07,03

Внутреннее трение в суперионных кристаллах Cu₆PS₅Br и композитах на их основе

© В.С. Биланич, Р.Ю. Бучук, А.Е. Петраченков, К.В. Скубенич, И.П. Студеняк

Ужгородский национальный университет, Ужгород, Украина E-mail: vbilanych@gmail.com

(Поступила в Редакцию 19 августа 2013 г. В окончательной редакции 18 октября 2013 г.)

Методом внутреннего трения исследованы механические свойства монокристаллов Cu_6PS_5Br и композитов на их основе. Измерения внутреннего трения и модуля сдвига проведены в интервале температур 80-300 К на частотах деформирования 10-100 mHz в режиме вынужденных крутильных колебаний. На температурных зависимостях внутреннего трения обнаружены максимумы, обусловленные суперионным и сегнетоэластическим фазовыми переходами. Показано, что уменьшение модуля сдвига более чем в 2 раза при увеличении температуры в области 150-230 К вызвано размораживанием подвижности в катионной подрешетке монокристалла Cu_6PS_5Br при суперионном фазовом переходе. Стремительное возрастание модуля сдвига (более чем в 3 раза) при нагревании в области 260-270 К обусловлено сегнетоэластическим фазовым переходом монокристалла Cu_6PS_5Br . Определены параметры внутреннего трения данного монокристалла при указанных фазовых переходах.

1. Введение

Создание нетрадиционных источников энергии стимулирует интерес к поиску и исследованиям новых материалов, которые бы обеспечили долгосрочную работу портативной техники, снизили энергопотребление, улучшили эффективность работы приборов, расширили элементную базу микро-, нано- и оптоэлектроники. Важную роль в решении данного вопроса играют суперионные проводники, которые в последние годы интенсивно исследуются [1,2]. Известно, что в суперионном состоянии подвижность мобильных ионов может преобладать над подвижностью ионов в расплавах соответствующих солей, и это состояние рассматривается как специфический случай структурно-топологического разупорядочения кристаллической решетки [2]. Суперионный фазовый переход (СИФП) в свою очередь сопровождается изменением электрических, тепловых, акустических и других свойств. Фундаментальный и прикладной интерес представляют исследования влияния структурного разупорядочения кристаллической решетки и эффективности ионного транспорта на физические свойства суперионных проводников [1].

Благодаря высокой ионной проводимости практический интерес представляют кристаллы Cu₆PS₅Br, которые принадлежат к большому семейству соединений со структурой аргиродита [3]. Они являются суперионными проводниками и сегнетоэластиками [3–6]. Общая проводимость при T = 300 К составляет $1.2 \cdot 10^{-5} \Omega^{-1} \cdot \text{сm}^{-1}$, причем преобладает ионная компонента [1]. СИФП первого рода в кристалле Cu₆PS₅Br происходит в интервале температур $T_s = 165 - 180$ К, а сегнетоэластический фазовый переход (СЭФП) второго рода — при $T_c = 268 \pm 2$ К [1]. При комнатной температуре кристаллы Cu₆PS₅Br относятся к кубической сингонии (про-

странственная группа $F\bar{4}3m$) [3–5]. Ниже температуры СЭФП кристаллы Cu₆PS₅Br относятся к моноклинной сингонии (пространственная группа *Cc*), а СИФП имеет признаки изоструктурного превращения [7]. Электрические, диэлектрические, термодинамические, акустические и оптические свойства кристаллов Cu₆PS₅Br, а также их изменения в области фазового перехода исследовались в работах [8–11].

Эффективным методом изучения термической активации подвижности различных структурных подсистем, в том числе в суперионных проводниках, являются исследования диссипативных процессов, которые проявляются в материалах под воздействием внешних гармонических механических полей [12–14]. Целью настоящей работы является изучение внутреннего трения в суперионных кристаллах Cu_6PS_5Br и композитах на их основе на инфранизких частотах в интервале 10–100 mHz в температурном диапазоне 80–300 K.

2. Эксперимент

Для измерения внутреннего трения Q^{-1} и модуля сдвига *G* использовались монокристаллы Cu₆PS₅Br и полимерные композиты на их основе. Монокристаллы Cu₆PS₅Br были получены методом химических транспортных реакций по методике [6]. Для изучения механических свойств суперионных композитов в полимерной матрице были изготовлены образцы на основе порошков кристалла Cu₆PS₅Br, которые перемешивались с существенно меньшей в процентном отношении полимерной массой универсального промышленного эпоксидного двухкомпонетного клея EDP (ерохуdiane with polyethylenepolyamine) "РЕМПЛАСТ". Приготовленная смесь остывала при повышенной (380 K) температуре. Для исследований были приготовлены образцы в виде прямоугольных параллелепипедов размером $2 \times 2 \times 20$ mm. Образцы монокристалла Cu₆PS₅Br были вырезаны вдоль кристаллографического направления [100].

Измерения температурных зависимостей и расчет внутреннего трения Q^{-1} и модуля сдвига G суперионных кристаллов Cu₆PS₅Br и композитов на их основе на частотах 10–100 mHz проводились с помощью автоматизированной системы на базе крутильного маятника в режиме вынужденных крутильных колебаний [13]. Относительные погрешности измерений Q^{-1} и G составляли 10 и 2% соответственно. Зависимости $Q^{-1}(T)$ и G(T) измерялись в процессе нагревания образцов с постоянной скоростью изменения температуры 35 K/h.

3. Результаты и их обсуждение

Температурные зависимости внутреннего трения Q^{-1} и модуля сдвига G суперионных кристаллов Cu₆PS₅Br, измеренные на инфранизких частотах вынужденных колебаний, представлены на рис. 1. Видно, что в интервале температур 150-265 К на зависимостях $Q^{-1}(T)$ наблюдается сложный процесс поглощения механической энергии. При этом можно выделить максимумы внутреннего трения при $T = 258 \,\mathrm{K}$ (соответствует СЭФП [1]) и 198 К (соответствует СИФП [1]). Между этими максимумами величина внутреннего трения является довольно высокой и значительно (~ в 10 раз) превышает аналогичный параметр в области низких (T < 150 K) и высоких (T > 265 K) температур. Повышение частоты деформирования с 10 до 100 mHz приводит к росту температуры максимума СИФП с 194 до 198 К. При изменении частоты деформирования температура максимума СЭФП не изменяется (рис. 2).

На зависимостях G(T) при нагревании в области температур 150–215 К наблюдается интенсивное уменьшение модуля сдвига более чем в 2 раза (рис. 1), которое свидетельствует о размораживании подвижности в катионной подрешетке [1,7]. В области 260–270 К происходит стремительный рост модуля сдвига, соответствующий СЭФП [1], при этом G(T) не зависит от частоты (рис. 2).

За пределами этих аномалий наблюдается линейное увеличение модуля сдвига при понижении температуры. При изменении частоты деформирования в температурной области 100–230 К наблюдаются изменения на зависимости G(T) (рис. 2, *b*): уменьшение частоты деформирования ν приводит к понижению абсолютных значений модуля сдвига в этой температурной области. Из рис. 2 видно, что в интервале 230–290 К не наблюдается зависимости G(T) от частоты. Эти эффекты температурных изменений Q^{-1} и G коррелируют с трансформацией петель механического гистерезиса кристалла Cu₆PS₅Br. На рис. 3 показаны петли механического гистерезиса монокристалла Cu₆PS₅Br на частоте 10 mHz при различных температурах. Из рис. 3 видно, что

Рис. 1. Температурные зависимости внутреннего трения $Q^{-1}(I)$ и модуля сдвига G(2) монокристалла Cu₆PS₅Br на частотах колебаний 10 (*a*), 30 (*b*) и 100 mHz (*c*).

при температуре 172 К (рис. 3, *a*) петля гистерезиса имеет вид эллипса с малым значением механических потерь. Это свидетельствует об отсутствии доменной структуры в кристалле при данной температуре [1,2]. Рост температуры приводит к монотонному расширению петли гистерезиса с сохранением ее формы (рис. 3, *b*). При дальнейшем росте температуры петля гистерезиса начинает постепенно изменяться и приобретает вид, характерный для сегнетоэластиков (рис. 3, *c*) [15]. При T > 255 К с ростом температуры площадь петли гистерезиса начинает быстро уменьшаться (рис. 3, *d*). В интервале 260–270 К гистерезисная петля снова при-

Рис. 2. Зависимость температурных изменений $Q^{-1}(a)$ и G(b) кристалла Cu₆PS₅Br от частоты деформирования. 1 - 10 mHz, 2 - 100 mHz.

нимает эллиптическую форму (рис. 3, e, f), механические потери уменьшаются до значений 0.015, а модуль сдвига резко возрастает примерно в 3 раза (рис. 1, 2).

Результаты исследований температурных зависимостей внутреннего трения и модуля сдвига композитов $(EDP)_x(Cu_6PS_5Br)_{100-x}$ при различных концентрационных соотношениях представлены на рис. 4 и 5. В полимере EDP в интервале температур 150-200 К на зависимости $Q^{-1}(T)$ наблюдается максимум внутреннего трения (рис. 4, а, кривая 1), который сопровождается уменьшением модуля сдвига на величину $\Delta G/G_0 = 0.1$ при понижении температуры (рис. 4, b, кривая 1), где $G_0 = G_{100}$ — значение модуля сдвига при 100 К. За пределами этого температурного интервала происходит линейное уменьшение G при повышении температуры. Такие особенности зависимостей $Q^{-1}(T)$ и G(T) являются типичными для полимеров и стекол [16]. Они указывают на протекание в этом полимере релаксационного процесса при $T < T_0$ (T_0 — температура размягчения), который в данной области температур обычно идентифицируется как β-процесс механической релаксации [16,17].

Зависимости $Q^{-1}(T)$ и $(G/G_0)(T)$ для композитов $(\text{EDP})_x(\text{Cu}_6\text{PS}_5\text{Br})_{100-x}$ приведены на рис. 4 (кри-

вые 2, 3): при x = 100 $G_{100} = 4.5$ GPa, при x = 15 $G_{100} = 13.2$ GPa, при x = 10 $G_{100} = 17.1$ GPa (приведенные здесь абсолютные значения модуля сдвига G_{100} для всех образцов измерены при температуре T = 100 K).

Видно, что при использовании этого полимера в качестве матрицы для образования указанных композитов остаются "следы" его диссипативных процессов вплоть до состава 90 мt.% Cu₆PS₅Br-10 wt.% EDP (рис. 4, *a*, *b*, кривые 3). На зависимостях $Q^{-1}(T)$ композитов (рис. 4, *a*, кривые 2, 3) наблюдаются два максимума: первый — при температуре 177 К имеет амплитуду (относительно фоновых механических потерь) $Q_m^{-1} = 0.011$, второй — при температуре 236 К имеет амплитуду $Q_m^{-1} = 0.021$ (при x = 10).

Исходя из сравнений температурных зависимостей Q^{-1} и G монокристалла Cu₆PS₅Br (рис. 1, 2), полимера EDP и композитов (рис. 4, 5), а также температурного положения максимумов Q^{-1} и соответствующих им изменений G можно утверждать, что в исследованных композитах максимум Q^{-1} при $T_m = 177$ K и скачок G в интервале 130–180 K являются эффектами полимерной матрицы и обусловлены процессом резонансного поглощения энергии внешнего механиче-

Таблица 1. Результаты аппроксимации зависимостей $Q_f^{-1}(T)$ полиномом $Q^{-1}(T) = Q_0^{-1} + a_1T + a_2T^2 + a_3T^3 + a_4T^4$

Состав	Q_0^{-1}	$a_1 \cdot 10^5$	$a_2 \cdot 10^7$	$a_{3} \cdot 10^{9}$	$a_4 \cdot 10^{12}$
(EDP) ₁₀₀	0.018	-5.36	5.89	-2.46	5.04
$(EDP)_{15}(Cu_6PS_5Br)_{85}$	0.011	-2.21	2.51	-1.07	2.21
$(EDP)_{10}(Cu_6PS_5Br)_{90}$	0.012	-1.87	2.24	-0.97	2.10

Таблица 2. Параметры внутреннего трения композитов $(EDP)_x(Cu_6PS_5Br)_{100-x}$

Параметр	EDP	Кристаллическая компонента (Cu ₆ PS ₅ Br)	Композит		
EDP ₁₀₀					
S, rel.units	1.09	-	_		
T_m, \mathbf{K}	177	—	—		
$\Delta T, K$	56	—	—		
Q_m^{-1}	0.016	-	—		
EDP ₁₅ (Cu ₆ PS ₅ Br) ₈₅					
S, rel.units	1.08	1.07	2.15		
T_m, K	177	242	242		
$\Delta T, K$	54	48	108		
Q_m^{-1}	0.016	0.017	0.019		
EDP ₁₀ (Cu ₆ PS ₅ Br) ₉₀					
S, rel.units	0.68	1.44	2.12		
T_m, K	177	236	234		
$\Delta T, K$	57	58	94		
Q_m^{-1}	0.011	0.021	0.023		

Рис. 3. Трансформация петли механического гистерезиса кристалла Cu₆PS₅Br на частоте 10 mHz при различных температурах в интервалах суперионного и сегнетоэластического фазовых переходов.

ского поля данным полимером. Максимум Q^{-1} при $T_m = 236 - 242$ К и незначительное возрастание G в интервале 250-270 К являются эффектами кристалла и обусловлены его СЭФП.

При возрастании концентрации суперионной компоненты (Cu₆PS₅Br) в данном полимерном композите (рис. 4) амплитуда максимума $Q^{-1}(T)$ при 177 К понижается, а при 242 К возрастает. Аналогично усиливаются эффекты изменения модуля G в интервале 260–270 К, характерные для кристалла Cu₆PS₅Br.

Для разделения эффектов полимерной матрицы $Q_p^{-1}(T)$ и суперионной матрицы $Q_{\rm SI}^{-1}(T)$ в спектре внутреннего трения композита, а также определения величины фоновых механических потерь $Q_p^{-1}(T)$ была проведена математическая обработка экспериментальных зависимостей $Q^{-1}(T)$. В результате такой обработки были получены три указанные компоненты (рис. 5), при этом $Q^{-1}(T) = Q_f^{-1}(T) + Q_P^{-1}(T) + Q_{\rm SI}^{-1}(T)$.

Для аппроксимации фона внутреннего трения были взяты соответствующие зависимости $Q^{-1}(T)$ в интервалах температур T < 120 К и T > 250 К для полимера EDP и T < 120 К и T > 270 К для композита. Хорошие результаты были получены при аппроксимации $Q_f^{-1}(T)$ полиномом четвертой степени: $Q^{-1}(T) = Q_0^{-1} + a_1T + a_2T^2 + a_3T^3 + a_4T^4$. Результаты

такой аппроксимации приведены в табл. 1 и на рис. 5 (кривая 2).

Для определения компоненты $Q_p^{-1}(T)$ сначала была проведена аппроксимация максимума внутреннего трения полимера EDP. Форма максимума внутреннего трения и соответствующего скачка модуля сдвига на температурных зависимостях $Q^{-1}(T)$ и G(T) (рис. 4) данных материалов в интервале температур 150–200 К характерна для изменений механических свойств полимеров и стекол при релаксационных процессах [18]. Для определения полимерной составляющей $Q_p^{-1}(T)$ использовались экспериментальная зависимость $Q^{-1}(T)$ для EDP и формула $Q_p^{-1}(T) = Q^{-1}(T) - Q_f^{-1}(T)$. Аппроксимация максимума $Q_p^{-1}(T)$ проводилась в приближении дебаевского типа релаксации [19]. Была использована зависимость [18,19]

$$Q_P^{-1}(T) = Q_m^{-1} \frac{2\omega\tau}{1 + \omega^2\tau^2},$$
 (1)

где $\omega = 2\pi v$, v — частота деформирования образца, $Q_P^{-1}(T)$ — текущее значение внутреннего трения, Q_m^{-1} — максимальное значение внутреннего трения, τ — время релаксации. Учитывая зависимость $\tau(T)$ при

Рис. 4. Температурные зависимости внутреннего трения $Q^{-1}(a)$ и нормированного модуля сдвига $G/G_0(b)$ композитов (EDP)_x(Cu₆PS₅Br)_{100-x} при x = 100(1), 15 (2), 10 (3) на частоте 10 mHz.

термической активации движения кинетической частицы

$$\tau = \tau_0 \exp\left(\frac{U}{kT}\right) \tag{2}$$

(U — энергия активации, k — постоянная Больцмана, T — температура, τ_0 — предэкспоненциальный коэффициент), получим формулу для расчета зависимости $Q_p^{-1}(T)$ в области максимума

$$Q_{P}^{-1}(T) = Q_{m}^{-1} \left\{ 2 \exp \frac{U(T_{m} - T)}{kT_{m}T} \times \left[1 + \exp \frac{2U(T_{m} - T)}{kT_{m}T} \right]^{-1} \right\}.$$
 (3)

Для данной модели математической обработки расчетная зависимость $Q_p^{-1}(T)$ (рис. 5, *a*, кривая 3) хорошо согласовалась с аналогичной экспериментальной зависимостью. Найденный параметр аппроксимации U = 12.5 kJ/mol. Амплитуду максимума $Q_m^{-1} = 0.016$ и температуру пика внутреннего трения $T_m = 177$ K определяли исходя из результатов эксперимента.

Для определения суперионной составляющей внутреннего трения $Q_{\rm SI}^{-1}(T)$ использовалась формула

 $Q_{\text{SI}}^{-1}(T) = Q^{-1}(T) - (Q_P^{-1}(T) + Q_f^{-1}(T))$. Для образцов при x = 10 и 15 составляющую $Q_P^{-1}(T)$ определяли по формуле (3). Использовались значения U = 12.5 kJ/mol и $T_m = 177$ K, а величина Q_m^{-1} была подгоночным параметром.

Результаты такой аппроксимации и отдельные составляющие внутреннего трения показаны на рис. 5. Из зависимостей $Q^{-1}(T)$, $Q_P^{-1}(T)$, $Q_{SI}^{-1}(T)$ были определены площади S под пиками внутреннего трения и

Рис. 5. Температурные зависимости отдельных составляющих внутреннего трения композитов $(\text{EDP})_x(\text{Cu}_6\text{PS}_5\text{Br})_{100-x}$ при x = 100 (*a*), 15 (*b*), 10 (*c*) на частоте 10 mHz. I — экспериментальная зависимость внутреннего трения $Q^{-1}(T)$, 2 — фоновые механические потери $Q_f^{-1}(T)$, 3 — внутреннее трение полимерной матрицы $Q_P^{-1}(T)$, 4 — внутреннее трение суперионной кристаллической фракции композита $Q_{\text{SI}}^{-1}(T)$.

их полуширина ΔT . Найденные параметры внутреннего трения исследованных композитов приведены в табл. 2. Из значений *S* (в относительных единицах) видно, что относительный вклад $\gamma = S_{\rm cr}/S_c$ кристаллической компоненты в композите при переходе от образца x = 15 к образцу с x = 10 возрастает от 0.5 до 0.7 ($S_{\rm cr} = S$ для пика $Q_{\rm SI}^{-1}(T)$, а $S_c = S$ для общего внутреннего трения $Q^{-1}(T) - Q_f^{-1}(T)$).

Математическая обработка и анализ температурных зависимостей внутреннего трения данных суперионных композитов показали следующие особенности: 1) диссипация механической энергии в данных материалах обусловлена как фазовыми переходами в суперионной кристаллической фазе, так и процессом релаксации в полимерной матрице; 2) рассеяние механической энергии в композитах в интервале температур 150-200 К связано с полимерной матрицей и обусловлено локальным размораживанием подвижности отдельных структурных сегментов; 3) максимум внутреннего трения композита в интервале 220-270 К является эффектом кристалла Си₆PS₅Br и обусловлен его СЭФП; 4) трансформация спектра внутреннего трения исследуемых композитов связана с изменением относительного вклада (у) компонент в системе $(EDP)_x(Cu_6PS_5Br)_{100-x}$.

4. Заключение

Исследования внутреннего трения монокристалла Cu_6PS_5Br показали, что наиболее существенные изменения его механических параметров происходят в области температур 150–265 К. При температурах 150–230 К (суперионная фаза) проявляется дисперсия модуля сдвига и внутреннего трения, тогда как в интервале 230–264 К (сегнетоэластическая фаза) функции $Q^{-1}(T)$ и G(T) не зависят от частоты. В интервале 150–265 К спектр внутреннего трения имеет два заметных максимума, которые отвечают суперионному и сегнетоэластическому фазовым переходам.

Установлено, что при уменьшении температуры в области 236–264 К на инфранизких частотах наблюдаются классические сегнетоэластические петли механического гистерезиса, а в интервале температур 172-224 К — эллиптические петли механического гистерезиса, характерные для эффекта термической активации подвижности катионной подрешетки в суперионных проводниках. Обнаружено, что при температурах T < 172 К петля гистерезиса имеет вид эллипса с малым значением механических потерь и, следовательно, сегнетоэластическая доменная структура кристалла при T < 172 К отсутствует.

Обнаружено, что при росте концентрации суперионного проводника в исследованных композитах наблюдаются закономерные изменения его модуля сдвига. В областях температур $T < T_s$ и $T > T_c$ уменьшение модуля сдвига является линейным, тогда как в интервале 150–275 К зависимость $(G/G_0)(T)$ носит сложный

характер и коррелирует с аналогичными изменениями модуля сдвига исследованного монокристалла Cu₆PS₅Br.

Список литературы

- И.П. Студеняк, М. Краньчец. Эффекты разупорядочения в суперионных проводниках со структурой аргиродита. Говерла, Ужгород (2007). 200 с. [укр.].
- [2] Физика суперионных проводников / Под ред. М. Саламона. Зинатне, Рига (1982). 220 с.
- [3] W.F. Kuhs, R. Nitsche, K. Scheunemann. Mater. Res. Bull. 11, 1115 (1976).
- [4] W.F. Kuhs, R. Nitsche, K. Scheunemann. Acta Cryst. B 34, 64 (1978).
- [5] W.F. Kuhs, R. Nitsche, K. Scheunemann. Mater. Res. Bull. 14, 241 (1979).
- [6] И.П. Студеняк, Д.Ш. Ковач, А.С. Орлюкас, Е.Т. Ковач. Изв. АН. Сер. физ. 56, 10, 86 (1992).
- [7] A. Haznar, A. Pietraszko, I.P. Studenyak. Solid State Ionics 119, 31 (1999).
- [8] S. Fiechter, E. Gmelin. Thermochim. Acta 85, 155 (1985).
- [9] В.Л. Скрицкий, В.Д. Валявичюс, В.И. Самуленис, И.П. Студеняк, Д.Ш. Ковач, В.В. Панько. ФТТ **31**, 234 (1989).
- [10] И.П. Студеняк, Д.Ш. Ковач, В.В. Панько, Е.Т. Ковач, А.Н. Борец. ФТТ 26, 2598 (1984).
- [11] I.P. Studenyak, M. Kranjcec, Gy.Sh. Kovacs, V.V. Panko, Yu.M. Azhnyuk, D.I. Desnica, O.M. Borets, Yu.V. Voroshilov. Mater. Sci. Eng. B 52, 202 (1998).
- [12] В.С. Биланич, Р.Ю. Бучук, К.В. Скубенич, И.И. Макауз, И.П. Студеняк. ФТТ 54, 2310 (2012).
- [13] В.С. Биланич, В.Б. Онищак, И.И. Макауз, В.М. Ризак. ФТТ 52, 1698 (2010).
- [14] В.С. Биланич, Н.Д. Байса, В.М. Ризак, И.М. Ризак, В.М. Головей. ФТТ 45, 80 (2003).
- [15] С.А. Гриднев. Сорос. образоват. журн. 6, 8, 100 (2000).
- [16] Г.М. Бартенев, Д.С. Сандитов. Релаксационные процессы в стеклообразных системах. Наука, Новосибирск (1986). 240 с.
- [17] В.С. Биланич, А.А. Горват. ФХС 24, 825 (1998).
- [18] И.В. Андреев, Ю.С. Балашов, В.А. Ломовской. ФХС 10, 296 (1984).
- [19] Физическая акустика / Под. ред. У. Мэзона. Т. З. Ч. А. Влияние дефектов на свойства твердых тел. Мир, М. (1969). 579 с.