}^{sc}(y)$ приведены для области энергий, соответствующих запрещенной зоне подложки. При этом на рис. 3, a мы не изобразили зависимость $\bar{\rho}_{eg}^{sc}(y)$ для $e_c = 1.5$, так как она может быть получена из зависимости $\bar{\rho}_{eg}^{sc}(y)$ для $e_c = -1.5$ путем зеркального отражения относительно y = 0; на рис. 3, b изображены только половины симметричных зависимостей $\bar{\rho}_{eg}^{sc}(y)$ для области y < 0.

Как следует из рис. 2, при w = 1, $e_c = 0$, 1.5 (рис. 2, a) и w = 2, $e_c = 0$ (рис. 2, b) функцию $\bar{\rho}_{eg}^{sc}(y)$ в области энергий, соответствующих валентной зоне и зоне проводимости подложки, можно заменить константой ρ_{val} . Тогда, с учетом (21) для функции сдвига $\Lambda_a(\omega)$ получим

$$\Lambda_{a}(\omega) = \rho_{\text{val}} V_{a/\text{eg}}^{2} \ln \left| \frac{\omega - E_{g}/2}{\omega + E_{g}/2} \right| + I,$$

$$I = \frac{2V_{a/\text{eg}}^{2}}{\xi^{2}} \int_{\omega_{-}}^{\omega_{+}} \frac{|\omega' - \varepsilon_{c} - \Lambda_{\text{sc}}(\omega')|}{\omega - \omega'} d\omega', \qquad (24)$$

где $\omega_{-(+)}$ — нижний (верхний) край полосы сплошного спектра ЭГ, лежащей внутри запрещенной зоны субстрата. На основании полученных здесь (рис. 3) и в работе [12] (рис. 1) результатов заменим функцию $\Lambda_{\rm sc}(\omega)$ вида (22) ее приближенным значением $\Lambda_{\rm sc}(\omega) \approx -AV_{g/\rm sc}^2 \sqrt{2/E_g}\omega$. Тогда интеграл *I* можно записать в виде

$$I = \frac{2V_{a/eg}^2}{\xi^2} \int_{\omega_-}^{\omega_+} \frac{|\alpha\omega' - \varepsilon_c|}{\omega - \omega'} d\omega', \qquad (25)$$

где $\alpha = 1 + AV_{g/sc}^2 \sqrt{2/E_g}$. Получим в результате

$$I \approx \frac{2V_{a/eg}^2}{\xi^2} \left(2\varepsilon_c - \alpha(\omega_+ + \omega_-) + (\varepsilon_c - \alpha\omega) \ln \left| \frac{(\omega - \omega_+)(\omega - \omega_-)}{(\omega - \varepsilon_c/\alpha)^2} \right| \right).$$
(26)

При $\varepsilon_c = 0$ имеем

$$I \approx -\frac{2\alpha V_{a/\text{eg}}^2}{\xi^2} \omega \ln \left| \frac{\omega^2 - \omega_*^2}{\omega^2} \right|, \qquad (27)$$

где $\omega_* = \omega_+ = -\omega_-.$

В случае полупроводниковой подложки число заполнения адатома n_a при нулевой температуре по-прежнему дается общей формулой (9). Удобнее, однако, представить n_a в виде суммы трех слагаемых. Первое слагаемое есть вклад валентной зоны

$$n_{v} = \int_{-\infty}^{-E_{g}/2} \rho_{a}(\omega)/d\omega, \qquad (28)$$

где $\rho_a(\omega)$ по-прежнему определяется формулой (8), $\Gamma_a(\omega) = \pi V_{a/eg}^2 \rho_{val}$ (т.е. $\Gamma_a(\omega) = \text{const}$) и $\Lambda_a(\omega)$ задается выражениями (24)–(27).

Отметим, что здесь мы взяли нижний предел интегрирования равным $-\infty$, что упрощает задачу. Правильнее было бы ввести конечные ширины валентных зон полупроводника W (как это сделано, например, в [12]) и графена D, определить энергию нижнего края сплошного спектра ЭГ и начинать интегрирование именно с этой энергии. Однако задав ПС полупроводника в виде (18), приходим к пределам интегрирования (28).

Второе слагаемое представляет собой вклад запрещенной зоны n_{eg} в том случае, когда уровень Ферми перекрывается с зоной ЭГ, отвечающей ПС (21), т.е.

$$n_{\rm eg} = \vartheta(\varepsilon_{\rm F} - \omega_{-}) \frac{2}{\xi^2} \int_{\omega_{-}}^{\varepsilon_{\rm F}} |\bar{\Omega}| \, d\omega, \qquad (29)$$

где $\vartheta(z)$ — функция Хэвисайда, равная единице при z > 0 и нулю при z < 0.

Третье слагаемое — локальный вклад *n_l*, определяемый как

$$n_l = \left| 1 - \frac{d\Lambda_a(\omega)}{d\omega} \right|_{\omega_l}^{-1},\tag{30}$$

где ω_l — энергия локального уровня, лежащего ниже края сплошного спектра ЭГ. Поскольку мы отодвигаем этот край в $-\infty$, локальный вклад (30) исчезает.

Оценим величину n_v . При принятой выше аппроксимации $\Gamma_n(\omega) = \text{const } \rho_a(\omega)$, имеет максимум при энергии ω' , удовлетворяющей уравнению $\omega - \varepsilon_a - \Lambda_a(\omega) = 0$.

Предположим, что в области энергий $\omega < -E_g/2$ функция $\Lambda_a(\omega)$ мала, за исключением узкой области около верхнего края валентной зоны полупроводникового субстрата $(-E_g/2)$. Положив приближенно $\omega'_a \approx \varepsilon_a + \Lambda_a(\varepsilon_a)$, получим $\rho_a(\omega) \approx \approx \pi^{-1}\Gamma_a/[(\omega - \omega')^2 + \Gamma_a^2]$, откуда по формуле (28) найдем

$$n_v \approx \frac{1}{\pi} \operatorname{arcctg} \frac{\varepsilon_a + \Lambda_a(\varepsilon_a) + E_g/2}{\pi V_{a/eg}^2 \rho_{\mathrm{val}}}.$$
 (32)

Отметим, что для субстрата *p*-типа, когда уровень Ферми лежит в непосредственной близости к верхнему краю валентной зоны, $n_v = n_a$.

С.Ю. Давыдов

Рис. 3. То же, что на рис. 2, для области энергий, соответствующей запрещенной зоне субстрата.

Рассмотрим некоторые частные случаи. Пусть $\varepsilon_a \ll -E_g/2$. Тогда из (32) получаем $n_v \sim 1$, и переход заряда между адатомом и ЭГ отсутствует. При ($\varepsilon_a + E_g/2$) ~ 0 из выражения (32) следует, что $n_v \sim 0$. Тот же результат имеет место и при $\varepsilon_a \gg -E_g/2$. При этом весь заряд адатома переходит на ЭГ. Для простейшего случая $\varepsilon_c = \varepsilon_a = 0$ получаем

$$n_v \approx \frac{1}{\pi} \operatorname{arcctg} \frac{E_g}{2\pi V_{a/eg}^2 \rho_{val}}.$$
 (33)

Огрубляя ситуацию, можно переписать выражение (33) в виде $n_v \approx \pi^{-1} \operatorname{arcctg}(V_{g/sc}^2/V_{a/eg}^2)$. Таким образом, с ростом взаимодействия адатом–ЭГ по сравнению с вза-

имодействием графен-полупроводник вклад валентной зоны в суммарное число заполнения растет, а переход заряда уменьшается.

Теперь перейдем к оценке величины $n_{\rm eg}$. Если $\omega_- < \varepsilon_{\rm F} < \omega_+$, то

$$n_{\rm eg} = \frac{2}{\xi^2} \int_{\omega_-}^{\varepsilon_{\rm F}} |\omega - \varepsilon_c - \Lambda_{\rm sc}(\omega)| \, d\omega.$$
 (34)

Вновь прибегая к аппроксимации вида $\omega'_c \approx \varepsilon_c + \Lambda_{\rm sc}(\varepsilon_c)$, для случая $\varepsilon_{\rm F} \leq \omega'_c$ получим $n_{\rm eg} \approx 1 - 2\varepsilon_{\rm F}(\omega'_c - \varepsilon_{\rm F})/\xi^2$; при $\omega'_c < \varepsilon_{\rm F} \leq \omega_+$ имеем $n_{\rm eg} \approx 1 + 2\varepsilon_{\rm F}(\varepsilon_{\rm F} - \omega'_c)/\xi^2$; при $\varepsilon_{\rm F} > \omega_+$ получаем $n_{\rm eg} = 2$. Значение $\varepsilon_{\rm F}$ вычисляется, естественно, из условия сохранения числа электронов. Нас здесь, однако, этот вопрос не интересует. Важно было оценить относительные влияния листа графена и полупроводниковой подложки на n_a .

5. Заключение

В настоящей работе мы построили схему, с помощью которой можно вычислить переход заряда в системе адатом–ЭГ. Сделанные оценки свидетельствуют о том, что на электронное состояние адатома влияют как графен, так и субстрат. Какое воздействие при этом превалирует, должно определяться для каждой конкретной адсорбционной системы.

Здесь мы рассмотрели только изолированный (не взаимодействующий с другими) адсорбированный атом. В принципе не столь трудно обобщить полученные результаты на конечные концентрации адатомов, учтя их взаимодействие (см., например, [13]). Сложность, однако, состоит в том, что экспериментальные данные по адсорбции на ЭГ, необходимые для оценки параметров задачи и проверки результатов теории, практически отсутствуют, тогда как желательно было бы иметь информацию в объеме, аналогичном тому, который имеется, например, в случае адсорбции на металлах [14,15]. Возможно, для полуколичественных оценок допустимо использовать результаты по адсорбции на графите (см. [16,17]).

Список литературы

- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, 109 (2008).
- [2] J. Haas, W.A. de Heer, E.H. Conrad. J. Phys: Cond. Matter 20, 323 202 (2008).
- [3] Y.H. Wu, T. Yu, Z.X, Shen. J. Appl. Phys. 108, 071 301 (2010).
- [4] D.R. Cooper, B. D'Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, V. Yu. arXiv: 1110.6557.
- [5] С.Ю. Давыдов, Г.И. Сабирова. ФТТ 53, 608 (2011).
- [6] С.Ю. Давыдов. ФТТ 53, 2414 (2011).
- [7] С.Ю. Давыдов. ФТП 47, 97 (2013).
- [8] P.W. Anderson. Phys. Rev. **124**, 41 (1961).

- [9] С.Ю. Давыдов. ФТП 45, 629 (2011).
- [10] С.Ю. Давыдов. Письма в ЖТФ 37, 10, 64 (2011).
- [11] С.Ю. Давыдов. ФТП 48, 49 (2014).
- [12] С.Ю. Давыдов. ЖТФ 84, 4, 155 (2014).
- [13] С.Ю. Давыдов. Письма в ЖТФ 38, 4, 41 (2012); ФТП 46, 204 (2012); ФТП 46, 379 (2012); ФТТ 54, 1619 (2012).
- [14] Л.А. Большов, А.П. Напартович, А.Г. Наумовец, А.Г. Федорус. УФН 122, 125 (1977).
- [15] О.М. Браун, В.К. Медведев. УФН 157, 631 (1989).
- [16] M. Caragiu, S. Finberg. J. Phys.: Cond. Matter 17, R995 (2005).
- [17] S.Yu. Davydov. Appl. Surf. Sci. 257, 1506 (2010).