07,03

Зависимость критического радиуса частичных дислокационных петель от энергии дефекта упаковки в полупроводниках

© Ю.Ю. Логинов¹, А.В. Мозжерин², А.В. Брильков²

 ¹ Сибирский государственный аэрокосмический университет им. акад. М.Ф. Решетнева, Красноярск, Россия
 ² Сибирский федеральный университет, Красноярск, Россия
 E-mail: loginov@sibsau.ru

(Поступила в Редакцию 15 июля 2013 г.)

Методом просвечивающей электронной микроскопии исследовано распределение дислокационных петель по размерам в полупроводниках CdTe, ZnTe, ZnSe, ZnS, CdS, GaAs, Si и Ge. Экспериментальные результаты сравниваются с теоретическими расчетами критических радиусов перехода частичных дислокационных петель в полные с учетом энергии образования дислокационных петель и энергии дефекта упаковки материалов. Показано, что критический радиус зависит от энергии дефекта упаковки и является важной характеристикой при анализе процессов дефектообразования в полупроводниках.

1. Введение

Полупроводниковые материалы широко используются в микроэлектронике и солнечной энергетике. При облучении или термообработках в полупроводниках, как правило, образуется большое количество дислокационных петель, размеры которых весьма различны. При достижении определенного значения радиуса дислокационной петли, который носит название критического (*r*_{crit}), происходят резкие изменения в плотности дислокационных петель с радиусами, большими r_{crit}. Резкий переход в плотности петель при увеличении их радиуса $r > r_{\rm crit}$ авторы [1] связывают с переходом частичных дислокаций в полные. Критический радиус дислокационной петли можно рассматривать как важную характеристику, которая показывает те точки, после которых происходят качественные и количественные изменения дефектной сети материала. Поскольку энергия образования дислокационных петель связана с энергией дефекта упаковки (ЭДУ) материала, параметр ЭДУ является важным при анализе процессов дефектообразования и "дефектостойкости". Известно, что с уменьшением ЭДУ происходит увеличение структурных нарушений в ме-[2,3]. Увеличение концентрации легирующей таллах примеси в кремнии сопровождается снижением энергии дефекта упаковки, что связано с повышением интенсивности формирования примесных выделений [4]. При исследовании полупроводников А2В6 установлено, что интенсивность образования структурных дефектов при облучении электронами уменьшается в последовательности $ZnS \rightarrow ZnSe \approx CdS \rightarrow CdTe \approx HgTe \rightarrow ZnTe$ и далее к GaAs \approx Si, что коррелирует с ростом значения ЭДУ этих материалов [5].

Целью настоящей работы является изучение методом просвечивающей электронной микроскопии (ПЭМ) зависимости критического радиуса дислокационных петель от энергии дефекта упаковки в полупроводниках CdTe, ZnTe, ZnSe, ZnS, CdS, GaAs, Si и Ge.

2. Экспериментальная часть

Методом ПЭМ исследовались монокристаллы полупроводников CdTe, ZnTe, ZnSe, ZnS, CdS, GaAs, Si и Ge, содержащие дислокационные петли, образовавшиеся в результате различных термообработок и (или) облучения электронами и ионами при условиях, подробно описанных в [5]. Монокристаллы полупроводников А₂B₆ были выращены из газовой фазы в запаянной трубке, а GaAs, Si и Ge были выращены методом Чохральского. Электронно-микроскопические исследования проводились на приборах JEM-100 CX, JEM-4000 EX II и JEM-2100. Образцы для исследования методом ПЭМ приготавливали стандартным методом, сначала механически утончая с использованием устройства Gatan Dimple Grinder, а затем — ионным травлением на установке Precision Ion Polishing System (PIPS), Gatan. Радиус $r_{\rm crit}$ определялся по методу, предложенному в [1], из гистограмм распределения дислокационных петель по размерам.

3. Результаты и обсуждение

На рис. 1 показаны характерные дислокационные петли, образовавшиеся в CdTe в результате ионного травления тонкой фольги ионами Ar⁺ с энергией 5 keV в течение 15 min. Размеры петель находятся в интервале от 15 до 65 nm при плотности $2.5 \cdot 10^{10}$ cm⁻². Распределение дислокационных петель по размерам показано на рис. 2. Критический радиус в данном случае можно оценить в соответствии с [1] как 48 ± 3 nm. В этой области на рисунке наблюдается резкий скачок в плотности петель (показан стрелкой).

— 100 nm

Рис. 1. Образование дислокационных петель в CdTe в результате ионного травления тонкой фольги ионами Ar^+ с энергией 5 keV в течение 15 min. Светлопольное ПЭМ-изображение в рефлексе 220.

Рис. 2. Зависимость плотности ρ дислокационных петель от их размера *r*.

Известно, что процесс образования полной дислокационной петли с вектором Бюргерса $\frac{a}{2}\langle 110 \rangle$ в ГЦКкристаллах можно представить как результат взаимодействия частичных дислокаций Шокли и Франка с векторами Бюргерса $\frac{a}{2}\langle 112 \rangle$ и $\frac{a}{3}\langle 111 \rangle$. Например,

$$\frac{a}{6} [2\bar{1}\bar{1}] + \frac{a}{6} [\bar{1}2\bar{1}] + \frac{a}{3} [111] \to \frac{a}{2} [110].$$
(1)

Согласно классической модели описания энергий процесса образования дислокационных петель, общая энергия образования дислокационной петли ($E_{l,perfect}$) включает в себя энергию дефекта упаковки дислокационной

$$E_{l,\text{perfect}} = E_{\text{SF}} + E_{l,\text{Frank}},\tag{2}$$

где

$$E_{\rm SF} = \pi r^2 \gamma, \qquad (3)$$

$$E_{l,\text{Frank}} = 2\pi r \, \frac{\mu b_{\text{Farnk}}^2}{4\pi (1-\nu)} \left[\ln \left(\frac{8\alpha r}{b_{\text{Frank}}} \right) - 1 \right], \qquad (4)$$

$$E_{l,\text{perfect}} = 2\pi r \frac{\mu b_{\text{Farnk}}}{4\pi (1-\nu)} \left[\ln \left(\frac{8\alpha r}{b_{\text{Frank}}} \right) - 1 \right] + 2\pi r \frac{2-\nu}{2(1-\nu)} \frac{\mu b_{\text{in}}^2}{4\pi} \left[\ln \left(\frac{8\alpha r}{b_{\text{Shockley}}} \right) - 2 \right], \quad (5)$$

r — радиус дислокационной петли, μ — модуль сдвига, ν — коэффициент Пуассона, α — фактор ядра дислокационной петли Франка, $b_{\rm Shockley}$ — модуль вектора Бюргерса дислокационной петли Шокли. В стандартном случае получается $b_{\rm Frank}=\frac{a}{\sqrt{3}}$ и $b_{\rm Shockley}=\frac{a}{\sqrt{6}}$. Здесь a — параметр решетки.

Таким образом, из (2)–(5) получаем связь между критическим радиусом $r_{\rm crit}$ и энергией дефекта упаковки γ

$$\nu = \frac{\mu a^2}{24\pi r_{\rm crit}} \frac{2+\nu}{(1-\nu)} \left[\ln\left(\sqrt{\frac{\alpha r_{\rm crit}}{a}}\right) \right].$$
 (6)

В работе [1] проведена оценка ЭДУ в GaInNAs с помощью классической модели образования дислокационных петель и показано, что она не в полной мере описывает экспериментальные результаты. Более энергетически выгодным является процесс образования петель, учитывающий скольжение двух частичных дислокаций Шокли в разных плоскостях. В этом случае формула (2) приобретает вид [1]

$$E_{l,\text{perfect}} = E_{\text{SF}} + E_{l,\text{Frank}} + 2E_{\text{Shockley}},\tag{7}$$

где

$$E_{\rm shockley} = 2\pi r \, \frac{\mu b_{\rm Shockley}^2}{4\pi} \left[\cos\beta^2 - \frac{\sin\beta^2}{1-\nu} \right] \ln\left(\frac{\alpha r}{b_{\rm Shockley}}\right), \tag{8}$$

где β — угол между вектором Бюргерса и дислокационной линией сегмента Шокли, равный $\pi/6$.

С учетом уравнений (7) и (8) выражение для γ можно записать как

$$\gamma = \frac{\mu a^2}{4800\pi r_{\rm crit}(1-\nu)} \left[400\nu \ln\left(\frac{\alpha r_{\rm crit}}{a}\right) + 32 + 343\nu \right].$$
(9)

Зная значения ЭДУ для полупроводниковых материалов, с помощью уравнения (9) можно рассчитать критические радиусы дислокационных петель для различных полупроводников.

Для решения полученного трансцендентного уравнения использовался программный пакет "Maple".

	Параметр	Коэффициент	Модуль	ЭДУ,	r _{crit} , nm	
Материал	решетки,	Пуассона	сдвига, GPa	mJ/m ²	Классическая	Классическая модель
	nm	[7–9]	[7–9]	[4–6,10]	модель	с учетом дислокаций Шокли
Ge	0.566	0.26	31.7	90	~ 25.1	~ 3.8
Si	0.543	0.27	42.9	50-60	46.5-58.1	7.9-10.1
GaAs	0.565	0.31	32.9	47 ± 5	47.8-62.1	9.5-12.6
ZnTe	0.609	0.36	17.3	16 ± 4	92.9-171	22.5-42.5
CdTe	0.648	0.41	9.2	11 ± 1.9	95.5-145	26.3-41
ZnSe	0.566	0.28	27.5	11.4 ± 1.3	197-257	38.4-51
CdS	0.527	0.4	16.1	7.8 ± 1.9	162-290	44.9-80.2
ZnS	0.541	0.38	21.7	5-6	405-500	110-136
		0.28	26.3			82-101

Значения r_{crit} для полупроводников

Значения *r*_{crit} для ряда полупроводников представлены в таблице.

Приведенные в таблице значения $r_{\rm crit}$ сравнивались с экспериментальными данными, полученными в результате электронно-микроскопических исследований полупроводниковых материалов. Установлено, что рассчитанные по классической модели значения $r_{\rm crit}$ не соответствуют экспериментальным и завышены на порядок величины. Значения $r_{\rm crit}$, рассчитанные по формуле (9), находятся в хорошем согласиси с экспериментальными данными (последний столбец таблицы).

Из таблицы также видно, что критический радиус дислокационных петель в полупроводниках напрямую связан с энергией дефекта упаковки материала и уменьшается с ростом ЭДУ, т.е. чем выше ЭДУ в материале, тем меньше значение критического радиуса и тем более низка вероятность обнаружить крупные дислокационные петли. Это хорошо согласуется с электронномикроскопическими исследованиями [5]. В частности, из экспериментов с использованием просвечивающего электронного микроскопа следует, что сульфид цинка, обладающий самой низкой величиной ЭДУ среди исследованных полупроводников, имеет самую высокую плотность и характеризуется разнообразием структурных дефектов, а размеры дислокационных петель могут достигать значений, на несколько порядков превышающих аналогичные размеры в других анализируемых материалах.

4. Заключение

Учитывая данные, полученные для всех исследованных материалов, можно считать, что ЭДУ — универсальная величина, указывающая на стойкость материала к дефектообразованию, что согласуется с ранее полученными результатами [2–5]. Значение критического радиуса дислокационной петли можно рассматривать как меру дефектостойкости полупроводников, при этом размеры и плотность структурных дефектов в материалах при аналогичных условиях обработки зависят от величины энергии дефекта упаковки.

Список литературы

- M. Herrera, D. Gonzalez, J.G. Lozano, R. Garcia, M. Hopkinson, H.Y. Liu, M. Gutierrez, P. Navaretti. J. Appl. Phys. 98, 023 521 (2005).
- [2] С.Н. Вотинов, О.П. Максимкин. Вопр. атомной науки и техники. Сер. Физика радиационных повреждений и радиационное материаловедение 3(81), 23 (2002).
- [3] F. Ebrahimi, Z. Ahmed, H. Li. Appl. Phys. Lett. 85, 3749 (2004).
- [4] Y. Ohno, T. Taishi, Y. Tokumoto, I. Yonenaga. J. Appl. Phys. 108, 073 514 (2010).
- [5] Ю.Ю. Логинов, П. Браун, К. Дьюроуз. Закономерности образования структурных дефектов в полупроводниках *A*₂*B*₆. Логос, М. (2003). 304 с.
- [6] С. Амелинкс. Методы прямого наблюдения дислокаций. Мир, М. (1968). 440 с.
- [7] http://www.ioffe.ru/SVA/NSM/Semicond/
- [8] И.В. Горичок. ФТТ 54, 1373 (2012).
- [9] http://www.elektrosteklo.ru/Crystals.htm
- [10] S. Takeuchi, K. Suzuki, K. Maeda, H. Iwanaga. Phil. Mag. A 50, 171 (1984).