05,13

Магнитные свойства поликристаллических пленок мультиферроиков CoCr₂O₄ и CoFe_{0.5}Cr_{1.5}O₄

© К.П. Полякова¹, В.В. Поляков¹, Г.Ю. Юркин^{1,2}, Г.С. Патрин^{1,2}

¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ² Сибирский федеральный университет, Красноярск, Россия E-mail: pkp@iph.krasn.ru

(Поступила в Редакцию 14 мая 2013 г.)

Впервые проведены исследования магнитных свойств поликристаллических пленок мультиферроиков $CoCr_2O_4$ и $CoFe_{0.5}Cr_{1.5}O_4$. В частности, исследованы кривые перемагничивания и температурные зависимости намагниченности в интервале температур 4.2-300 К в магнитном поле до 10 kOe. Показана зависимость температуры Кюри и характера температурной зависимости намагниченности от катионного состава мультиферроика. На кривой температурной зависимости намагниченности поликристаллических пленок $CoCr_2O_4$ обнаружена аномалия в области температур 10-70 К.

Работа выполнена при поддержке РФФИ (грант № 11-02-00675-а).

В настоящее время наблюдается повышенный интерес к мультиферроикам — материалам, которые объединяют в себе сразу два вида упорядочения: ферромагнитное и сегнетоэлектрическое. Этим материалам присущи как свойства, характерные для каждого из классов в отдельности (спонтанная намагниченность, магнитострикция, спонтанная поляризация и пьезоэлектрический эффект), так и совершенно новые свойства, связанные с взаимодействием магнитной и электрической подсистем [1,2]. Изучение и применение тонкопленочных мультиферроиков в виде одиночных слоев, а также созданных на их основе гетероструктур для устройств функциональной электроники открывают новые возможности [3,4].

Ионные соединения в системе переменного состава с химической формулой Co_xFe_yCr_{3-x-y}O₄ проявляют разнообразные магнитооптические [5], магнитные [6-8] и электрические [7,8] свойства, делающие их чрезвычайно интересными для научных и прикладных исследований. Сравнительно недавно были обнаружены свойства мультиферроика в шпинелях CoCr₂O₄ и CoFe_{0.5}Cr_{1.5}O₄ [7]. Мультиферроики на основе шпинелей относятся к немногим материалам, в которых мультиферроидные свойства наблюдаются в области магнитного упорядочения. Как известно, шпинель CoCr₂O₄, которая демонстрирует уникальную коническую спиральную магнитную структуру [8], является первым примером мультиферроика со спонтанной намагниченностью и магнитозависимой электрической поляризацией. Ниже температуры Кюри $T_c = 94$ К в CoCr₂O₄ существует коллинеарный ферримагнитный порядок, а при температуре $T_{\rm S} \approx 27 \, {\rm K}$ возникает дальний геликоидальный магнитный порядок. Показано, что электрическая поляризация существует как в геликоидальной магнитной фазе, так и в коллинеарной ферримагнитной фазе [7,9]. Мультиферроик СоFe_{0.5}Cr_{1.5}O₄ отличается более высокой температурой Кюри (175 К) и более низкой температурой перехода к спиральной магнитной структуре [7]. Температурная область существования спонтанной электрической поляризации, так же как в CoCr₂O₄, совпадает с областью магнитного упорядочения.

В настоящей работе впервые представлены результаты исследования магнитных свойств поликристаллических пленок мультиферроиков $CoCr_2O_4$ и $CoCr_{1.5}Fe_{0.5}O_4$. Поликристаллические пленки были синтезированы в условиях твердофазных реакций в слоистых структурах металл/оксид при температурах 870-920 K [5,10]. Ранее нами было показано, что твердофазные реакции в подобных структурах могут проходить как в режиме изотермического отжига, так и в режиме самораспространяющегося высокотемпературного синтеза [5].

Твердофазный синтез пленок $CoCr_2O_4$ и $CoFe_{0.5}Cr_{1.5}O_4$ осуществлялся согласно химическим реакциям вида

$$Co + Cr_2O_3 + 1/2O_2 = CoCr_2O_4,$$
 (1)

$$Co + 0.5Fe + 0.75Cr_2O_3 + 1.25O_2 = CoFe_{0.5}Cr_{1.5}O_4.$$
 (2)

Реагенты реакции (1) представляют собой слои в пленочной структуре Cr_2O_3/Co , а реагенты реакции (2) слои в структуре $Cr_2O_3/Co/Fe$. Слои металлов в последовательности Cr, Co, Fe были нанесены на пластины плавленого кварца методом термического испарения в вакууме $5 \cdot 10^{-6}$ Torr при температуре подложки 470 К. Перед осаждением слоев Co и Fe проводилось окисление слоя Cr при температуре 870 К на воздухе в технологической камере.

Твердофазные реакции в этих пленочных структурах осуществлялись в режиме изотермического отжига при температурах 870–920 К на воздухе. В результате были

получены поликристаллические пленки мультиферроиков толщиной 150–200 nm. Химический состав и толщина пленок контролировались методом рентгеноспектрального флуоресцентного анализа. Кристаллическая структура анализировалась методом рентгеноструктурного фазового анализа. Магнитные свойства полученных пленок были измерены с использованием установки MPMS-XL (Quantum Design) в области температур от 4 до 300 К в магнитном поле до 10 kOe, а также магнитооптического магнитометра Nano MOKE 2.

Дифрактограмма пленки мультиферроика CoCr₂O₄ содержит только рефлексы от шпинели (рис. 1).

Измерения кривых перемагничивания поликристаллических пленок $CoCr_2O_4$ с помощью магнитооптического магнитометра в области температур от 78 до 300 К показали наличие парамагнитных зависимостей в интервале температур 100–300 К (рис. 2, кривая *I*). Появление ферромагнитной кривой намагничивания наблюдалось при температуре 90 К. На рис. 2 (кривая *2*) показана кривая перемагничивания поликристаллической пленки мультиферроика $CoCr_2O_4$, полученная при температуре 80 К. Как видно, петля гистерезиса, измеренная в магнитном поле до 3 kOe, является частной петлей гистерезиса, и насыщение, по-видимому, наступает в

Рис. 1. Дифрактограмма слоистой структуры Cr₂O₃/CoO после отжига.

Рис. 2. Кривые перемагничивания поликристаллической пленки CoCr₂O₄ при температурах 120 (*1*) и 80 К (*2*).

Рис. 3. Температурная зависимость намагниченности *М* поликристаллической пленки CoCr₂O₄.

большем магнитном поле. Измерения температурной зависимости намагниченности полученных пленок проводились с использованием установки MPMS-XL в интервале температур 10-300 К. Температурная зависимость намагниченности, измеренная в магнитном поле 10 kOe, представлена на рис. 3 (кривая получена после охлаждения в магнитном поле). Как видно, кривая температурной зависимости носит сложный, необычный для ферримагнитных шпинелей характер. Температура Кюри равна ~ 100 К, при этом, как и в массивных образцах аналогичного состава, обнаруживается длинный парамагнитный "хвост", наблюдаемый в полях вплоть до 140 kOe. Было показано, что высота "хвоста" зависит от величины магнитного поля [11]. Другой аномалией является изгиб кривой вблизи 70 К. При температуре 50 К наблюдается уменьшение намагниченности примерно в 2 раза по сравнению с максимальным значением. Кривая температурной зависимости намагниченности качественно совпадает с полученной для поликристаллического массивного мультиферроика CoCr₂O₄ [7]. Авторы [7,8] связывают изгиб кривой температурной зависимости вблизи 50 К с возникновением ближнего порядка конической спиральной магнитной структуры. Эта аномалия на кривой температурной зависимости магнитного момента совпадает с аномалией диэлектрической константы вблизи 50 К, о которой сообщалось в работе [8].

Установлено, пленки мультиферроика что СоFe_{0.5}Сr_{1.5}О₄, полученные синтезом в режиме изотермического отжига слоистой структуры Cr2O3/Co/Fe, имеют структуру шпинели. Кривая перемагничивания поликристаллической пленки CoFe0.5Cr1.5O4, полученная с помощью установки MPMS-XL, показана на рис. 4. Измеренная в поле 10 kOe температурная зависимость намагниченности насыщения представлена на рис. 5. Температурная зависимость поликристаллических CoFe_{0.5}Cr_{1.5}O₄ пленок имеет классический вил.

Рис. 4. Кривая перемагничивания поликристаллической пленки CoFe_{0.5}Cr_{1.5}O₄.

Рис. 5. Температурная зависимость намагниченности насыщения *M_S* поликристаллической пленки CoFe_{0.5}Cr_{1.5}O₄.

На кривой температурной зависимости намагниченности насыщения заметна точка смены угла наклона кривой (70-75 К), что позволяет рассматривать ее как суперпозицию кривых двух фаз с различными температурами Кюри (200 и 320 К). Температура 200 К совпадает с температурой Кюри поликристаллического массивного СоFe_{0.5}Cr_{1.5}O₄ [7]. Вместе с тем кривая намагничивания (рис. 4) представляется как кривая намагничивания однофазного магнетика. Если допустить, что полученные пленки являются однофазным ферримагнетиком, то отличие наших результатов (относительно высокая температура Кюри) может быть связано с тем, что поликристаллические массивные образцы и наши пленки получены при разных температурах синтеза. В частности, температура синтеза пленок в наших экспериментах (870-920 К) значительно ниже температуры синтеза поликристаллических образцов, полученных авторами [6,7]. Как известно [12], катионное распределение, влияющее на намагниченность и температуру Кюри шпинели, в значительной степени зависит от условий

синтеза (температура, скорость). Следует обратить внимание на точку перегиба в области низких температур (20 K) на кривой температурной зависимости намагниченности насыщения (рис. 5), совпадающую с температурой возникновения ближнего порядка конической спиральной магнитной фазы, и аномалии диэлектрической константы мультиферроика $CoFe_{0.5}Cr_{1.5}O4$ [7].

Отметим основные результаты работы. Методом твердофазного синтеза в слоистых структурах металл/оксид впервые получены поликристаллические пленки мультиферроиков CoCr₂O₄ и CoFe_{0.5}Cr_{1.5}O₄. Также впервые проведены исследования магнитных свойств поликристаллических пленок мультиферроиков в широкой области температур. Показана зависимость температуры Кюри и характера кривой температурной зависимости магнитного момента от катионного состава мультиферроика. Установлено, что допирование CoCr2O4 ионами Fe значительно расширяет температурную область существования ферримагнетизма в CoFe_{0.5}Cr_{1.5}O₄ в сторону повышения температуры (вплоть до 250 К) и таким образом расширяет температурную область магнитозависимой электрической поляризации. При этом сохраняется особенность (перегиб) на кривой температурной зависимости в области 20 К. Магнитные свойства полученных поликристаллических пленок мультиферроиков качественно совпадают с соответствующими свойствами массивных моно- и поликристаллов.

Список литературы

- [1] H. Bea, M. Bibes, M. Sirena. Appl. Phys. Lett. 88, 062 502 (2006).
- [2] А.П. Пятаков, А.К. Звездин. УФН 182, 593 (2012).
- [3] Z.M. Tian, J.T. Chen, S.L. Yuan, J.B. Tang, S.X. Huo, H.N. Duan. J. Appl. Phys. 110, 053 907 (2011).
- [4] H. Zheng, J. Wang, S.E. Lofland, Z. Ma, T. Zhao, L. Salamanka-Riba, S.R. Shinde, S.B. Ogale, F. Bal, D. Viehland, Y. Jia, D.G. Schlom, M. Wutting, A. Roytburd, R. Ramesh. Science **303**, 661 (2004).
- [5] К.П. Полякова, В.В. Поляков, В.А. Середкин, Г.С. Патрин. Письма в ЖТФ 37, 3, 30 (2010).
- [6] H.-Q. Zhang, W.-H. Wang, E.-K. Liu, X.-D. Tang, G.-J. Li, H.-W. Zhang, G.-H. Wu. Phys. Status Solidi B 250, 1287 (2013).
- [7] H. Bao, S. Yang, X. Ren. J. Phys.: Conf. Ser. 266, 012 001 (2011).
- [8] G. Lawes, B. Melot, K. Page, C. Ederer, M.A. Hayward, Th. Proffen, R. Seshadri. Phys. Rev. B 74, 024 413 (2006).
- [9] K. Singh, A. Maigan, C. Simon, C. Martin. Appl. Phys. Lett. 99, 172 903 (2011).
- [10] K.P. Polyakova, V.V. Polyakov, V.G. Miagkov, G.P. Solyanik, V.A. Seredkin, O.I. Bachina. Phys. Met. Metallogr. 100, Suppl. 1, S60 (2005).
- [11] A.V. Pronin, M. Uhlarz, R. Beyer, T. Fischer, J. Wosnitza, B.P. Gorshunov, G.A. Komandin, A.S. Prokhorov, M. Dressel, A.A. Bush, V.I. Torgashev. Phys. Rev. B 85, 012 101 (2012).
- [12] Я. Смит, Х. Вейн. Ферриты. ИЛ, М. (1962). 505 с.