# Исследования структуры и конформаций звездообразных полимеров с фуллереновыми центрами ветвления: полистиролы с различным строением и функциональностью С<sub>60</sub>-центра в толуоле

© В.Т. Лебедев<sup>1</sup>, Gy. Török<sup>2</sup>, Л.В. Виноградова<sup>3</sup>

 <sup>1</sup> Петербургский институт ядерной физики им. Б.П. Константинова, НИЦ "Курчатовский институт", Гатчина, Россия
 <sup>2</sup> Research Institute for Solid State Physics and Optics, Budapest, Hungary
 <sup>3</sup> Институт высокомолекулярных соединений РАН, Санкт-Петербург, Россия
 E-mail: vlebedev@pnpi.spb.ru

> Методом малоуглового рассеяния нейтронов в дейтеротолуоле изучена структура регулярных звездообразных полистиролов с моно( $C_{60}$ )- и удвоенным ( $C_{60}$ - $C_{60}$ )-центром ветвления в зависимости от количества лучей (f = 6, 12, 22). При функциональности центра f = 6 и 12 термодинамическая жесткость и размеры лучей выше аналогичных характеристик линейного полистирольного прекурсора, однако при f = 22 наблюдается обратное: усиление гибкости, сжатие лучей и уменьшение радиуса инерции звезд. Звезды превращаются в плотные сферические образования, поведение которых не подчиняется теориям Бенуа и Дауда-Коттона для структур с высокой функциональностью и гауссовыми лучами, что объясняется конкуренцией между структурирующим действием фуллеренового центра ветвления на растворитель и обратным влиянием лучей, играющих роль дефектов в упорядоченном слое растворителя вокруг фуллерена.

> Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты №№ 10-03-00191а и 12-03-120-20-офи\_м).

## 1. Введение

Поведение звездообразных фуллеренсодержащих полистиролов (ФПС) с привитыми к фуллерену С<sub>60</sub> лучами [1-4] и явления самоорганизации этих объектов в растворах определяются физико-химическими свойствами лучей, функциональностью и строением центров ветвления [5-8]. Обладая подвижной системой *п*-электронов, молекулы С<sub>60</sub> легко поляризуются, взаимодействуя через наведенные дипольные моменты между собой и лучами (их звенья могут иметь собственные дипольные моменты). Влияние С<sub>60</sub>-центра на полистирольные (ПС) цепи ведет в регулярных  $\Phi\Pi C$  (число лучей f = 6) к формированию вокруг С<sub>60</sub> плотного полимерного ядра (см. схему ниже) [7], препятствующего проникновению в объем звезды соседних частиц, но свободные концы лучей, напротив, стремятся взаимодействовать с растворителем хорошего термодинамического качества.



Вследствие этого усиливается локальная жесткость и стабилизируется вытянутая конформация лучей у поверхности центра. Несмотря на это, способность ФПС к образованию надмолекулярных структур невелика. В толуоле звезды ФПС (f = 6) преимущественно ассоциированы в димеры [8]. С другой стороны, объекты с удвоенным числом лучей (шестилучевые ФПС связаны мостиком –Si(CH<sub>3</sub>)<sub>2</sub>– между молекулами C<sub>60</sub>) [3,4] способны к ассоциации в суперцепи (триады, крупные цепные кластеры) [6]. Чтобы увеличить количество лучей, к двенадцатилучевым звездам присоединяли до десяти "живущих" ПС-цепей, синтезируя ФПС (f = 22) с двойным (C<sub>60</sub>–C<sub>60</sub>)-центром [4]. Влияние удвоенного (C<sub>60</sub>–C<sub>60</sub>)-центра на конформации лучей, структуру и самоорганизацию многолучевых звезд не было изучено.

Целью настоящей работы является исследование молекулярных, структурных, конформационных характеристик ФПС с удвоенным ( $C_{60}-C_{60}$ )-центром в сравнении со свойствами линейного ПС- прекурсора (аналога луча) и шестилучевых ФПС с моно( $C_{60}$ )-центром.

#### 2. Синтез полимерных образцов

Полистириллитий (ПСЛ) (молекулярная масса  $M_n = 7.6 \cdot 10^3$ ,  $M_W/M_n = 1.05$  по данным эксклюзионной хроматографии) — линейный предшественник, использованный в качестве лучей при синтезе звездообразных ФПС, — получали методом анионной полимеризации стирола в бензоле (20°С, инициатор —



олигостириллитий, средняя степень полимеризации 6-8). ФПС с моно(С60)-центром ветвления гексааддукт  $(PS)_f C_{60}$  (f = 6) получали графтированием фуллерена С<sub>60</sub> "живыми" цепями ПСЛ в смеси бензол-толуол (20°С, 1 h) при соотношении ПСЛ:  $C_{60} = 6:1$  [1,2], затем смесь дезактивировали раствором спирта в толуоле (1:3), не нарушая вакуума. "Живые" гексааддукты  $(PS^{-})_6C_{60}(Li^{+})_6$ , имеющие на  $C_{60}$ -центре активные группы C<sub>60</sub>-Li, использовали для синтеза ФПС с удвоенным (С<sub>60</sub>-С<sub>60</sub>)-центром и различным числом лучей. Сочетанием "живых" гексааддуктов с диметилдихлорсиланом (ДМДХС) получали звезды с числом лучей f = 12 [3,4]. С помощью функционализации последних при избытке ДМДХС и последующей реакции активных хлорсодержащих групп на удвоенном (С<sub>60</sub>-С<sub>60</sub>)-центре с новой порцией ПСЛ синтезировали полимеры с  $f \sim 22$  [4] (см. схему выше).

Полимеризационные процессы и реакции осуществляли в высоковакуумной (10<sup>-6</sup> mm Hg) цельнопаянной стеклянной аппаратуре с разбиваемыми тонкостенными перегородками. Полимеры выделяли из реакционных смесей осаждением в метанол и сушили в вакууме. Многолучевые ФПС фракционировали дробным осаждением из бензольного раствора в метанол.

#### 3. Нейтронные эксперименты

Для экспериментов (дифрактометр "Yellow submarine", Нейтронный центр, Будапешт, Венгрия) образцы ПС-прекурсора и ФПС растворяли в дейтеротолуоле (D-толуол), обеспечивающем контраст в рассеянии. Растворы выдерживали сутки (20°С) до равновесного состояния. Чтобы анализировать структуру систем от уровня сегмента до макромолекулы (ассоциата), выбирали концентрационные условия по измерениям характеристической вязкости ФПС [ $\eta$ ] [9]. Содержание полимеров  $c \sim 1$  g/dl было на порядок ниже пороговой концентрации  $c^* = 1/[\eta]$  перекрывания макромолекул в растворе (критерий Дебая), среднее расстояние между центрами звезд в растворе по отношению концентраций  $(c^*/c)^{1/3} \ge 2$  более чем вдвое превосходило их диаметр.

Величины пропускания нейтронов (трансмиссия  $\sim 70\%$ , слой толщиной  $d_s = 5 \text{ mm}$ , 20°C) для растворителя и растворов полимеров различались не бо-

лее чем на 1%, т.е. в первом приближении когерентное рассеяние на полимерах можно было считать однократным. Интенсивности рассеянных нейтронов  $I_S(q)$  в диапазоне переданных импульсов  $q = (4\pi/\lambda)\sin(\theta/2) = 0.07 - 4.0 \,\mathrm{nm}^{-1}$  ( $\theta$  — угол рассеяния,  $\lambda = 0.386$  и 0.751 nm — длины волны нейтронов,  $\Delta \lambda / \lambda \sim 0.1$ ) с учетом фона и трансмиссии нормировали на аналогичные данные для легкой воды  $I_W(q)$  (слой толщиной  $d_W = 1 \text{ nm}$ ), служившей стандартом известного сечения рассеяния  $d\sigma_W/d\Omega$  в единичный телесный угол ( $\Omega$ ) в расчете на 1 ст<sup>3</sup> объема. Вычисленные дифференциальные сечения растворов  $d\sigma/d\Omega = (I_s/I_W)(d_W/d_S)d\sigma_W/d\Omega$  усредняли по ориентациям векторов q в плоскости детектора, получая зависимости сечений  $\sigma(q)$  от модуля импульса, поскольку растворы являлись изотропными системами. В растворах были изучены ПС-прекурсор, регулярные звезды ФПС с лучами равной длины, различающиеся структурой центра и числом ветвлений: ФПС-1 с моно(С<sub>60</sub>)-центром ветвления (f = 6), ФПС-2 и ФПС-3 с удвоенным (C<sub>60</sub>- $C_{60}$ )-центром (f = 12, 22).

#### Конформационные свойства звезд

Импульсные зависимости сечений рассеяния  $\sigma(q)$  для прекурсора (рис. 1, а, кривая 1) и шестилучевого ФПС (рис. 1, а, кривая 2) имеют сходное поведение. При импульсах  $q \ge 0.5 \,\mathrm{nm}^{-1}$ , отвечающих масштабам  $R \sim 1/q$ на уровне размера сегмента ПС-цепи  $A \sim 2 \text{ nm}$  [10] и ниже, значения  $\sigma(q)$  для этих объектов близки друг к другу. В этом *q*-диапазоне проявляются главным образом линейные фрагменты ПС-цепей и лучей того же строения и массы, что и прекурсор. Характер ветвления, строение и масса звезды не играют существенной роли. Указанные факторы проявляются при переходе к меньшим импульсам  $q \leq 0.3 \,\mathrm{nm}^{-1}$ , когда зависимость  $\sigma(q)$ для прекурсора выходит на плато (рис. 1, a, кривая 1), так как значения импульса становятся ниже обратного радиуса инерции ПС-цепи:  $q < 1/R_{GPS}$ . Для шестилучевых звезд (рис. 1, а, кривая 2) в указанной q-области продолжается рост сечения. Этим подтверждается то, что ФПС-1 превосходит прекурсор по размеру и молекулярной массе. С увеличением количества лучей при переходе к звездам с удвоенным (С<sub>60</sub>-С<sub>60</sub>)-цент-



**Рис. 1.** Зависимости сечений рассеяния *σ* от импульса *q* для растворов линейного ПС-прекурсора (*1*) и ФПС-1 (*2*) (*a*), ФПС-2 (*3*) и ФПС-3 (*4*) (*b*). Линиями показаны функции рассеяния, отвечающие спектрам корреляций (см. рис. 4).

ром (образцы ФПС-2, ФПС-3) импульсная зависимость сечения  $\sigma(q)$  в качественном отношении начинает меняться, демонстрируя формирование максимума при  $q \sim 0.2-0.3 \,\mathrm{nm^{-1}}$  (рис. 1, *b*, кривые 3, 4), что указывает на упорядочение лучей в звездах.

Для звезд с С<sub>60</sub>-центром и числом лучей  $f \ge 6$ анализ конформаций по данным рассеяния нейтронов при высоких импульсах не проводился. Изучая растворы аналогичных шестилучевых ФПС (молекулярные массы  $M_{\rm ST} \sim 10^4 - 10^6$ ), авторы [11] в интервале  $0.02 < q < 2 \, {\rm nm^{-1}}$  не имели детальной информации о конформации лучей и ограничились сравнением данных с моделью Дауда-Коттона [12] и теорией [13] для модельных многолучевых звезд ( $f \sim 100$ ) с лучами в виде последовательностей блобов с размером, растущим от центра к периферии. Для таких структур предсказан кроссовер [13] сечения от закона  $q^{-5/3}$  к зависимости  $q^{-10/3}$  при переходе от импульсов порядка обратной сегментальной длины к меньшим импульсам, отвечающим размеру плотной центральной области звезды. Данные [11] показывают, что при числе лучей f = 6 модель и теория [12,13] применимы лишь ограниченно, причем с увеличением массы луча область применимости закона  $q^{-10/3}$  сужается и доминирует асимптотика  $q^{-5/3}$  для линейных цепей в хорошем растворителе.

В первом приближении (рис. 1, *a*) для прекурсора и звезд ФПС-1 асимптотика  $q^{-5/3}$  применима, однако поведение  $q^{-10/3}$  для шестилучевых звезд не проявляется в

достаточной мере. С увеличением числа лучей до f = 22 можно говорить о приближении сечения к характерной для модельных звезд [13] асимптотике  $q^{-10/3}$ . При этом область применимости закона  $q^{-5/3}$  сужается (рис. 1, *b*), и необходимо анализировать сечения при  $q \ge 1$  nm<sup>-1</sup> (рис. 2), чтобы выявить особенности конформации полимеров на масштабах от размера звена до сегмента цепи (луча)  $R \sim 1/q$ , важные для понимания структуры звезд в целом. Установлено, что в области  $q \sim 0.6-4.4$  nm<sup>-1</sup> сечения подчиняются закону

$$\sigma(q) = J/q^D,\tag{1}$$

где коэффициент J характеризует рассеивающую способность, показатель D — конформацию цепных фрагментов (рис. 3, *a*, *b*, табл. 1). Полностью вытянутый фрагмент характеризуется показателем D = 1, для цепи с исключенным объемом в хорошем растворителе

**Таблица 1.** Параметры *J*, *D* функции (1) и рассчитанная по ним длина жестких фрагментов цепи *L*<sub>P</sub> для полимеров

| Образец                       | $J \cdot 10^2$ , cm <sup>-1</sup> · nm <sup>-D</sup>                                            | D                                                                                               | $L_P, nm$                                                                                       |
|-------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| ПС<br>ФПС-1<br>ФПС-2<br>ФПС-3 | $\begin{array}{c} 4.90 \pm 0.03 \\ 4.04 \pm 0.03 \\ 3.88 \pm 0.03 \\ 4.27 \pm 0.03 \end{array}$ | $\begin{array}{c} 1.64 \pm 0.01 \\ 1.59 \pm 0.02 \\ 1.58 \pm 0.02 \\ 1.67 \pm 0.01 \end{array}$ | $\begin{array}{c} 0.96 \pm 0.02 \\ 1.30 \pm 0.02 \\ 1.40 \pm 0.02 \\ 1.18 \pm 0.02 \end{array}$ |



Рис. 2. Зависимость сечения рассеяния  $\sigma$  от импульса q для линейного ПС-прекурсора (1) и ФПС-1 (2) (a), ФПС-2 (3) и ФПС-3 (4) (b) при высоких импульсах. Линиями показаны функции аппроксимации (1).

 $D_{\rm EX}=5/3$  (показатель Флори), для гауссова клубка (heta-условия) D=2.

Степенная зависимость сечения (1) следует из того, что полимеры — это последовательности элементарных жестких (распрямленных) фрагментов длиной  $L_P$  и площадью поперечного сечения  $S_t$ , степень взаимной корреляции которых по направлению задана показателем *D*. Если начало координат (R = 0)фиксировано на одном из фрагментов, то внутри сферы радиуса R заключен участок цепи объемом  $V_R = (2L_P S_t)(R/L_P)^D$ . В сферическом слое (радиус R, толщина dR) находятся звенья с общим объемом  $dV_R = (dV_R/dR)dR = (2DS_t/L_p^{D-1})R^{D-1}dR$ . Доля заполненного объема в слое  $\gamma_0(R) = (DS_t/2\pi L_p^{D-1})R^{D-3}$  определяет вероятность обнаружить звено цепи в единичном объеме на расстоянии R от звена, выбранного за начало координат, т.е.  $\gamma_0(R)$  описывает парные корреляции звеньев [14,15]. Фурье-преобразование  $\gamma_0(R)$  с учетом фактора контраста  $\Delta K$  и объемного содержания  $\varphi$  полимера в растворе дает *q*-зависимость сечения

$$\sigma(q) = 4\pi (\Delta K)^2 \varphi \int \gamma_0 R[\sin(qR)/(qR)] R^2 dR = J/q^D.$$
(2)

Параметр  $J(L_P) = 2S_t(\Delta K)^2 \varphi D\Phi(D)/L_P^{D-1}$  — функция длины  $L_P$ , включающая известные величины  $S_t$ ,  $\Delta K$ , D и интеграл  $\Phi(D) = \int X^{D-2} \sin X dX \sim 1$  в пределах  $(0, \infty)$ . По параметрам J и D (рис. 3, a, b, табл. 1) были оценены размеры жестких фрагментов цепей ПС-прекурсора и

лучей  $L_P(f)$  в зависимости от функциональности звезд (табл. 1, рис. 3, *c*).

Действительно, размеры  $L_P(f)$  лежат на уровне персистентной длины ПС в хорошем растворителе [10], но вариация степени ветвления f сказывается на термодинамической гибкости лучей (рис. 3, с). Переход от линейного ПС к звездам, удвоение числа лучей на (С<sub>60</sub>- $C_{60}$ )-центре ведет к уменьшению D(f) до минимума  $D \approx 1.58 < D_{\rm EX} = 5/3$  (цепь с исключенным объемом в хорошем растворителе), т.е. видна тенденция к вытягиванию лучей при f = 12 (ФПС-2). Однако при переходе к звездам с 22 лучами (ФПС-3) тенденция радикально меняется, лучи восстанавливают конформацию, присущую свободной цепи прекурсора (рис. 3, b). Аналогично этому меняется и длина жестких фрагментов  $L_P(f)$ . С увеличением числа лучей жесткость цепи сначала усиливается, L<sub>P</sub> возрастает на 40%, но затем ослабляется, длина  $L_P$  уменьшается (рис. 3, *c*).

Оба параметра, D(f) и  $L_P(f)$ , меняются согласованно, усиливая эффект изменения размера лучей, но характер перестройки локальной конформации (гибкости) лучей, привитых к C<sub>60</sub>-центру, расходится с теорией Дауда-Коттона [12], по которой с ростом числа лучей они располагаются радиально (последовательности блобов) из-за взаимного отталкивания. Наоборот, для звезд, имеющих (C<sub>60</sub>-C<sub>60</sub>)-центр, увеличение числа лучей ( $f = 12 \rightarrow 22$ ) сопряжено с переходом к более свернутым лучам. Последнее означает усиление взаим-



**Рис. 3.** Зависимости параметров J(f) (*a*), D(f) (*b*) функции (1) и длины жестких фрагментов цепи  $L_P(f)$  (*c*) от степени ветвления *f* звездообразных ФПС, заданной при синтезе. Линия на части *b* соответствует показателю  $D_{\text{EX}} = 5/3$  по Флори.

ного притяжения звеньев, поэтому кроме стерического отталкивания лучей следует учесть специфику взаимодействия C<sub>60</sub> с лучами и растворителем.

Как известно [16,17], фуллерен у поверхности структурирует ароматические растворители (бензол, толуол), их молекулы формируют колоннообразные структуры с шестичленными циклами С<sub>60</sub> в основаниях. Если к поверхности фуллерена в звездах с моно(С<sub>60</sub>)- и удвоенными (С<sub>60</sub>-С<sub>60</sub>)-центрами привиты цепи, то организация растворителя у поверхности С<sub>60</sub> будет способствовать радиальному выстраиванию лучей, если их число невелико (6 на молекуле С<sub>60</sub>) и они не мешают упорядочению растворителя. При увеличении числа лучей до f/2 = 11 на молекуле С<sub>60</sub> площадь свободной поверхности фуллерена, видимо, недостаточна для формирования сборок молекул растворителя, поддерживавших лучи у поверхности фуллерена в вытянутом состоянии, и они сворачиваются подобно свободным цепям (рис. 3, b, c). При этом локальные конформационные свойства прекурсора и лучей сказываются на размерах цепей ПС и звезд в целом.

# Внутримолекулярные и межмолекулярные корреляции в растворах звезд

О размерах макромолекул можно судить по спектрам молекулярных корреляций  $\gamma(R)$ , полученных путем Фурье-преобразования [14,15] данных для сечений:

$$\gamma(R) = (\Delta K_{\rm PS} V_1)^2 \langle \Delta n(0) \Delta n(R) \rangle$$
$$= (1/2\pi)^3 \int \sigma(q) [\sin(qR)/(qR)] 4\pi q^2 dq, \qquad (3)$$

где  $V_1$  — объем звена ПС,  $\Delta K_{\rm PS} = 4.26 \cdot 10^{10} \, {\rm cm}^{-2}$  — фактор контраста ПС в толуоле. Функция  $\gamma(R)$  — усредненное произведение отклонений численной концентрации звеньев  $\Delta n(0)$ ,  $\Delta n(R)$  в точках на расстоянии R. Растворы изотропны, и далее использованы функции  $G(R) = R^2 \gamma(R)$  парных корреляций в сферических слоях на расстоянии радиуса R от выбранной центральной частицы (рис. 4).



**Рис. 4.** Спектры молекулярных корреляций G(R) для ПС-прекурсора (1) и звезд ФПС-1 (2) (a), ФПС-2 (3) (b), ФПС-3 (4) (c). Тонкие линии — функции аппроксимации (5) и их компоненты, жирные линии характеризуют корреляции частиц в растворе на характерных расстояниях ( $R_{int}$ ).

| Образец | $R_{GPS}, R_{GST},$ nm | $R_{GST}/R_{GPS}$ | $R_{GST}/R_{GPS}$<br>(по Бенуа) | $R_{G\mathrm{ST}}/R_{G\mathrm{PS}}$ (по Дауду–Коттону) | R <sub>GA</sub> ,<br>nm |
|---------|------------------------|-------------------|---------------------------------|--------------------------------------------------------|-------------------------|
| ПС      | $2.86\pm0.06$          | 1                 | 1                               | 1                                                      | _                       |
| ФПС-1   | $5.46\pm0.02$          | $1.91\pm0.04$     | 1.63                            | 1.57                                                   | $3.39\pm0.11$           |
| ФПС-2   | $6.02\pm0.04$          | $2.11\pm0.05$     | 1.68                            | 1.86                                                   | $3.52\pm0.11$           |
| ФПС-3   | $5.92\pm0.02$          | $2.07\pm0.04$     | 1.71                            | 2.17                                                   | $3.01\pm0.10$           |

**Таблица 2.** Значения радиусов инерции ( $R_G$ ) ПС и ФПС из формулы (4), отношения размеров звезд и цепей прекурсора ( $R_{GST}/R_{GPS}$ ), расчетные величины  $R_{GST}/R_{GPS}$  (модели Бенуа [18], Дауда-Коттона [12]) и радиусов инерции лучей  $R_{GA}$ 

Профили G(R) для звезд, особенно при f = 22, примерно симметричны относительно позиции основного максимума  $R_{mST} \sim 5-6$  nm, но спектр прекурсора с максимумом при  $R_{mPS} \sim 2$  nm асимметричен, что отражает различие геометрии ФПС и цепей ПС. Практически симметричный спектр G(R) присущ однородным сферическим частицам, координата максимума  $R_m \sim 1.05 R_{SP}$ показывает радиус частицы  $R_{SP}$ , полная ширина спектра



**Рис. 5.** Зависимость радиусов инерции звездообразных молекул ФПС ( $R_{GST}$ ) (I) и их лучей ( $R_{GA}$ ) (2) (начальные точки при f = 1 соответствуют  $R_{GPS}$  для ПС-прекурсора) (a), экспериментального отношения размеров  $R_{GST}/R_{GPS}$  звезды и цепи прекурсора (3) и расчетных величин  $R_{GST}/R_{GPS}$  (модели Бенуа [18], Дауда–Коттона [12]) (4, 5) (b) от функциональности f центра ветвления.

равна  $2R_{SP}$  [14]. В первом приближении ФПС подобны сферам радиусом порядка диаметра цепи прекурсора. Интегрирование спектров G(R) в пределах основного пика [14] позволяет найти радиусы инерции  $R_G$  макромолекул (табл. 2) с помощью соотношения

$$R_G^2 = (1/2) \left[ \int R^2 G(R) dR \right] \Big/ \int G(R) dR.$$
 (4)

Установлено (табл. 2, рис. 5, а), что с ростом функциональности (f = 6-22) радиус инерции звезды  $R_{GST}(f)$  сначала увеличивается до максимума при f = 12, затем уменьшается, что согласуется с изменением длины L<sub>P</sub> жестких фрагментов лучей (рис. 3, с) и степени корреляции фрагментов по направлению (показатель D, рис. 3,b). Чтобы объяснить поведение  $R_{GST}(f)$ , оценили радиус инерции лучей  $R_{GA} = R_{GPS}(L_{PST}/L_{PPS})L_t^{(1/D_{ST}-1/D_{PS})}(L_{PPS}^{1/D_{PS}}/L_{PST}^{1/D_{ST}}),$ используя значение R<sub>GPS</sub> для прекурсора и параметры L<sub>P</sub>, D (табл. 1, 2). С увеличением функциональности центра радиус инерции лучей  $R_{GA}(f)$  сначала увеличивается, затем уменьшается почти до размера  $R_{GPS}$ цепи прекурсора. Этим обусловлено поведение  $R_{GST}(f)$ (рис. 5, а, табл. 2), однако при этом уменьшение размера луча частично компенсируется тем, что при большом количестве (f = 22) лучи способны выстраиваться радиально, так что размер звезды сокращается незначительно (рис. 5, а, табл. 2).

Наблюдаемое изменение размера звезд не объясняется теорией Дауда-Коттона [12]. Теория Бенуа [18] предсказывает рост размера звезды с увеличением числа лучей (их конформация предполагается гауссовой), так что отношение радиусов инерции звезды и луча  $R_{GST}/R_{GA} = [(3f-2)/f]^{1/2}$  достигает предела  $R_{GST}/R_{GA} \rightarrow \sqrt{3}$  при  $f \gg 1$ . По теории [12,13] отношение радиусов инерции звезды и луча — степенная функция  $R_{GST}/R_{GA} \sim f^{1/4}$  для звезд с относительно короткими лучами (число сегментов в составе луча  $v \gg f^{1/2}$ ). Имеющие ~ 70 звеньев ПС-лучи включают  $\nu \sim 10$  сегментов, что более чем вдвое превосходит фактор  $f^{1/4}$  при f = 22. В грубом приближении сопоставление данных с моделью Дауда-Коттона допустимо. Данные эксперимента ближе к рассчитанным точкам  $R_{GST}/R_{GA}$  по Дауду–Коттону, но качественно более отвечают теории Бенуа (рис. 5, b).

В условиях, когда С<sub>60</sub>-центр структурирует растворитель, усиливается упорядочение лучей внутри звезды, в результате при f = 6 и 12 наблюдается ее расширение сверх оценок теории [12,13]. В работе [19] на это обращалось внимание при интерпретации данных для ФПС с С<sub>60</sub>-центром (f = 6). Увеличенный размер ведет к усилению контактов (перекрыванию) звезд в растворе, и, наоборот, сжатие (уплотнение) полимерной оболочки звезд приводит к отталкиванию частиц. Последнее хорошо видно из спектра G(R) для звезд с 22 лучами: интенсивный пик межмолекулярных корреляций с максимумом при  $R^* \approx 35$  nm, т.е. частицы разделены характерным расстоянием  $R^* \approx 35 \,\mathrm{nm}$ , преобладает их отталкивание (рис. 4, с). Действительно, оценка среднего расстояния R<sub>int</sub> между звездами в растворе исходя из их массы  $M_{\rm ST} = 22M_{\rm PS} = 1.7 \cdot 10^5$  дает радиус  $R_{\rm int} = (6\alpha/\pi N_{\rm ST})^{1/3} \approx 33$  nm, близкий к координате пика  $R^* \approx 35$  nm.

В этих расчетах использована масса прекурсора  $M_{\rm PS} = 7.6 \cdot 10^3$ , содержание полимера c = 1.05 g/dl,  $M_{\rm ST} = 22M_{\rm PS}$ , что приводит к концентрации частиц  $N_{\rm ST} = cN_{\rm A}/M_{\rm ST} \approx 3.8 \cdot 10^{16}$  сm<sup>-3</sup> и расстоянию между ними  $R_{\rm int} \approx 33$  nm для модели плотной упаковки сфер диаметра  $R_{\rm int}$ , заполняющих  $\alpha \approx 0.74$  объема образца.

Аналогичные расчеты для звезд ФПС-2 и ФПС-1 (f = 12 и 6) дают средние расстояния между частицами  $R_{\text{int}} \approx 28$  и  $\approx 22$  nm. Соответствующие пики присутствуют в спектрах G(R), но наблюдаемые межмолекулярные корреляции в диапазоне  $R \sim 15-45$  nm носят более сложный характер (рис. 4).

Чтобы точнее расшифровать структуру спектров G(R)для звезд использовались корреляционные функции

$$G(R) = g_0 R \exp(-R^2 / 2R_{GST}^2) + \Sigma g_i R^2 \exp\left[-(R - R_{im})^2 / 2\delta_{im}^2\right], \ i = 1, 2, 3.$$
(5)

Первая компонента описывает корреляции внутри звезд (радиус инерции  $R_{GST}$ ), сумма гауссианов — корреляции между звездами на расстояниях между центрами  $R_{im}$  с дисперсиями  $\delta_{im}$ . Коэффициенты  $g_0$ ,  $g_i$  определяются рассеивающей способностью частиц. Аппроксимация данных функцией (5) на рис. 4 иллюстрируется кривыми для ее компонент. Найденные значения радиусов инерции звезд

$$R_{GST} = 5.5 \pm 0.1 \,\mathrm{mn}$$
 (f = 6),  
 $R_{GST} = 5.6 \pm 0.2 \,\mathrm{nm}$  (f = 12),  
 $R_{GST} = 6.0 \pm 0.1 \,\mathrm{nm}$  (f = 22)

в пределах точности согласуются с величинами, полученными из интегралов G(R).

В растворе звезд ФПС-1 с моноцентром характерное расстояние между частицами соответствует позиции максимума гауссиана  $R_{im} = 20.1 \pm 1.2$  nm, близкой к оценке  $R_{int} \approx 22$  nm (кривая на рис. 4, *a* смещена к большему радиусу из-за фактора  $R^2$ ). Для звезд ФПС-2,

ФПС-3 с (С<sub>60</sub>–С<sub>60</sub>)-центром из аппроксимации спектров G(R) функцией (5) найдены дистанции между частицами  $R_{im} = 24.4 \pm 0.7$  и 29.9 ± 0.2 nm на уровне расчетных величин  $R_{int} \approx 28$  и  $\approx 33$  nm при f = 12 и 22. Анализ структуры спектров корреляций подтвердил, что звезды ФПС-1–3 имеют заданные при синтезе числа лучей f = 6, 12 и 22.

# 6. Заключение

Анализ структуры и конформаций звездообразных полимеров с моно- и удвоенным (С<sub>60</sub>-С<sub>60</sub>)-центром ветвления и варьируемым числом лучей выявил новые закономерности внутримолекулярных корреляций. Обнаружена немонотонная зависимость размера луча в звезде от функциональности центра вследствие изменений статистических свойств цепей на масштабах персистентной длины. С увеличением количества лучей первоначально усиливается жесткость цепи (персистентная длина растет, усиливается взаимная корреляция жестких фрагментов по направлению), но затем происходит переход к состоянию относительно высокой гибкости, свойственной свободным цепям в растворе. Результаты, не подчиняющиеся теориям Бенуа и Дауда-Коттона, находят объяснение в специфике взаимодействия фуллерена с ароматическим растворителем: фуллерен формирует на поверхности молекулярные сборки — колонны, стабилизирующие вытянутые конформации лучей, когда они немногочисленны и не нарушают данного молекулярного порядка. Если количество лучей возрастает, то они играют роль дефектов, нарушая заданную фуллереном упаковку растворителя, что сказывается на конформациях лучей, приближающихся по статистическим свойствам к свободным цепям. В результате звезды превращаются в компактные структуры, подобные сферическим частицам, между которыми преобладают силы отталкивания, что создает ближний порядок в расположении звезд в растворе.

## Список литературы

- [1] Y. Ederle, C. Mathis. Macromolecules **30**, *9*, 2546 (1997).
- [2] Е.Ю. Меленевская, Л.В. Виноградова, Л.С. Литвинова, Е.Е. Кевер, Л.А. Шибаев, Т.А. Антонова, Е.Н. Быкова, С.И. Кленин, В.Н. Згонник. Высокомолекуляр. соединения А 40, 2, 247 (1998).
- [3] Л.В. Виноградова, Е.Ю. Меленевская, Е.Е. Кевер, В.Н. Згонник. Высокомолекуляр. соединения А 42, 2, 213 (2000).
- [4] Л.В. Виноградова, Е.Е. Кевер, А.П. Филиппов. Высокомолекуляр. соединения В 51, 5, 883 (2009).
- [5] В.Т. Лебедев, Л.В. Виноградова, Gy. Török. Высокомолекуляр. соединения А 50, 8, 1833 (2008).
- [6] В.Т. Лебедев, Gy. Török, Л.В. Виноградова. ЖПХ 84, 3, 451 (2011).
- [7] В.Т. Лебедев, Gy. Török, Л.В. Виноградова. Высокомолекуляр. соед. А **53**, *7*, 1011 (2011).

- [8] В.Т. Лебедев, Gy. Török, Л.В. Виноградова. Высокомолекуляр. соед. А **53**, *1*, 15 (2011).
- [9] А.П. Филиппов, О.А. Романова, Л.В. Виноградова. Высокомолекуляр. соединения А. **52**, *3*, 371 (2010).
- [10] А.Е. Нестеров. Справочник по физической химии полимеров. Свойства растворов и смесей полимеров. Наук. думка, Киев (1984). Т. 1, 376 с.
- [11] C. Picot, F. Audouin, C. Mathis. Macromolecules 40, 5, 1643 (2007).
- [12] M. Daoud, J.P. Cotton. J. Phys. (France) 43, 531 (1982).
- [13] C.M. Marques, D. Izzo, T. Charitat, E. Mendes. Eur. Phys. J. B 3, 353 (1998).
- [14] Д.И. Свергун, Л.А. Фейгин. Рентгеновское и нейтронное малоугловое рассеяние. Наука, М. (1986). 279 с.
- [15] D.I. Svergun. J. Cryst. 25, 495 (1992).
- [16] B.M. Ginzburg, Sh. Tuichiev. J. Macromol. Sci. B 44, 4, 517 (2005).
- [17] Б.М. Гинзбург, Ш. Туйчиев. Кристаллография 53, 4, 661 (2008).
- [18] H.C. Benoit. J. Polymer Sci. 11, 5, 507 (1953).
- [19] В.Т. Лебедев, Gy. Török, Л.В. Виноградова. Высокомолекуляр. соединения А **55**, *1*, 35 (2013).