05

Структурные и магнитные размерные эффекты в нанодисперсных ферритовых системах $Zn_x Fe_{3-x}O_4$

© Н.М. Борисова¹, М.В. Горшенков², А.А. Коваль³, К.А. Мозуль¹, В.В. Ховайло², Е.В. Шуринова¹

¹ Харьковский национальный университет им. В.Н. Каразина,

Харьков, Украина

² Национальный исследовательский технологический университет "МИСиС",

Москва, Россия

³ Национальный фармацевтический университет,

Харьков, Украина

E-mail: borisova-40@mail.ru

(Поступила в Редакцию в окончательном виде 15 января 2014 г.)

Технология получения высокодисперсных ферритовых порошков $Zn_xFe_{3-x}O_4$ (x = 0-0.5) обеспечила биохимическую чистоту, заданную дисперсность и необходимый уровень функциональных магнитных параметров. Методами рентгеноструктурного анализа и электронной микроскопии определены средние размеры частиц, указывающие на их принадлежность к нижнему пределу нанодиапазона. На основе дифрактограмм определены значения постоянных кристаллической решетки в зависимости от концентрации ионов цинка. Магнитные измерения при 300 К показали увеличение намагниченности в результате замещения и обнаружили размерный эффект — суперпарамагнитное состояние частиц порошка.

Работа выполнена в рамках проекта № ДР 0112U005918

1. Введение

Высокодисперсные ферритовые порошки, традиционно используемые в технике магнитной записи, в настоящее время активно изучаются с точки зрения возможности их применения в инновационных медикобиологических технологиях, основными требованиями которых являются биосовместимость, размер частиц на клеточном уровне, достаточно высокая намагниченность и магнитная восприимчивость, объем частиц, близкий к критическому суперпарамагнитному.

Кроме того, в научном плане нанодисперсные системы ферритовых частиц интересны как объект для обнаружения и исследования размерных эффектов. Для ферритов структурного типа шпинели наиболее изучено обусловленное размерным эффектом изменение магнитного состояния частиц в зависимости от температуры и величины магнитного поля [1,2].

В медико-биологической сфере в качестве магнитоуправляемых широко используются частицы магнетита (Fe₃O₄) [3]. Для макроаналога данного феррита известно, что его намагниченность может быть увеличена путем частичного замещения ионов Fe²⁺ ионами Zn²⁺ [4].

Целью настоящей работы является получение системы наночастиц цинкзамещенного магнетита с различной концентрацией ионов цинка, а также исследование влияния размерного фактора на магнитные и структурные параметры.

2. Технология получения нанодисперсных порошков

Для получения нанодисперсного порошка феррита состава $Zn_xFe_{3-x}O_4$ с концентрацией цинка x = 0, 0.1,

0.2, 0.3, 0.4, 0.5 использовался метод химической конденсации из водных растворов солей ферритообразующих компонентов в растворе щелочи [5]. Соответствующее уравнение химической реакции имеет вид

$$2\text{FeCl}_{3} + x\text{ZnSO}_{4} + (1 - x)\text{FeSO}_{4} + 8\text{NaOH} \rightarrow$$
$$\rightarrow \text{Zn}_{x}\text{Fe}_{3-x}\text{O}_{4} + 6\text{NaCl} + \text{Na}_{2}\text{SO}_{4} + 4\text{H}_{2}\text{O}. \quad (1)$$

Экспериментально было установлено, что для прохождения реакции и образования характерного для магнетита черного осадка полученную в результате реакции смесь достаточно выдержать порядка двух часов при $T = 80^{\circ}$ С в водяной бане при постоянном перемешивании смеси. Затем содержимое выдерживается до двух суток для окончательного "созревания" осадка, после чего он многократно промывается дистиллированной водой до pH = 7.5–8.0. Для предотвращения возможной агрегации ферритовых частиц полученная водная суспензия помещается на 2–3 min в ультразвуковой диспергатор.

Рентгеновские и электронно-микроскопические исследования синтезированного порошка

Рентгеновские исследования образцов проводились на автоматизированном рентгеновском дифрактометре ДРОН-4 с источником монохроматизированного Со-излучения. Спектры обрабатывались модифицированным методом Ритвельда с использованием прикладных программ [6].

Рис. 1. Рентгеновские спектры синтезированных нанопорошков состава $Zn_x Fe_{3-x}O_4$.

На рис. 1 приведены дифрактограммы исследованных порошковых образцов.. Характер дифрактограмм свидетельствует об однофазности порошков и указывает на то, что синтезированные кристаллы имеют кубическую структуру феррита типа шпинели, относящуюся к пространственной группе Fd3m(227). На основе дифрактограмм с использованием формулы Селякова $(D = K\lambda/\beta \cos \theta \ [7])$ были определены средние размеры частиц для всех исследованных составов. Полученные значения находятся в интервале 5.8-10.0 nm.

С целью выяснения распределения частиц по размерам, необходимого, в частности, для определения их магнитного состояния, использовался метод электронной микроскопии. На рис. 2 в качестве примера представлены электронно-микроскопический снимок частиц порошка и их распределение по размерам, полученное со статистикой ~ 400 частиц, для состава с концентраци-

Рис. 2. Электронно-микроскопический снимок частиц порошка и их распределение по размерам для состава с x = 0.4.

ей цинка x = 0.4. Распределение близко к симметричному, диапазон значений D = 3-13 nm, среднее значение $\langle D \rangle \sim 6.5$ nm. При этом около 80% частиц имеют размер 5.0-9.0 nm, что согласуется с результатом, полученным рентгено-структурным методом.

Таким образом, рассматриваемые однофазные ферритовые порошки заданных составов с достаточно узким распределением частиц по размерам у нижней границы нанометрового диапазона, можно отнести к модельным системам, предназначенным для решения фундаментальных задач.

4. Структурный размерный эффект

Из данных, имеющихся в литературе для нанодисперсных порошковых материалов [8], следует, что структурный размерный эффект может проявляться в изменении сингонии и постоянной решетки кристалла. В данном случае для всех исследуемых составов симметрия кристалла не изменилась. Поэтому можно было ожидать только изменения постоянной решетки.

Значения параметров решетки были рассчитаны на основе дифрактограмм по методике, описанной в [7], с погрешностью $(3-4) \cdot 10^{-4}$ Å. На рис. 3 представлена полученная зависимость параметра решетки *а* от концентрации ионов Zn²⁺ в сравнении с предполагаемой для макроаналогов линейной зависимостью. Видно, что для всех исследуемых составов значения параметра решетки меньше, чем для соответствующих макроаналогов. Наблюдаемое различие на порядок превышает ошибку эксперимента и изменяется от 0.25 до 0.20% при увеличении концентрации цинка в интервале x = 0.1-0.5. Следует отметить, что большее откло-

Рис. 3. Зависимость параметра кристаллической решетки цинкзамещенного магнетита Zn_xFe_{3-x}O₄ от концентрации ионов цинка. *1* — макроскопический аналог, *2* — нанодисперсные порошковые образцы.

Рис. 4. Иллюстрация суперпарамагнитного состояния систем малых частиц чистого и цинкзамещенного магнетита. *I* — намагничивание, *2* — размагничивание.

нение для магнетита (0.45%) может быть связано не с размерным фактором, а с другой причиной, а именно с присутствием на поверхности частиц магнетита оксида железа γ -Fe₂O₃, как это отмечалось в работе [1].

Увеличение концентрации цинка приводит к росту постоянной решетки, что можно объяснить следующим

образом. В отличие от замещаемых ионов Fe²⁺, локализующихся в октаэдрических междоузлиях, замещающие ионы Zn²⁺ имеют предпочтение к тетраэдрическому окружению [4], т.е. при замещении следует ожидать закономерного уменьшения степени обращенности структуры феррита. Ионные радиусы Zn²⁺ (0.82 Å) и Fe²⁺ (0.83 Å) примерно одинаковы. Однако тетраэдрическое междоузлие как для Fe₃O₄ (0.55 Å), так и для ZnFe₂O₄ (0.65 Å) имеет меньший размер, чем октаэдрическое (0.75 и 0.70 Å соответственно). В связи с этим локализация ионов Zn²⁺ в тетраэдрических междоузлиях приводит к увеличению постоянной решетки. Наблюдаемый нелинейный характер зависимости a(x) может быть обусловлен тем, что ионы Zn²⁺ частично занимают октаэдрические позиции.

Проявление размерного эффекта в магнитных свойствах

Известно, что уменьшение размера частиц до нанометрового диапазона сопровождается уменьшением намагниченности для всех оксидных ферримагнетиков [9]. Для порошка с x = 0.5 значение удельной намагниченности в поле $H = 17 \,\mathrm{kOe}$ равно $\sigma = 75 \,\mathrm{emu/g}$, что примерно вдвое меньше, чем для макроаналога. Однако, что важно, оно превосходит значение $\sigma = 67 \,\mathrm{emu/g}$ для нанопорошка магнетита (x = 0), т.е. замещение ионами цинка позволило повысить намагниченность порошка. Это в сочетании с малым размером частиц соответствует требованиям, предъявляемым к магнитным наноагентам, используемым в медико-биологической сфере. При этом желательно, чтобы частицы находились в суперпарамагнитном состоянии, которое характеризуется высокой магнитной восприимчивостью, т.е. хорошей магнитной управляемостью.

Сравнение реальных объемов частиц цинкзамещенного магнетита с критическим суперпарамагнитным объемом [10] позволило прогнозировать суперпарамагнитное состояние даже для самых крупных частиц исследуемых порошков в терапевтическом диапазоне температур. Это было подтверждено результатами исследования процессов намагничивания и размагничивания в полях, достаточных для насыщения макроскопического аналога. Показано, что кривые намагничивания и размагничивания совпадают, т.е. наблюдается безгистерезисный характер процесса намагничивания: остаточная намагниченность равна нулю, коэрцитивная сила отсутствует (рис. 4), что характеризует суперпарамагнитное состояние образцов всех исследованных составов.

6. Заключение

Нанодисперсные порошковые образцы системы цинкзамещенного магнетита, полученные методом химической конденсации, характеризуются химической однородностью порошка, малыми размерами частиц (у нижнего предела нанодиапазона), достаточной намагниченностью и суперпарамагнитным состоянием частиц, обусловленным размерным эффектом.

Размерный эффект проявился также в уменьшении параметра решетки с увеличением концентрации ионов цинка при неизменности сингонии кристаллической структуры феррита.

Список литературы

- P. Dutta, S. Pal, M.S. Seehra, N. Shah, G.P. Huffman. J. Appl. Phys. **105**, 07B 501 (2009).
- [2] C.R. Vestal, Q. Song, Z.J. Zhang. J. Phys. Chem. B 108, 1822 (2004).
- [3] T. Kikuchi, R. Kasuya, S. Endo, A. Nakamura, T. Takai, N. Metzler-Nolte, K. Tohji, J. Balachandran. J. Magn. Magn. Mater. 323, 1216 (2011).
- [4] Ю. Ситидзе, Х. Сато. Ферриты. Мир, М. (1964). 407 с.
- [5] З.І. Сизова, А.П. Кришталь, Э.Я. Левітін, А.О. Коваль. Тез. доп. VIII Міжнар. конф. "Фізичні явища в твердих тілах", Харків, (2007). С. 143.
- [6] E.V. Shelekhov, T.A. Sviridova. Met. Sci. Heat Treatment 42, 7, 309 (2000).
- [7] Н.Н. Качанов, Л.И. Миркин. Рентгеноструктурный анализ. Практическое руководство. Машгиз, М. (1960). 215 с.
- [8] А.И. Гусев. Нанокристаллические материалы: методы получения и свойства. УрО РАН, Екатеринбург (1998). С. 73.
- [9] A.E. Berkowitz, W.J. Schuele, P.J. Flanders. J. Appl. Phys. 39,1261 (1968).
- [10] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1018 с.