Исследования структуры и конформаций звездообразных полимеров с фуллереновыми центрами ветвления, функционализированными карбонильными группами

© В.Т. Лебедев¹, Gy. Török², Л.В. Виноградова³

 Петербургский институт ядерной физики им. Б.П. Константинова, НИЦ "Курчатовский институт", Гатчина, Россия
 ² Winger Research Institute for Physics, Institute for Solid State and Optics, Budapest, Hungary
 ³ Институт высокомолекулярных соединений РАН, Санкт-Петербург, Россия
 E-mail: vlebedev@pnpi.spb.ru
 Методом малоуглового рассеяния нейтронов изучены звездоо

Методом малоуглового рассеяния нейтронов изучены звездообразные полистиролы (PS)₆C₆₀ в дейтеротолуоле, поверхность C₆₀-центра которых модифицировалась присоединением одной-трех полярных групп C=O. Обнаружено, что переход к низкой концентрации растворов (1.0 \rightarrow 0.1 g/dl) приводил к изменению локальной конформации лучей на масштабах $R \sim 1/q \leq 1$ nm от клубкообразных к распрямленным фрагментам. Эффект усиливался при наличии одной-двух групп C=O на поверхности фуллеренов. Результаты обсуждаются в связи с влиянием фуллеренов на структуру растворителя.

Работа поддержана РФФИ (грант № 12-03-120-20-офи_м).

1. Введение

Полимерные производные фуллеренов С₆₀ — гибридные структуры, сочетающие специфику полимеров и фуллеренов (акцепторы электронов, сильно поляризующиеся, обладающие нелинейными оптическими свойствами, организующиеся в растворах), перспективные для новых технологий (микроэлектроника, биология, молекулярная медицина) [1-6]. В гибридной структуре фуллерены способны играть роль активных центров, на поверхности которых можно организовать направленные химические процессы (нанореакторы) [7,8]. Для этого требуются макромолекулы с управляемой конформацией и структурой, такие как звезды с фуллереновым центром и лучами, формирующими оболочку вокруг фуллерена, размеры и плотность которой можно регулировать, варьируя молекулярные массы и полярность лучей, прививая к поверхности фуллерена функциональные группы [9-11]. Настоящая работа посвящена изучению звездообразных полистиролов (ПС) с С₆₀-центрами, несущими полярные карбонильные группы. Цель работы — выяснить, каким образом графтирование центров группами С=О и фактор концентрации полимера действуют на структуру и конформации звезд в растворах.

2. Эксперимент и анализ данных

Для получения звездообразных полимеров (ИВС РАН) синтезировали линейный полистириллитий (ПСЛ) методом анионной полимеризации стирола в бензоле (инициатор — олигостириллитий, степень полимеризации 6–8). Звездообразные фуллеренсодержащие полистиролы (ФПС) (число лучей f = 6, масса каждого $M_{\rm PS} = 3.7 \cdot 10^3$ по данным хроматографии) с центром

ветвления — фуллереном C_{60} — получали методом его исчерпывающего графтирования цепями ПСЛ в смеси бензол-толуол при комнатной температуре и соотношении ПСЛ: $C_{60} = 6:1$ [1,12]. Поверхность C_{60} модифицировали, присоединяя карбонильные группы в количестве n = 1-3 (табл. 1). Образцы для нейтронных опытов готовили, растворяя ФПС в дейтеротолуоле (D-толуол), чтобы обеспечить контраст между полимером и растворителем. Исходные системы содержали $C \sim 1$ g/dl полимера, после измерений рассеяния растворы разбав-

Таблица 1. Параметры функции (1) в зависимости от концентрации полимеров (*C*), количества групп C = O(n): $J - \phi$ актор, связанный с рассеивающей способностью цепей, D — показатель в законе рассеяния (1)

Номер образца (n)	C, g/dl	J, cm ⁻¹ ·nm ^{-D}	D
1(0)	1.10	0.0515 ± 0.0006	1.59 ± 0.06
1(0)	0.55	0.269 ± 0.0005	1.53 ± 0.09
1(0)	0.28	0.156 ± 0.0003	1.28 ± 0.11
1(0)	0.14	0.0099 ± 0.0004	1.08 ± 0.12
2(1)	0.97	0.0421 ± 0.0006	1.51 ± 0.07
2(1)	0.51	0.0239 ± 0.0005	1.39 ± 0.10
2(1)	0.27	0.0150 ± 0.0004	1.15 ± 0.11
2(1)	0.14	0.0100 ± 0.0003	1.22 ± 0.15
3(2)	1.04	0.0463 ± 0.0006	1.52 ± 0.07
3(2)	0.51	0.0233 ± 0.0004	1.33 ± 0.11
3(2)	0.26	0.0142 ± 0.0003	1.42 ± 0.12
3(2)	0.13	0.0098 ± 0.0004	1.03 ± 0.14
4(3)	1.09	0.0525 ± 0.0006	1.62 ± 0.06
4(3)	0.55	0.0280 ± 0.0004	1.62 ± 0.08
4(3)	0.27	0.0152 ± 0.0003	1.44 ± 0.11
4(3)	0.14	0.0095 ± 0.0003	1.21 ± 0.14

Рис. 1. *а*) Сечения растворов звезд $\sigma(q)$ с числом n = 3 карбонильных групп на фуллерене C_{60} в зависимости от импульса при исходном содержании полимеров $C \sim 1$ g/dl (1) и концентрациях при разбавлении в 2, 4, 8 раз (2–4). Линии — функции аппроксимации J/q^D с параметрами J(C, n), D(C, n) (табл. 1). Показана модельная зависимость сечения $\sigma(q) \sim q^{-10/3}$ [25] для звездообразных полимеров. *b*) Показатели D(C, n) в зависимости от концентрации полимеров: 1 — данные для звезд без карбонильных групп, 2, 3 — усредненные данные при n = 1 и 2, 4 — данные при n = 3.

ляли вдвое, повторяя опыты, и т.д. до концентрации $C \sim 0.1 \, {\rm g/dl} \ ({\rm табл.} \ 1).$

В растворах (20°С) измеряли рассеяние в диапазоне переданных импульсов $q = (4\pi/\lambda) \sin(\theta/2) =$ = 0.1–4 nm⁻¹ ($\lambda = 0.386$ nm — длина волны нейтронов, θ — угол рассеяния, дифрактометр "Yellow Submarine", ИФТТ, Будапешт). Трансмиссия растворов для нейтронов Tr $\approx 71-73\%$ была близкой к величине Tr $\approx 72\%$ для D-толуола. Таким образом, доля когерентного рассеяния на полимерах за пределы апертуры центральных ячеек детектора составляла $\sim 1\%$ от интенсивности исходного пучка, т. е. когерентное рассеяние можно было считать однократным.

Измеренные сечения $\Sigma(q) = \sigma(q) + B$ содержали когерентную часть $\sigma(q)$ и вклад некогерентного фона B = const, его вычитали из данных, анализируя импульсные зависимости сечений при $q \ge 1 \text{ nm}^{-1}$. Поведение когерентных компонент $\sigma(q)$ показано на рис. 1, a на примере звезд с тремя группами C=O на центрах C₆₀ при концентрациях $C \sim 0.1-1 \text{ g/dl}$ (данные для звезд без карбонильных групп и числе групп n = 1, 2 подобны приведенным на рис. 1). С уменьшением импульса сечения растут, демонстрируя выход на плато (рис. 1, a). Его уровень поднимается пропорционально концентрации, что указывает на отсутствие заметной агрегации полимеров при низких и умеренных концентрациях. Чтобы выделить когерентную компоненту сечений, данные $\Sigma(1)$ при $q \ge 1 \text{ nm}^{-1}$ аппроксимировали функцией

$$\Sigma(q) = J/q^D + B. \tag{1}$$

Физика твердого тела, 2014, том 56, вып. 1

В когерентной части сечения фактор J(C, n) связан с рассеивающей способностью цепей и по мере разбавления систем убывает с уменьшением количества макромолекул в растворе (табл. 1). Показатель D(C, n)характеризует локальную конформацию полимеров на масштабах $R \sim 1/q$ от размера звена до длины сегмента цепи в зависимости от концентрации С и количества карбонильных групп *n* на поверхности С₆₀ (табл. 1, рис. 1, *b*). Его значения для линейных полимеров могут варьироваться от D = 1 для распрямленного фрагмента до $D_{\rm F} = 5/3$ (показатель Флори, цепь с исключенным объемом в хорошем растворителе) и D = 2 для гауссового клубка. В данном случае при исходной концентрации систем ($C \sim 1 \,\text{g/dl}$) параметр $D \sim 1.5 - 1.6$ близок к показателю Флори D_F = 5/3. Следовательно, лучи в звездах имеют те же конформации, что и свободные цепи с исключенным объемом в хорошем растворителе. Однако при разбавлении растворов величина D(C)падает, приближаясь к пределу для вытянутых цепей $(D \rightarrow 1)$, что означает усиление взаимного отталкивания звеньев в лучах (улучшение растворимости фуллеренсодержащего полимера при низких концентрациях). Чтобы понять данный эффект, следует учитывать специфику взаимодействия фуллерена с растворителем.

Известно [13], что при добавлении фуллерена C₆₀ в толуол ($10^{-4}-10^{-2}$ mass%) плотность раствора сначала уменьшается до минимума, но затем растет и становится выше плотности чистого растворителя (эффект ~ 1%). Аналогичное поведение плотности наблюдалось и в других системах (C₆₀, C₇₀ в бензоле, толуоле,

п-ксилоле) [14–17]. По данным рентгенографии [18] в ароматических растворителях существует ближний молекулярный порядок (периоды 0.6-0.7 nm и 1.3-1.4 nm при плотной и менее плотной упаковках). При введении фуллеренов (C₆₀, C₇₀) преобладающей становится именно рыхлая упаковка (снижение плотности). Она создается вокруг молекул фуллерена в результате эпитаксиального роста столбчатых структур из молекул растворителя на шестичленных циклах фуллерена [18].

В разбавленных растворах звезд ($C \sim 0.1 \text{ g/dl}$) содержание фуллерена $C_F \sim 3 \cdot 10^{-3} \text{ mass}\%$ лежит в диапазоне указанных структурных превращений толуола под действием фуллерена [18]. Среднее расстояние $R_{\text{int}} \sim 30 \text{ nm}$ между C₆₀-центрами превышает оценку диаметра звезды $\sim 20 \text{ nm}$ при полностью вытянутых лучах. Звезда окружена значительным объемом растворителя, ее контакты с соседними частицами маловероятны, т.е. конформация звезды формируется как результат молекулярных взаимодействий в ее объеме. Тот факт, что лучи принимают вытянутые конформации (показатель $D \sim 1$, табл. 1, образцы № 1–4), можно объяснить ассоциацией растворителя на поверхности C₆₀ в колоннообразные сборки, способствующие выстраиванию лучей по радиусу.

По сравнению с разбавленной системой при содержании полимера $C \sim 1 \, \text{g/dl}$ объем сольватных оболочек вокруг него на порядок больше, а структура растворителя во всем объеме образца возмущена наличием макромолекул и их взаимодействиями. Это осложняет формирование на поверхности С₆₀-центров структур из молекул растворителя, стабилизирующих вытянутые конформации лучей. По этим причинам уже при концентрации $C \sim 0.5 \,\mathrm{g/dl}$ конформации лучей свернутые, $D \sim 1.3 - 1.6$ (рис. 1, *b*). При $C \sim 1$ g/dl среднее расстояние между центрами звезд сокращается до $R_{\rm int} \sim 15\,{\rm nm}$, и между ними вероятны контакты (полуразбавленный раствор). В этих условиях лучи приближается по конформации к полимерным клубкам, что подтверждается значениями $D \sim 1.5 - 1.6$ на уровне показателя Флори $D_{\rm F} = 5/3$ (рис. 1, *b*).

Кроме фактора концентрации полимера на конформации лучей в звездах влияют полярные группы C=Oна поверхности C_{60} . Присоединение одной-двух групп усиливает тенденцию локального распрямления лучей при снижении концентрации полимера, но присутствие трех групп на поверхности фуллерена, напротив, вызывает сворачивание лучей (рис. 1, *b*). Очевидно, группа C=O на поверхности C_{60} способна поляризовать фуллерен и лучи, упорядочивая их конформации. Однако с увеличением числа групп C=O в объеме звезды создается все более неоднородное поле, наводящее в фенильных группах ПС дипольные моменты различной величины и направления для разных звеньев. Поэтому дипольные силы между ними действуют как фактор разупорядочения и статистического сворачивания лучей.

Локальные конформационные свойства лучей сказываются на размерах звезд в целом. О размерах звезд можно

судить по спектрам молекулярных корреляций $\gamma(R)$, полученных Фурье-преобразованием [19,20] данных для сечений:

$$\gamma(R) = (\Delta K V_1)^2 \langle \Delta n(0) \Delta n(R) \rangle$$
$$= (1/2\pi)^3 \int \sigma(q) [\sin(qR)/(qR)] 4\pi q^2 dq.$$
(2)

Здесь V_1 — объем звена ПС, $\Delta K = 4.3 \cdot 10^{10}$ сm⁻² — фактор контраста ПС в толуоле. Функция $\gamma(R)$ задана усредненным произведением отклонений численной концентрации звеньев $\Delta n(0)$, $\Delta n(R)$ в точках на расстоянии R. Поскольку растворы — изотропные системы, далее используются функции $G(R) = R^2 \gamma(R)$ парных корреляций частиц (звеньев, сегментов, лучей, звезд в целом) в сферических слоях на расстоянии радиуса R от некоторой центральной частицы (рис. 2).

Спектры G(R) для звезд, исходных и модифицированных карбонильными группами, в диапазоне концентраций полимеров $C \sim 0.1-1$ g/dl демонстрируют интенсивный пик корреляций внутри звезд ($0 \le R \le 10$ nm). На рис. 2 показаны наиболее характерные спектры G(R) (для исходных и самых разбавленных растворов). Ширина пика у основания соответствует диаметру ~ 10 nm, а позиция максимума $R_G \sim R^* \sim 3$ nm — радиусу инерции звезды (рис. 2). Корреляции большего масштаба $R \sim 10-20$ nm (на уровне единичного и удвоенного диаметра) связаны с возможными контактами/ближним порядком в расположении звезд (рис. 2). При содержании полимеров $C \sim 0.1-1$ g/dl эти корреляции выражены слабо, что подтверждает устойчивость растворов звезд.

При разбавлении исходных растворов до концентрации $C \sim 0.5 \,\text{g/dl}$ не наблюдалось существенных изменений профилей спектров G(R) относительно данных при $C \sim 1 \text{ g/dl}$ (рис. 2, *a*). При понижении концентрации до $C \sim 0.25$ g/dl начинает проявляться тонкая структура основного пика G(R), хорошо выраженная при $C \sim 0.1$ g/dl в виде максимума на масштабах $R \leq 2$ nm, отражающего корреляции звеньев внутри отдельных лучей (рис. 2, b). Таким образом, при низких концентрациях лучи становятся различимыми в спектре корреляций звезды, так как в меньшей степени перекрываются в оболочке звезды при вытянутых локальных конформациях. Подобные спектры G(R) с разделенными областями корреляций на уровне луча и звезды наблюдали для звезд с С₆₀-центром и стержневидными лучами-олигомерами (4-10 звеньев) при концентрации $C \sim 1 \text{ g/dl}$ [21]. В настоящей работе при таком же содержании полимера $C \sim 1 \text{ g/dl}$ для звезд не наблюдается расщепления основного пика, поскольку достаточно длинные лучи (~ 30 звеньев), обладая статистической гибкостью, образуют вокруг центра полимерную оболочку, видимую в спектре G(R) как единый пик (рис. 2, *a*).

Интегрирование спектров G(R) в пределах основного пика [19] позволяет оценить наблюдаемые радиусы инерции звезд R_{GE} в зависимости от концентрации систем и числа карбонильных групп на центрах, используя

Рис. 2. Спектры корреляций G(R) для растворов звезд с центром C₆₀ без карбонильных групп (1) и с одной-тремя группами (2-4) при исходной концентрации полимеров ($C \sim 1 \text{ g/dl}$) (a) и разбавлении систем ($C \sim 0.1 \text{ g/dl}$) (b).

соотношение

$$R_{GE}^2 = (1/2) \left[\int R^2 G(R) dr \right] / G(R) dR.$$
(3)

Для исходных и графтированных карбонильными группами звезд получены концентрационные зависимости (рис. 3) наблюдаемых радиусов $R_{GE}(C)$, нормированных на значения радиусов частиц $R_G =$ $= R_{GE}(C \rightarrow 0)$ (табл. 2), в пределе линейной экстраполяции к нулевой концентрации полимера. Найденные значения $R_G \sim 3.3 - 3.4 \,\mathrm{nm}$ всего на $\sim 40\%$ ниже оценки размера звезды с вытянутыми лучами: $R_{GMAX} \approx L[(1+r_F/L)^3 - (r_F/L)^3]^{1/2} \approx 5.4$ nm $(r_F \approx 0.5$ — молекулярный радиус С₆₀, L контурная длина луча). Одновременно с этим величина $R_G \sim 3.3 - 3.4$ nm на $\sim 30\%$ выше радиуса инерции звезды $R_{GGST} = (AL/6)^{1/2} [(3f-2)/f]^{1/2} \approx 2.7 \,\mathrm{nm}$ той же массы и функциональности (f = 6) с лучами в гауссовой конформации (модель Бенуа) [22]. Если сравнивать звезды, имеющие фуллереновые центры, с моделью Бенуа, то в гауссовом приближении привитые к С₆₀-центру лучи должны иметь увеличенный размер статистического сегмента $A_{\rm ST} \approx (R_G/R_{GGST})^2 A \approx 3 \, {\rm nm}$ относительно его длины $A \approx 2 \,\mathrm{nm}$ в случае линейного ПС [23].

Следует также уточнить, что размер звезд R_G был найден из данных при низком содержании полимеров $C \sim 0.1-1$ g/dl, что важно при экстраполяции данных к пределу $C \rightarrow 0$. При более высоком содержании $C \ge 1$ g/dl аналогичных звездообразных полимеров (PS)₆C₆₀ (молекулярная масса $M_{\rm ST} \sim 2 \cdot 10^4$) в D-толуоле авторы [9] определили радиус инерции звезды $R_G = 2.6$ nm ниже оценки $R_{GGST} = (AL/6)^{1/2}[(3f-2)/f]^{1/2} \approx 2.7$ nm в гауссовом приближении (D = 2) в противоречии с условиями хорошего растворителя, в котором лучи звезд, согласно [9], имеют конформацию, характеризуемую показателем $D \approx D_{\rm F} = 5/3$ по Флори. В настоящей работе при содержании полимеров $C \sim 1$ g/dl параметр $D \approx 5/3$ (табл. 1), что согласуется с данными [9], но размер звезд $R_G \approx 3.3$ nm определен более корректно и превышает оценку по модели Бенуа [22].

В настоящее время при анализе структурных данных для звездообразных полимеров в хороших растворителях используют модель Дауда-Коттона [24] для много-

Таблица 2. Молекулярные массы (M_{ST}) , радиусы инерции (R_G) , значения второго вириального коэффициента (A_2) для звезд с исходным и модифицированным центром C₆₀ при различном числе (n) групп C = O

п	$M_{ m ST}\cdot 10^{-4}$	R_g , nm	$A_2 \cdot 10^4$, cm ³ · mol/g ²
0	1.74 ± 0.01	3.33 ± 0.03	3.96 ± 0.21
1	2.04 ± 0.01	3.40 ± 0.02	7.50 ± 0.26
2	1.91 ± 0.01	3.32 ± 0.03	7.35 ± 0.27
3	1.87 ± 0.01	3.27 ± 0.03	5.57 ± 0.36

Рис. 3. Нормированные наблюдаемые радиусы $R_{GE}(C)/R_G(a)$ и обратные массы $M_{ST}/M_{EST}(C)(b)$ звезд в зависимости от концентрации растворов. 1 — данные для звезд без карбонильных групп, 2–4 — для звезд с одной-тремя группами. *с*, *d* — радиус инерции звезд $R_G(n)$ и второй вириальный коэффициент $A_2(n)$ в зависимости от числа групп C = O соответственно.

лучевых звезд ($f \sim 100$) и теорию [25] с асимптотикой сечений $\sigma(q) \sim q^{-10/3}$ в области импульсов ниже обратного радиуса инерции. В работе [9] данные рассеяния нейтронов для (PS)₆C₆₀ сравнивались с моделью Дауда-Коттона [24] и теорией [25], несмотря на малое число лучей f = 6. В силу этого применимость модели [24], рассматривающей звезду как градиентную структуру, в которой лучи выстроены от центра к периферии в виде последовательностей блобов растущего размера, была ограниченной. Это подтверждено в настоящей работе (рис. 1, *a*) сравнением сечений и модельной зависимости $\sigma(q) \sim q^{-10/3}$, не описывающей полученные данные.

Дальнейший анализ молекулярных корреляций в растворах звезд при интегрировании спектров G(R) позволил оценить сечения растворов в пределе $q \to 0$ при каждой концентрации

$$\sigma_{0\text{ST}} = 4\pi \int G(R) dR$$
$$= [N_A C / M_{E\text{ST}}] [f \Delta K V_{\text{PS}} + \Delta K_F V_F]^2. \tag{4}$$

Здесь произведения $\Delta K_F V_F$, $\Delta K V_{PS}$ — вклады центра и лучей в рассеяние, V_{PS} и V_F — сухие объемы ПС-луча и молекулы фуллерена, ΔK и ΔK_F — факторы контраста для этих объектов. Из уравнения (4) находили наблюдаемые молекулярные массы звезд $M_{EST}(C)$ и путем линейной аппроксимации величин $M_{EST}^{-1} = M_{ST}^{-1}[1 + 2A_2M_{ST}C]$ как функций концентрации определяли вириальный коэффициент A_2 и молеку-

лярную массу звезды $M_{\rm ST} = M_F + f M_{\rm PS}$, включающую массы фуллерена и лучей.

Полученные значения молекулярных масс $M_{
m SN} \sim$ $\sim 2 \cdot 10^4$ показывают (табл. 2), что в соответствии с условиями синтеза (f = 6) звезды действительно шестилучевые объекты. В растворе для них характерно отталкивание, о чем свидетельствует положительный вириальный коэффициент А₂, причем отталкивание усиливается (A_2 растет) в результате присоединения группы С = О, размер частицы при этом увеличивается (рис. 3, с, d, табл. 2). Однако при большем числе групп (n = 2-3) тенденция меняется: размер звезд уменьшается, их взаимодействие ослабляется. Несмотря на то что звезды являются достаточно плотными объектами, что способствует их отталкиванию в растворе, они включают С₆₀-центры, склонные к кластеризации. Сложение этих факторов приводит к тому, что звезды проявляют даже менее сильные тенденции взаимного отталкивания, чем линейные аналоги в толуоле. Для звезд ФПС средняя по образцам величина вириального коэффициента $\langle A_2 \rangle \sim 6 \cdot 10^{-4} \text{ cm}^3 \cdot \text{mol/g}^2$ ниже параметра $A_2 \sim 7.3 \cdot 10^{-4} \, {\rm cm}^3 \cdot {\rm mol/g}^2$ для линейных ПС с молекулярной массой $\sim 2 \cdot 10^4$ [26].

3. Заключение

Методом малоуглового рассеяния нейтронов изучено необычное поведение полимерных звезд при переходе к

разбавленным растворам, когда их фуллереновый центр, структурируя растворитель, стабилизирует распрямленные конформации лучей на сегментальном масштабе, а присоединение к фуллерену полярных (карбонильных) групп в зависимости от их количества может усиливать либо ослаблять указанные тенденции. Полученные результаты демонстрируют возможности управления конформационными свойствами полимеров при использовании фуллерена в роли активного структурирующего центра, действие которого может регулироваться путем модификации поверхности функциональными группами.

Список литературы

- [1] Y. Ederle, C. Mathis. Macromolecules **30**, *9*, 2546 (1997).
- [2] Y. Ederle, C. Mathis. Macromolecules 30, 15, 42 (1997).
- [3] V. Weber, M. Duval, Y. Ederle, C. Mathis. Carbon 36, 5–6, 839 (1998).
- [4] L.Y. Chiang, L.Y. Wang, C.S. Kuo, J.G. Lin, C.Y. Huang. Synth. Met. 84, 721 (1997).
- [5] L.V. Vinogradova, K.Yu. Amsharov, E.E. Kever, V.N. Zgonnik. Polymer. Sci. A. 45, 8, 759 (2003).
- [6] C. Wang, Z.-X. Guo, S. Fu, W. Wu, D. Zhu. Prog. Polym. Sci. 29, 1079 (2004).
- [7] J.H. Youk, M.-K. Park, J. Locklin, R. Advincula, J.Yang, J.Mays. Langmuir. Lett. 18, 7, 2455 (2002).
- [8] M. Filali, M.A.R. Meier, U.S. Schubert, J.-F. Gohy. Langmuir 21, 7995 (2005).
- [9] C. Picot, F. Audouin, C. Mathis. Macromolecules 40, 1643 (2007).
- [10] В.Т. Лебедев, Д.Н. Орлова, Е.Ю. Меленевская, В.В. Шаманин, Л.В. Виноградова. ЖПХ 84, 2, 282 (2011).
- [11] В.Т. Лебедев, Gy. Török, Л.В. Виноградова. ЖПХ 84, 3, 451 (2011).
- [12] Л.В. Виноградова, П.Н. Лавренко, К.Ю. Амшаров, В.Н. Згонник. Высокомолекуляр. соединения А 44, 5, 750 (2002).
- [13] Н.В. Мекалова. Фуллерены в растворах. Уфим. гос. нефт. техн. ун-т, Уфа (2001). 107 с.
- [14] B.M. Ginzburg, Sh.Tuichiev. J. Macromol. Sci. B 44, 517 (2005).
- [15] Б.М. Гинзбург, Ш. Туйчиев, С.Х. Табаров. Письма в ЖТФ 33, 15, 22 (2007).
- [16] Б.М. Гинзбург, Ш. Туйчиев. ЖПХ 81, 580 (2008).
- [17] Б.М. Гинзбург, Ш. Туйчиев, С.Х. Табаров. ЖПХ 81, 1027 (2008).
- [18] Б.М. Гинзбург, Ш. Туйчиев. Кристаллография 52, 109 (2007).
- [19] Д.И. Свергун, Л.А. Фейгин. Рентгеновское и нейтронное малоугловое рассеяние. Наука, М. (1986). 279 с.
- [20] D.I. Svergun. J. Cryst. 25, 495 (1992).
- [21] В.Т. Лебедев, Gy. Török, Л.В. Виноградова. Высокомолекуляр. соединения А 55, 1, 35 (2013).
- [22] H. Benoit. J.Polymer Sci. 11, 507 (1953).
- [23] А.Е. Нестеров. Справочник по физической химии полимеров. Свойства растворов и смесей полимеров. Наук. думка, Киев (1984). Т. 1. 376 с.
- [24] M. Daoud, J.P. Cotton. J. Phys. (France) 43, 531 (1982).
- [25] C.M. Marques, D. Izzo, T. Charitat, E. Mendes. Eur. Phys. J. B 3, 353 (1998).
- [26] K. Huber, S. Bantle, P. Lutz, W. Burchard. Macromolecules 18, 1461(1985).